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Abstract: With the growing number of datasets to describe greenhouse gas (GHG) emissions, there is
an opportunity to develop novel predictive models that require neither the expense nor time required
to make direct field measurements. This study evaluates the potential for machine learning (ML)
approaches to predict soil GHG emissions without the biogeochemical expertise that is required to
use many current models for simulating soil GHGs. There are ample data from field measurements
now publicly available to test new modeling approaches. The objective of this paper was to develop
and evaluate machine learning (ML) models using field data (soil temperature, soil moisture, soil
classification, crop type, fertilization type, and air temperature) available in the Greenhouse gas
Reduction through Agricultural Carbon Enhancement network (GRACEnet) database to simulate
soil CO2 fluxes with different fertilization methods. Four machine learning algorithms—K nearest
neighbor regression (KNN), support vector regression (SVR), random forest (RF) regression, and
gradient boosted (GB) regression—were used to develop the models. The GB regression model out-
performed all the other models on the training dataset with R2 = 0.88, MAE = 2177.89 g C ha−1 day−1,
and RMSE 4405.43 g C ha−1 day−1. However, the RF and GB regression models both performed
optimally on the unseen test dataset with R2 = 0.82. Machine learning tools were useful for developing
predictors based on soil classification, soil temperature and air temperature when a large database
like GRACEnet is available, but these were not highly predictive variables in correlation analysis.
This study demonstrates the suitability of using tree-based ML algorithms for predictive modeling of
CO2 fluxes, but no biogeochemical processes can be described with such models.

Keywords: greenhouse gases fluxes; GRACEnet; prediction; random forest regression; gradient
boosted regression; support vector regression; KNN regression

1. Introduction

According to the U.S Environmental Protection Agency, CO2 is the primary anthro-
pogenic greenhouse gas (GHG) emitted in the US, with a 30% atmospheric increase since
the pre-industrial era [1], and it accounted for 80% of the total GHG emissions into the
atmosphere in 2019 [2]. Though the greatest sources of CO2 in the US are transportation,
electricity and the industrial sectors [2], agriculture also accounts for substantial CO2
emissions. Emissions of CO2 from agriculture include respiratory fluxes from root growth
and turnover, microbial respiration, aboveground plant respiration [3] and also the stim-
ulation of these fluxes that occur from the application of nitrogen fertilizers [4]. Current
estimated soil carbon is about 2700 gigatons (1 gigaton = 1 billion metric tons) worldwide
with two-thirds of that carbon in organic form [5,6], which is three times the amount of
carbon currently in the atmosphere [7]. As a result, an increase of a few percentage points
in soil carbon uptake affects the CO2 entering the atmosphere [6], decreasing the amount
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of GHG emissions. Estimating soil CO2 emissions is thus essential for understanding
the feedbacks between climate changes and terrestrial ecosystems [8]. A major challenge
however is that direct measurement of CO2 fluxes from soil can be costly, time-consuming,
and require some level of expertise, making it challenging to quantify the CO2 emissions
emanating from different crop management systems, especially where soil conditions are
highly variable.

Emissions of CO2 from soil result primarily from microbial activity, root respiration,
chemical decay processes, and heterotrophic respiration of soil microorganisms [3]. Soil
moisture, soil temperature, land cover, vegetation, and nutrients all play a role in soil
CO2 emission [3]. There are various standardized methods for measuring CO2 fluxes
from soils, including the chamber methods (close static chamber method, dynamic static
chamber method or open chamber methods), micrometeorological methods such as the
eddy covariance [3], and the soil CO2 gradient system [9]. However, various weaknesses
have been identified with these methods for quantifying CO2 soil fluxes. For example,
Heinemeyer & McNamara [10] argue that the closed static chamber approach takes a
long time to manually sample, which can underestimate the calculated fluxes due to
asymptotic increase in headspace CO2 concentrations. Although the soil CO2 gradient
system has some advantages over the chamber-based methods, Liang et al. [9] argue that
the sensors used for measuring CO2 flux are not very accurate and can be damaged by the
soil microenvironment. Despite the weaknesses identified with in situ measurements of
soil GHG fluxes, all modeling approaches rely on data generated from field and laboratory
studies to describe complex physical, biological, and chemical processes occurring in the
soil. Thus, the performance of modeling studies depends on the continued collection of
complete and quality observed data to improve results from modeling approaches [11].

1.1. Review of Previous Studies

Biogeochemical models are other alternatives to the traditional direct measurement
of CO2 which have been developed over the years to predict GHGs. Some of these bio-
geochemical models include the Denitrification Decomposition model (DNDC) model
proposed by Li et al. [12], the SOILCO2 model by Herbst et al. [13], the DAYCENT
model [14,15], and the Root Zone Water Quality Model (RZWQM2) [16]. Although bio-
geochemical and process-based models have been successful at estimating soil CO2 fluxes,
they possess certain limitations; for example, in the DAYCENT model, Del Grosso et al. [14]
explains that errors can emanate from uncertainty in model drivers and imperfections in
model parameterizations. In addition, complex models such as DAYCENT and RZWQM2
often require experienced users with agro-ecological expertise to implement pre-procedures,
model calibration and validation [17] which may limit their wide usage.

An alternative to direct measurement and biogeochemical models for predicting soil
GHG fluxes is to use models based on machine learning. The development of big data tech-
nologies and high-performance computing has propelled machine learning (ML) as a tool
to create new opportunities to reveal, quantify and understand data-intensive processes in
agriculture [18]. Machine learning models are not meant to replace biogeochemical models
and direct measurement, but are meant to complement these existing methods, especially
when direct measurement is difficult. Machine learning (ML) algorithms utilize pattern
recognition to describe relationships between input parameters and output parameters
by “learning” characteristics of the relationships after training a given dataset [19]. ML
models require a large amount of data to be able to learn intricate relationships such that
when new data is introduced to the model, it can still generate accurate predictions. ML
models seek to establish statistical relationships through iterative multivariate analysis
to maximize correlations between input variables and an output variable in a given set
of data [20]. Table 1 summarizes previous studies that applied various ML techniques to
predict soil GHG fluxes.
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Table 1. Summary of relevant studies that used machine learning (ML) to simulate soil GHGs.

Study ML Method Used Key Highlight

Hamrani et al. [17]
FNN, RBFNN, ExNN, LSTM,

DBN, CNN, LASSO, RFR,
and SVR

LSTM model predicted the highest accuracy metrics on CO2
fluxes with (R2 = 0.87 and RMSE = 30.3 mg·m−2·h−1).

Saha et al. [21] RF
RF model explained 51% of variation in daily N2O fluxes upon
coupling with a cropping systems model used to predict daily soil
nitrogen availability.

Ebrahimi et al. [22] ANN, LR ANN model could predict basal respiration with R2 = 0.66 and
substrate induced respiration with R2 = 0.52 respectively.

Abbasi et al. [23] SVM, RF, LASSO, FNN, RBFNN,
and ELM

RF attained optimal performance on predicting CO2 emissions
with R2 = 0.86 and RMSE = 3.05 Kg ha−1 d−1.

Freitas et al. [24] ANN The ANN model predicted CO2 fluxes with R2 = 0.80; mean
absolute percentage error (MAPE) = 12.0591.

Philibert et al. [25] RF RF model predicted soil N2O fluxes with Root mean square error
of prediction (RMSE) of 2.99 kg N ha−1 year−1).

Tavares et al. [26] RF RF model predicted soil CO2 fluxes with R2 = 0.80.

Abbreviations: FNN, Feed-forward neural networks; RBFNN, Radial basis function neural network; ExNN, Ex-
treme neural network; LSTM, Long short-term memory network; DBN, Deep belief network; CNN, Convolutional
neural network; LASSO, Least Absolute Shrinkage and Selection Operator; RF, Random Forest Regression; SVR,
Support Vector Regression; ANN, Artificial neural networks; Linear regression (LR); ELM, Extreme learning machine.

1.2. Rationale for ML Study of Soil CO2

Soil GHG emissions (i.e., CO2) in agricultural soils are influenced by the soil type, pH,
carbon content, tillage practices, soil temperature, moisture content [27], the type of fertil-
izer applied [28], and the cropping system [29]. In this study, our goal was to determine
the plausibility of using basic soil physical properties (soil temperature, soil moisture, soil
type), air temperature, cropping system, and the type of fertilization as input variables to
estimate CO2 fluxes. A previous study by the authors [28] revealed that application of a
novel organic based soil amendment (hydrochar) reduced soil CO2 fluxes by 34% compared
to inorganic fertilizer (urea) and these CO2 fluxes were correlated with soil temperature.
Although the study [28] was only conducted on one cropping system (a 6-year-old mis-
canthus stand), previous studies have shown that switching from conventional annual
crops such as corn, to perennial bioenergy crops such as miscanthus, could significantly
reduce GHG fluxes due to the limited fertilizer application needed and the increased carbon
sequestration [30,31]. Understanding the consequence of different fertilizer uses in a vari-
ety of cropping systems is thus important for agricultural development that reduces CO2
emissions from soils. Therefore, the goal of this study was to determine if large datasets
from many studies and cropping systems can be used to train ML models to estimate CO2
fluxes with minimal predictors.

1.3. Purpose of Study

The objective of this study was to develop and evaluate ML-based models using data
(soil temperature, soil moisture, soil classification, crop type, fertilization type, and air
temperature) available in the Greenhouse Gas Reduction through Agricultural Carbon
Enhancement network (GRACEnet) database to predict yearly soil CO2 fluxes under
different management systems. We hypothesized that fertilizer type could be used as
a predictor of soil CO2 fluxes in ML models. Because ML algorithms do not evaluate
predictive power of individual variables statistically, we also assessed the input variables
used to develop the models by applying correlation analysis to determine which variables
were most strongly correlated with changes in soil CO2 emissions. Multiple ML algorithms
were used to develop the models including support vector regression (SVR), random forest
regression (RF), K-nearest neighbor regression (KNN), and gradient boosted regression
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(GB). To the best of our knowledge, no study has utilized the GRACEnet database to develop
ML models to predict CO2 soil fluxes and this study therefore evaluates a new approach.

2. Materials and Methods
2.1. Description of the Database

The data used in this modeling study was derived from the GRACEnet database. The
main purpose of the GRACEnet database is to aggregate information from many studies so
that methods for quantifying GHG emissions and other environmental impacts of cropped
and grazed systems can be developed, and to provide scientific evidence for carbon trading
programs that can help reduce GHG emissions [32]. GRACEnet consists of a large network
of researchers who conduct field experiments that quantify soil C and/or GHG emission
data under three scenarios: scenario one is a “business as usual” management system,
scenario two is a system that maximizes soil carbon sequestration, and scenario three is a
system that minimizes net GHG fluxes from soils [33]. The database contains GHG data
from 169,858 individual GHG measurements from 25 different field sites with associated
background descriptors about the location, weather, and plot designations [33]. Even
though the original database consisted of 34 tables, with each table containing data that
may be needed based on a specific research hypothesis, we selected the table that contained
the CO2 emissions measurements. The GHG emissions measurement data originally
consisted of 53 columns. The columns contained descriptive information such as the start
and end dates of the respective studies, crop rotation, tillage description, cover cropping,
and irrigation. Although several of these agricultural parameters found in the GRACEnet
database could influence CO2 fluxes, we opted for fewer categorical variables and more
continuous variables because ML regression algorithms can be biased, especially when
categorical variables have several sub-levels. The categorical variables of greatest interest
for this study are the fertilizer amendment class, soil classification and crop type. Thus, six
variables (air temperature, soil temperature, soil moisture, fertilizer amendment class, soil
classification, crop) and one response variable (CO2 fluxes) were selected for the analysis.
These variables have known effects on soil CO2 emissions [3,17,28] but have not been
tested in ML methods as predictors for estimating CO2 fluxes. The crop type category
that represented the land use or cropping system in the different sites contained a total of
24 different categories (e.g., corn, pasture, rangeland, miscanthus, fallow, etc.), from which a
subset was selected during preprocessing. The fertilizer amendment class refers to the type
of fertilizer (synthetic, organic, combination of synthetic and organic, or none) applied to a
particular plot/site. The soil classification variable refers to the National Cooperative Soil
Survey soil taxonomic classification of the soils. These included the following soil types:
(1) Fine-mixed, semiactive, mesic Typic Hapludalfs, (2) Fine-silty, mixed, active, mesic
Typic Paleudalfs, (3) Coarse-silty, mixed, mesic Durixerollic Calciorthods, (4) Fine-loamy,
mixed, superactive, mesic Aridic Haplustalfs, frigid Typic Argiustoll, (5) Fine-loamy, mixed,
superactive, mesic Ustic Haplocambids, (6) Tomek fine, smectitic, mesic Pachic Argiudolls,
Filbert fine, smectitic, mesic Vertic Argialbolls, (7) Clayey, illitic, mesic Typic Hapludults,
and (8) Fine-silty, mixed, superactive, rigid Typic and Pachic Haplustolls).

2.2. Preprocessing

Preprocessing is one of the most important steps in ML modeling because data that
contain extraneous and irrelevant information produce less accurate results [34]. Data
preprocessing steps can vary depending on the project but common steps in preprocessing
involve data cleaning, normalization, transformation, and feature selection [34]. As with
all real-world big databases, the GRACEnet database had thousands of missing data
points that required verification or deletion. According to Lakshminarayan et al. [35], one
method of dealing with missing data is by ignoring and discarding incomplete records
and attributes, especially when missing data form a smaller proportion of the data and
using complete data does not lead to biases in inferences. The first step of preprocessing in
this study was to identify and eliminate missing data. The total number of samples/rows
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were 126,520 and the missing data accounted for about 36% of the total number. Thus, the
remaining number of observations/rows used for the next preprocessing stage was 80,806.
There were a total of 24 different types of crops in the categorical variable “crop,” but only
five were used in this study and these included corn, switchgrass, miscanthus, pasture, and
fallow lands. After dropping observations (rows) containing crops that were not relevant
to this study, the total number of rows were drastically reduced to 7863. Model training
is a computationally expensive process and so efforts were made to ensure only relevant
samples were used for the modeling. The variables “crop”, “fertilizer amendment class”
and “soil classification” in the subset dataset were converted from categorical variables to
numeric category variables (i.e., dummy variables).

2.3. Machine Learning Implementation

Prior to implementing the machine learning algorithms, we determined the optimum
number of input variables that significantly explained the most variation in the output vari-
able (CO2 flux) using Pearson correlation analysis and step-forward feature selection [36].
Step-forward feature selection is a family of greedy search algorithms that reduces the
number of initial variables to obtain an optimal number of variables that predict an output
variable [37]. The algorithm starts with zero input variables, and then finds one input vari-
able that maximizes a cross-validated evaluation criteria after training using an estimator
(e.g., random forest regressor). The algorithm then sequentially adds the remaining input
variables and repeats the procedure until a predetermined number of features are found.
In step-forward feature selection, the algorithm evaluates all predictors individually and
selects the predictors that give the highest value according to a pre-set evaluation criteria
(R2) [37]. The algorithm then evaluates all possible combinations of the selected predictors
to produce the best combination of predictors.

Four supervised regression ML algorithms (support vector regression (SVR), ran-
dom forest regression (RF), K-nearest neighbor regression (KNN), and gradient boosted
regression (GB) were used to develop models to predict soil CO2 fluxes. The models were
programmed using Python (version 3.8.5). We used the Scikit-learn module, a Python
module which integrates both supervised and unsupervised learning ML algorithms [38].
Supervised ML algorithms are those algorithms that need labeled (measured/known)
training datasets to predict an output variable, whereas unsupervised ML algorithms do
not need labeled data to predict the output variable [39].

A summary of the steps that were followed in implementing the ML algorithms
are shown in Figure 1. Relevant information from the GRACEnet database was cleaned
and preprocessed, and relevant features/predictors selected. After the preprocessing
and feature selection steps, the input variables were scaled. The most common methods
of scaling input variables are by normalization or standardization. In normalization,
the input variables are scaled to have a range of 0 to 1 by subtracting the minimum
value and dividing by the range between the maximum and minimum value of an input
variable [40]. Standardization is achieved by subtracting the mean of an input variable from
each value and dividing the result by the standard deviation [40]. We chose to normalize
the input variables because normalization allows variables with different units to be equally
represented in the ML framework.

The data were randomly split into a training set (80%), which had 6290 CO2 measure-
ments used to build the models, and a test set (20%) of 1573 CO2 measurements, which were
used to validate/test the models accuracy. When training models using ML algorithms, it
is important to use the optimum hyperparameters of the specific algorithm to achieve the
best model performance. The hyperparameters of an algorithm are the parameters that can
be configured to minimize the loss function of the model which increases accuracy in the
models being developed [41]. Thus, after training the models, optimum hyperparameters
were found using the “GridSearchCV” function in Scikit-learn. The GridSearchCV function
was used because it works by combining all given hyperparameter configurations to ob-
tain the best set of hyperparameters that give the best performance within a user chosen
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configuration space [41]. The optimum hyperparameters were then used to retrain the
models and final predictions of the accuracy of the models were made using the unseen
test dataset reserved.
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Model predictions of CO2 were compared to measured CO2 emissions using statistical
performance measurements i.e., Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and R-Squared.

2.4. Computational Software

The computational software in this study was written with Python (programming
language) (version 3.8.5) [42]. The advantage of using Python is its free and open-source
nature, which means it is regularly checked and bugs fixed when reported to the program-
mers. For easy understanding, the code for this study was written in Jupyter Notebook [43].
Jupyter Notebook is an open-source web application that allows for easy creation and
sharing of code, data cleaning, machine learning modeling and data visualization. To
implement the four ML models, a series of algorithms (KNeighborsRegressor, Random-
ForestRegressor, SVR, and GradientBoostingRegressor) were downloaded onto the Jupyter
Notebook environment from Scikit-learn (a Python module which integrates a series of ML
algorithms) [38]. Data visualization was undertaken using matplotlib and seaborn, which
are libraries available in Python. Forward feature selection was implemented using the
SequentialFeatureSelector algorithm which was used to select the optimum number of fea-
tures/variables prior to model development. The SequentialFeatureSelector algorithm can
be found in MLxtend (a library that implements a variety of ML algorithms) [44]. Finally, to
determine the most important variables in the best performing models, the “permutation
importance” function in Scikit-learn was used to calculate the feature importance of the
estimators in this study [38].

2.5. Machine Learning Techniques

Machine learning (ML) algorithms are generally grouped into supervised ML, unsu-
pervised ML, semi-supervised learning, reinforcement, transduction, and learning to learn
ML algorithms [45]. Supervised ML algorithms are those algorithms that generate a func-
tion that maps inputs to desired output from externally supplied labels (a data consisting
training observations where each observation has a pair consisting of a predictor and a
desired output variable) to make predictions on future observations [45,46]. Supervised ML
algorithms are commonly used to predict GHG fluxes. Supervised ML is especially helpful
when the output to be predicted is a continuous variable, e.g., CO2 fluxes. Although the
supervised ML algorithms used in this study all aim to achieve a similar goal, to predict
the CO2 fluxes given certain influential predictors, their operating principles differ, with
different levels of complexity depending on the number of hyperparameters in the algo-
rithm (Table 2). The size of the training dataset, the range of the training dataset compared
to the testing dataset, the quality, and completeness of the overall dataset will determine
which algorithm will yield the best performance. Operating principles, advantages, and
disadvantages of the machine learning techniques used in this study are summarized in
Table 2.
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Table 2. Summary of machine learning techniques used for predicting CO2 fluxes in this study.

Technique Operating Principle Pros Cons

Support vector
regression (SVR)

SVR works by regressing a dependent
variable on an independent variable
according to a weight vector and a
bias term. Regression functions are
learned by mapping data onto a
high-dimensional feature space
known as kernelling [47,48]

Excellent generalization capability,
with high prediction accuracy.
Performs well for data with high
dimensions [48].

Choosing appropriate
hyperparameters, especially kernel
functions, is a difficult task [49].
Inefficient when dealing with
large datasets.

K-Nearest Neighbor
regression (KNN)

The KNN regression model is an
adaptation of the KNN classification
algorithm whereby predictions for
new instances are made based on the
average of the values of its “K”
nearest (most similar) neighbors in the
training dataset [50].

Relatively easy to implement because
you only need to specify two
parameters i.e., K and the distance
function.
Robust to noisy training data and
works effectively with large training
data [51].

Computationally expensive when
data is large because the algorithm
computes distances of each query
instance to all training samples [51].
Sensitive to missing data and outliers
which can lead to reduction in
accuracy [52].

Random forest
regression (RF)

RF is an ensemble algorithm based on
the decision tree algorithm whereby
several decision trees are constructed
during training of the data and
outputting the mean prediction of the
individual trees [53]. The dataset is
split into several segments by posing a
series of questions about the features
of the dataset (predictors) and a final
decision of the class of a new
prediction is made based on the
outcome of the individual trees [54].

Reduces overfitting and variance
unlike in decision trees since it creates
several trees using a subset of the data
to predict an output.
Robust to missing values and outliers
in a dataset [54].

Tends to overestimate low values and
underestimate high values because
the output value of a prediction is the
average of several decision trees [55].
Inefficient at extrapolating during
prediction beyond the the range of the
training dataset [56].

Gradient boosted
regression (GB)

GB uses the technique of boosting to
combine many relatively simple
regression tree models, predicting
their pseudo residuals, and fitting new
models based on the pseudo residuals.
New regression trees are built based
on the same predictors used to predict
the residuals for all samples in the
training dataset until further addition
of trees does not significantly reduce
the residuals [57].

Prediction accuracy usually higher
than other regression models.
Has several hyperparameters that can
be tuned to increase performance
of models.

While it gives higher accuracy, GB
does not necessarily yield intelligible
parameters making interpretation of
the model difficult [58].
Can be computationally expensive
since it requires a large number of
trees for optimal performance.

3. Results and Discussion
3.1. Feature Selection

Prior to implementing the machine learning algorithms, the relationships between the
input variables and CO2 fluxes were analyzed to determine which input variables influ-
enced the output variable the most. The coefficient of correlation (r) for all the predictors
with the output variable was significant, with α = 0.05. The input parameters that were
tested were air temperature, soil temperature, soil moisture, soil classification, crop, and
fertilization amendment class. Four predictors (air temperature, soil temperature, crop,
and fertilization amendment class) were moderately correlated with CO2 flux (r = 0.46,
0.49, 0.36, and 0.3, respectively), whereas soil moisture and soil classification had low
correlations (r = 0.09 and 0.22, respectively) with CO2 flux. The moderate correlation of air
temperature and soil temperature indicates their influence on CO2 fluxes is consistent with
other studies [3,17].

Forward feature selection was implemented to choose the most important features
for developing the models. Prior to implementing forward feature selection, we tested
for multicollinearity between the predictors and none of the predictors were correlated
to the other. The threshold to determine if two variables were correlated was that the
absolute value of the correlation coefficient should exceed 0.8. In forward feature selection,
predictors are added to a model one at a time. The algorithm first starts with the evaluation
of each individual predictors, and selects the predictor which results in the best performing
model as the starting predictor, according to a predetermined evaluation criteria (R2) [37].
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In the next step, the algorithm starts with the best predictor and combines it with the
remaining predictors to select the best pair of predictors. The algorithm continues adding
predictors until a stopping criterion is reached and, in our study, until a predetermined
number of predictors is selected. In our study, we tested cases with 1, 2, 3, 4, 5, and
6 predictors. Random forest was shown to be the best algorithm for feature selection and
we verified that by running forward feature selection with the other three algorithms (KNN,
SVR, GB) used in this study, which did not improve performance. The random forest
regressor is known to possess a high predictive power and ability to reduce overfitting [59].
Overall, the forward feature selection screened 21 combinations of the predictors with 1, 2,
3, 4, 5, and 6 predictors tested with the RF algorithm.

Table 3 shows the results of the forward feature selection on the training dataset with
various combinations of the predictors and their corresponding R2 score. The results in
Table 1 shows that, if the number of predictors needed in our model was 1, soil classification
will be the best predictor because it gives the highest R2 value of 0.63. This contrasts with
the results from the correlation matrix because the ML algorithms run iteratively. If the
required number of predictors needed in the model was 2, then soil classification and air
temperature will be the best predictors because their combined R2 in the model was the
highest (0.74). Increasing the number of predictors beyond 5 did not result in an increase
in R2 of the model. Five predictors (air temperature, soil temperature, soil classification,
fertilization amendment class, crop) were thus chosen for final model simulation on the
testing dataset because it resulted in the highest performance for all the algorithms, even
though option four (with four predictors) resulted in a higher R2 value during feature
selection. The option with four predictors was used to build models in all our algorithms
studied but resulted in lower performances compared to option 5 with five predictors.

Table 3. Forward feature selection on the training dataset.

Best Predictor Combination Number of
Predictors Chosen R2

Soil classification 1 0.63
Air temperature, soil classification 2 0.74
Air temperature, soil classification, fertilization amendment class 3 0.76
Air temperature, soil classification, crop, and fertilization
amendment class 4 0.77

Air temperature, soil temperature, soil classification, fertilization
amendment class, crop 5 0.76

Air temperature, soil temperature, soil moisture, soil
classification, fertilization amendment class, crop 6 0.76

Not surprisingly, soil temperature was an important predictor for CO2, and increased
model performance. To further confirm that multicollinearity did not exist between the
five predictors chosen for the final model, a formal diagnostic method, variance inflation
factor (VIF), was used to determine if there was multicollinearity between the predictors.
According to O’Brien [60], a VIF value of 5 and a tolerance value of less than 0.20 could
indicate the presence of multicollinearity. In this study, the VIF values and tolerance values
for the five predictors were: soil classification (3.9 and 0.26, respectively), air temperature
(2.83 and 0.35, respectively), soil temperature (3.08 and 0.32, respectively), crop (1.83 and
0.55, respectively), and fertilizer amendment class (3.10 and 0.32, respectively). Although
forward feature selection is known to be computationally more efficient than backward
feature selection, it does not provide flexibility to remove predictors that have already been
added to the model in case they become obsolete with addition of other predictors [61].

3.2. Model Performance Assessment

Model performance assessment aims to quantify the ability of the models developed
to accurately generalize to new data that was not used to train the model. Three statistical
criteria (R2, MAE, and RMSE) were used to assess how well the resulting models performed
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on the testing dataset not used in model development. Table 4 presents the evaluation
metrics for the different predictive models.

Table 4. Evaluation metrics of machine learning models for predicting CO2 fluxes in bioenergy crops.

Training Dataset Testing Dataset

Model R2
RMSE

(g C ha−1

day−1)

MAE
(g C ha−1 day−1) R2 RMSE

(g C ha−1 day−1)
MAE

(g C ha−1 day−1)

Support Vector Regression 0.74 6708.81 2923.69 0.71 7571.02 2992.09
KNN Regression 0.80 5910.76 2679.03 0.77 6714.21 2867.71
Random Forest 0.87 4696.76 1968.07 0.82 5893.72 2543.58

Gradient Boosted Regression 0.88 4405.43 2177.89 0.82 5961.15 2591.61

The results from this modeling study indicate that the SVR model was the lowest
performing model. The evaluation metrics of the SVR model on the training dataset
were R2 = 0.74, MAE = 2923.69 g C ha−1 day−1, and RMSE = 6708.81 g C ha−1 day−1,
whereas the evaluation metrics of the SVR model on the test dataset were R2 = 0.71,
MAE = 2992.09 g C ha−1 day−1, and RMSE = 7571.02 g C ha−1 day−1. To achieve optimal
performance when using the SVR algorithm on a test dataset, it is important to carefully
choose the hyperparameters [62]. The training stage of the SVR algorithm found the optimal
hyperparameters to achieve the best generalization of the model when predicting CO2 flux
on the test dataset. Although the SVR algorithm has many hyperparameters, in this study,
we chose four hyperparameters (C, ε, γ and the kernel function) that were tuned using the
GridSearchCV module. According to Kaingo et al. [63], a successful SVR implementation
depends on selecting a suitable kernel function, choice of the cost parameter C, and the
“tube” insensitive variable ε. The “RBF” (radial basis function) performed better than the
linear and sigmoid functions. Hamrani et al. [17] reported an R2 of 0.92 and 0.68 during
training and testing when SVR was used to predict CO2 fluxes. Even though their model
performed well on the training dataset, there was a high variability, which led to a lower
performance on their test dataset. By comparison, the SVR model in our study was able to
generalize fairly well to data that was not used to train the model, with an R2 value of 0.71.

A better performing algorithm was the KNN regression algorithm. The evaluation re-
sults on the training dataset using the KNN were: R2 = 0.80, MAE = 2679.03 g C ha−1 day−1,
RMSE = 5910.76 g C ha−1 day−1 and the result for the test dataset were R2 = 0.77,
MAE = 0.2867.71 g C ha−1 day−1, RMSE = 6714.21 g C ha−1 day−1. The hyperparame-
ters tuned for the KNN were the K neighbors (in this case the number of measurements for
soil CO2 fluxes) and the distance function used to estimate a new data point. The value for
K was tuned and carefully chosen because a low value can lead to overfitting of the data,
and a larger K value can lead to underfitting of the data [64]. The GridSearchCV module
was used to test a range of K from 1 to 50 and the optimal K obtained was 8.

Tree-based regression algorithms are supervised machine learning algorithms that
predict an output variable by building tree-like structures. The basic form of the tree-based
algorithms is the decision tree algorithm. However, decision trees are prone to overfitting
as the tree grows bigger and more complex [53]; thus, improved versions (RF and GB
regression algorithms) of the decision tree algorithm were used in this study. In general,
the tree-based regression algorithms (RF and GB) produced the most optimal models for
simulating CO2 fluxes.

Among the four algorithms applied to simulate CO2 flux in this study, the RF and
GB regression models were the best performing models when used to predict CO2 flux
on an unseen test dataset, which is of more importance in estimating real world CO2
fluxes. On the training dataset, the evaluation metrics for the RF regression model were
R2 = 0.87, MAE = 1968.07 g C ha−1 day−1, and RMSE = 4696.76 g C ha−1 day−1. On the
test dataset, the evaluation metrics for RF were R2 = 0.82, MAE = 2543.58 g C ha−1 day−1,
and RMSE = 5893.72 g C ha−1 day−1. The hyperparameters that were tuned to increase the
performance of the RF regression model were the n_estimators, max_depth, max_features,
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and min_sample_leaf. Because the RF regression is a tree-based algorithm, n_estimators
refers to the number of trees the algorithm built to estimate a mean prediction for a particu-
lar observation of CO2 flux. The optimum hyperparameters found using the GridSearchCV
module for all the algorithms are shown in Table 5, and Figure 2 shows the performance
metrics for predicted CO2 fluxes.

Table 5. Optimum hyperparameters used for predicting CO2 fluxes.

Learning Algorithm Hyperparameter

K Nearest Neighbor Regression (KNN) n_neighbors = 8, metric = “manhattan”
Support Vector Regression (SVR) kernel = ‘rbf’, C = 4000, ε = 0.001, and γ = 1.2
Gradient Boosted Regression (GB) n_estimators = 50, learning rate = 0.1, max_depth = 10, loss = ‘huber’, alpha = 0.99
Random Forest Regression (RF) n_estimators = 80, max_depth = 30, max_features = ‘sqrt’ min_sample_leaf = 2
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Hamrani et al. [17] reported an R2 of 0.96 and 0.75 during training and testing using
an RF model to predict CO2 fluxes. Comparatively, the RF model developed in our study
attained a higher predictive performance than that of Hamrani et al. [17] because our RF
model achieved an R2 = 0.82. When using decision trees to develop models, each node of
a tree is split using the best split among the predictors. However, an improved approach
using the RF algorithm is to split each node using the best among a subset of predictors
chosen at that node [65]. The combination of trees grown using random variables in the case
of the RF algorithm increases accuracy because the variables are randomly chosen at each
node [54]. Unlike simple regression models that depend on process-level understanding
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of flux variability, ML models such as RF utilize functional relationships between the
predictors and the dependent variable that are learned during the training stage of the
algorithm implementation [54].

The GB regression algorithm resulted in comparably high performance metrics on
the training dataset when compared to the RF model. The performance metrics on the
training dataset using GB regression were R2= 0.88, MAE = 2177.89g C ha−1 day−1, and
RMSE = 4405.43g C ha−1 day−1. On the test dataset, it produced comparable model perfor-
mance (i.e., R2 = 0.82, MAE = 2591.61g C ha−1 day−1, and RMSE = 5961.15g C ha−1 day−1)
to that of the RF algorithm but higher than that of models produced by the SVR and
KNN regression algorithms. To increase the accuracy of the models built using the GB
regression algorithm, we used the GridSearchCV module in tuning the number of esti-
mators (n_estimators), the learning rate, maximum depth (max_depth), the loss function,
and alpha. The learning rate controls the contribution of each tree in the GB model and
decreasing the learning rate increases the number of trees required [66]. The optimized
hyperparameters chosen are shown in Table 3. Figure 3 shows a one-to-one scatter plot
comparison of the four models we tested with their respective performance metrics.
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3.3. Important Model Predictors for Estimating Soil CO2 Fluxes

Model interpretation is key to understanding the practical implications of the drivers
of soil CO2 fluxes in the GRACEnet database. Because ML models are not as interpretable
as the process-based models, mechanistic models, or parametric models such as linear
regression, it is not surprising that ML model interpretability is currently a “hot” topic of
debate. In the ML research community, there is still no clear definition or evaluation criteria
for interpretability [67]. In linear regression, one can easily interpret the model parameters
(i.e., slope and intercept) and derive insights for practical interpretations. By contrast,
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ML methods have often been criticized for lacking interpretable parameters, especially
neural networks, which have been described as a “black box” algorithm that is not easily
understood [68]. Although traditional model estimation methods (e.g., linear regression)
makes interpretation easier, complex non-linear models (e.g., GB and RF regression) are
sometimes more accurate but do not necessarily yield intelligible parameters to infer
mechanistic relationships [58].

Various methods have been developed that makes interpretation of the final models
possible by simplifying the relationships between the predictors and the output variable.
Interpretable here means the ability to extract relevant knowledge from the models de-
veloped with regards to relationships between variables [69]. Although several model
independent methods (e.g., individual conditional expectation, covariate importance with
permutation, partial dependence plots [70]) are currently available to interpret ML models,
perhaps the most prominent and intuitive method is the permutation feature importance
(PFI) proposed by Breiman [54]. PFI has been implemented as a function in Scikit-learn [38]
and is used to determine the important predictors in models developed using the tree-based
machine learning algorithms (RF and GB regression). First described by Breiman [54] for
the random forest algorithm, PFI describes how important the various features/predictors
are for predicting the performance of the models, regardless of the shape, i.e., linear or
non-linear [71]. Thus, a predictor will be considered important if shuffling its value leads
to an increase in the error rate of the prediction. In this study, we implemented PFI to help
determine the influence of predictors in the final models.

Evaluation of the models developed in this study revealed the tree-based algorithms
(RF regression and GB regression) to be the best performing models. Thus, PFI was
performed on the RF and GB regression models using both the training dataset and the test
dataset. The results of the PFI are shown in Figure 4. The GB regression and RF regression
models both showed a similar ranking of predictors in the models. The soil classification
within the site of measurement was ranked first for predicting soil CO2 fluxes. Although
our hypothesis—that fertilizer amendment class was a useful predictor in ML models of
CO2 fluxes—was supported, it was not the most important predictor. Soil classification,
soil temperature, air temperature, and cropping system were found to be more important
predictors of soil CO2 fluxes than the type of fertilizer amendment.

Soil temperature is a well-known predictor of the CO2 fluxes, and the results here are
consistent with previous studies that show a link between soil temperature and soil GHG
fluxes [3,17,28,72–74]. As the temperature of a soil increases, soil respiration increases,
which leads to greater CO2 emissions and a positive feedback to CO2 fluxes associated with
increased microbial metabolism [3]. The change in soil GHG emissions with an increase in
soil temperature can be described with the temperature sensitivity factor, Q10 [3,75].

Soil moisture was not used as a predictor for any of the models as it showed a
very weak correlation (0.08) with CO2 fluxes for the GRACEnet database. Although
Abbasi [23] also found low correlation of soil moisture with CO2 emissions under a corn–
soy rotation cropping system, they opted to include it in their model based on previous
studies. Including soil moisture in the models studied here led to lower performance.
Although short-term daily precipitation can influence soil CO2 fluxes [76], there was no
relationship between daily precipitation and soil CO2 fluxes in the GRACEnet database;
hence, it was not considered as a predictor for developing the models in this study.

Biogeochemical models and process-based models are guided by process level the-
ory [21], but ML models can only be interpreted in the context of the data used to execute
the prediction. The improvement in the accuracy when ML algorithms are used for mod-
eling occurs because ML techniques use similarities between samples to estimate future
samples, which is advantageous when the form of the relationship between the predictor
and the output variable is unknown prior to analysis [77]. Although ML-based models are
not inherently superior to process-based models, they can help complement process-based
models by better identifying the key variables that are driving CO2 fluxes [21].
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Figure 4. Permutation feature importance (PFI) of the five predictors: (a) shows the PFI on the training
dataset of the GB regression model; (b) shows the PFI on the test dataset of the GB regression model;
(c) shows the PFI on the training dataset of the RF model; and (d) shows the permutation importance
on the test dataset of the RF model. Soil_Classification, soil classification; Soil_temp_DEGC, soil tem-
perature (◦C); Air_Temp_DEGC, air temperature (◦C); Crop, cropping system; Fert_Ammend_Class,
type of fertilizer amended to the crops.

It should be noted that this study was primarily focused on comparing the predictive
ability of various machine learning algorithms for simulating CO2 fluxes. Hence, the
performance of the models developed in this study was not compared to models developed
using the Denitrification Decomposition model (DNDC) or DAYCENT model, which have
been used in previous studies to simulate CO2 fluxes. Secondly, even though the GRACEnet
database contains data for N2O and CH4 soil fluxes, the five predictors chosen were not
correlated to N2O and CH4 soil fluxes and so only CO2 fluxes were simulated. Despite
these limitations, this study presents an alternative route to modeling CO2 fluxes that
does not require extensive domain knowledge in soil biogeochemistry. Overall, the study
demonstrates the suitability of tree-based machine learning algorithms in modeling CO2
emissions in cropping systems.

4. Conclusions

As more data are made publicly available from direct measurements, more synthesis
tools will be needed to interpret the enormous amount of information in databases. With the
availability of more data comes the need for methods to use these data to understand how
soil properties influence the emission of GHGs. The advent of ML modeling algorithms
within the past few decades has provided opportunities for the use of these available
databases to analyze and simulate GHG fluxes in various cropping systems. In this study,
we demonstrated the application of four popular ML algorithms (KNN regression, support
vector regression, random forest regression, and gradient boosted regression) to simulate
soil CO2 fluxes with available data from the GRACEnet database. Five predictors (air
temperature, soil temperature, fertilizer amendment class, soil classification, crop) were
selected to develop the models based on results from step-forward feature selection and
correlation analysis. Among the four ML algorithms, the prediction based on the RF and GR
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regression models achieved the highest accuracy. Soil classification was the most important
predictor variable evaluated in both the RF and GB models produced from ML methods.

Although the RF algorithm is robust when there are missing data in large datasets,
RF should only be considered when there is no known linear relationship existing be-
tween predictors and output variables. If there is a linear relationship between predictors
and output variables, it is appropriate to use linear regression instead. In addition, the
validation dataset should be inspected to ensure that most of the data is not out of the
range of the training dataset, as RF is inefficient in predicting values beyond the range
of the training dataset. Although the GB algorithm usually attains the highest accuracy
among most ML algorithms, there is always a trade-off between predictive power of GB
and the computational power required to run the algorithm. More complexity in model
hyperparameters results in greater computation time and expense for a user, especially
when the number of “trees” exceeds 1000. Overall, the RF and GB algorithms are best
suited for large datasets with non-linear relationships.

This study was primarily concerned with testing the capabilities of ML algorithms for
simulating CO2 fluxes using minimal predictors (temperature, soil moisture, soil type, air
temperature, cropping system, and the type of fertilization) in the GRACEnet database. Soil
chemical properties (e.g., pH, CEC, organic carbon, and clay content) were not considered
as predictors because there were many values missing in the GRACEnet database that could
introduce bias and reduce model performance. Future studies can explore the suitability
of applying other ML algorithms, e.g., artificial neural networks and XGBoost, to the
GRACEnet database to determine if hyperparameter tuning can be improved and increase
the performance of the algorithms in simulating GHG fluxes.
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