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Abstract: This paper aims to evaluate the ability of VNIR proximal soil spectroscopy to determine
post-fire soil chemical properties and discriminate fire severity based on soil spectra. A total of
120 topsoil samples (0–3 cm) were taken from 6 ha of unburned (control (CON)) and burned areas
(moderate fire severity (MS) and high fire severity (HS)) in Mediterranean Croatia within one year
after the wildfire. Partial least squares regression (PLSR) and an artificial neural network (ANN)
were used to build calibration models of soil pH, electrical conductivity (EC), CaCO3, plant-available
phosphorus (P2O5) and potassium (K2O), soil organic carbon (SOC), exchangeable calcium (exCa),
magnesium (exMg), potassium (exK), sodium (exNa), and cation exchange capacity (CEC), based on
soil reflectance data. In terms of fire severity, CON samples exhibited higher average reflectance than
MS and HS samples due to their lower SOC content. The PCA results pointed to the significance
of the NIR part of the spectrum for extracting the variance in reflectance data and differentiation
between the CON and burned area (MS and HS). DA generated 74.2% correctly classified soil spectral
samples according to the fire severity. Both PLSR and ANN calibration techniques showed sensitivity
to extract information from soil features based on hyperspectral reflectance, most successfully for the
prediction of SOC, P2O5, exCa, exK, and CEC. This study confirms the usefulness of soil spectroscopy
for fast screening and a better understanding of soil chemical properties in post-fire periods.

Keywords: wildfires; terra rossa; soil quality; VNIR spectroscopy; olive orchard

1. Introduction

Fire is a global phenomenon with positive and negative impacts on ecosystems [1].
Although fire can be beneficial to some ecosystems, high severity summer wildfires are
responsible for land degradation [2] and socio-economic [3] and life losses [4]. Examples of
this are the wildfire season in Portugal in 2017 (Pedrógão Grande), Greece in 2018 (Attica
region), and Australia and California in 2020. The increasing frequency of megafires is
a complex phenomenon that links climate change, socio-economical aspects (e.g., land
abandonment), and forest management practices (e.g., monocultures and fire suppres-
sion) [5–7]. Mediterranean environments are vulnerable to wildfire, which can have short
or long impacts on soil properties depending on severity. Many investigations have studied
fire’s effect on physical, chemical, mineralogical, and biological soil properties [8–11]. For
example, high severity fires consume large amounts of organic matter [12,13], destroy soil
structure [14,15], change aggregate stability and water repellence [16–18], and increase
nutrient losses by volatilisation and sediment transport [19,20].

Moreover, wildfire impacts on soil are highly variable in space and time [21]. Therefore,
studies with good spatial and temporal resolution are needed. Fire induces changes in soil
spectral properties [22]. Remote and proximal soil sensing methods ensure the possibility of
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rapidly collecting large volumes of data that can be used for post-wildfire management [23].
So far, soil visible and near-infrared (VNIR) calibrations in soil surveys showed well-
recognised absorption features for total and organic carbon (C), clay content, and total soil
nitrogen (N) [24–27]. However, the results for their covariates such as soil pH, extractable
phosphorous, potassium, calcium, sodium, magnesium, and cation exchange capacity
(CEC) are moderate and highly variable [28]. Previous soil spectroscopy works were
applied to detect the impacts of fire on ground cover and soil properties [29–31]. Attention
was mostly given to soil organic matter (SOM) and soil organic carbon (SOC) with good
predictions. Peon et al. [32] and Rosero-Vlasova et al. [33] combine satellite spectral data
and soil reflectance spectra and reveal SOM prediction models with a good fit (Rcal

2 and
Rval

2 = 0.9).
Soil properties’ quantification using a reflectance spectroscopy technique is assessed

with multivariate statistical methods. These methods allow calibrating the models and
the spectral signal related to the analysis obtained using conventional laboratory methods.
The most common chemometric models used are (1) principal component analysis (PCA),
(2) stepwise multiple linear regression (SMLR), (3) partial least squares regression (PLSR),
(4) multivariate adaptive regression splines (MARS), (5) principal component regression
(PCR), and (6) artificial neural networks (ANN) [34]. Previous works applied PCA to
identify and assess fire severity [35] or PLSR to estimate soil organic matter (SOM) and
soil organic carbon (SOC) in burned areas [31,32]. Montorio Llovería et al. [30] used the
VNIR region and SMLR model to assess fire severity on burned Mediterranean shrublands,
while Guerrero et al. [29] developed PLSR models to relate soil NIR spectra and the
maximum temperatures reached on burned soils. According to Zhao et al. [36], topsoil
exchangeable Ca and Mg were successfully predicted by PLSR based on VNIR spectra, and
these calibrations could be used for building a multi-depth spectral library as well, but
coupled with spiking with a new dataset into a general calibration dataset, which increased
soil variability.

There are few works focused on predicting soil properties after wildfires based on soil
spectroscopy, mainly oriented only on SOC [31–33,35]. Although in a similar environment,
this study aims to develop calibration models for many soil chemical properties in burned
Cambisol Rhodic of the Mediterranean climate region. Remote soil monitoring within
burned areas is still not a sufficiently explored subject, particularly regarding upscaling the
spectral data and determining wavelengths important for prediction.

We hypothesise that fire severity will affect soil organic matter consumption and
induce changes in soil chemical properties and soil reflectance. The main objectives of
this paper are a) the discrimination of different fire severities using soil-based proximal
VNIR spectra; b) model development and calibration for 11 soil chemical properties of
fire-affected soil: SOC, pH, available K (K2O), available P (P2O5), electrical conductivity
(EC), calcium carbonate content (CaCO3), exchangeable calcium (exCa), magnesium (exMg),
potassium (exK) and sodium (exNa), and CEC using soil reflectance; and c) a comparison of
model performance obtained by linear calibration and data mining techniques.

2. Materials and Methods
2.1. Study Area

The study was carried out in Šibenik Knin County, Croatia (43◦32′ N; 16◦00′ E,
103 m a.s.l.) (Figure 1). The wildfire occurred at the end of August 2018, affecting an
area of 6.3 ha. The parent material is composed of carbonate rocks. The soil has clay to
clay-loam texture and is classified as Chromic Luvisols or Cambisol Rhodic [37] (local
classification is Terra Rossa). The general soil properties are presented in Table 1. The
climate is Cfa-hot-summer Mediterranean, which was determined according to the Köppen
climate classification [38]. The average annual precipitation (1981–2014) is 770.1 mm. The
rainfall is mainly concentrated in September to April, with large inter-annual variability.
The annual mean air temperature in the same period was 15.4 ◦C.
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Figure 1. Study area in coastal region of Croatia with fire-affected abandoned olive orchard and three
fire severity treatments established: high severity, moderate severity, and unburned control.

Table 1. General soil properties of investigated area.

Soil Property Unit Depth 0–15 cm Depth 15–30 cm

Sand % 25 29
Silt % 35.9 35.9

Clay % 34.6 34.1
pH (KCl) −log H+ 7.0 6.9
pH (H2O) −log H+ 7.9 7.7

Organic matter % 8.4 6.9
P2O5 g kg−1 0.02 0.01
K2O g kg−1 0.59 0.30

2.2. Experimental Design and Laboratory Analyses

The wildfire-affected, abandoned olive orchards were colonised with grasses and
maquis. The burned area has a southwest exposition and a slope inclination of approxi-
mately 4◦. Three treatments were established: high severity (HS), moderate severity (MS),
and unburned control (CON). Fire severity was assessed using ash colour as a proxy [39].
On each sampling date, ten soil samples (0–3 cm) were collected for the different treatments:
5 days, 3 months, 6 months, and 1 year after the wildfire (120 samples in total). Prior to
sampling, the ash layer was removed. Samples were placed in plastic bags, taken to the
laboratory, air-dried in three days, then milled and sieved to a 2 mm mesh. Soil pH was
measured using the electrometric method in a 1:5 (w/v) ratio with the Beckman pH-meter
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Φ72 in a KCl suspension. Soil EC was calculated at 25 ◦C on soil water (1:5) extract. P2O5
and K2O were extracted by ammonium lactate solution [40] and detected by spectropho-
tometry and flame photometry, respectively. SOM was determined by a wet combustion
procedure [41] and multiplying by 0.58 to obtain the SOC content. CaCO3 content was
analysed with a calcimeter calibrated with 0.2 g of pure CaCO3 using a 1:2 hydrochloric
acid solution (50% HCl and 50% deionised water). Subsamples of soil weighing 0.2 g
were mixed with the 1:2 solution. The CaCO3 was estimated by calculations following
the method developed by Úbeda et al. [39]. exCa and exMg were determined in 0.4 N
NaOAc-0.1 M NaCl, pH 8.2 extracts by an ICP analyser; exNa+ and exK+ were determined
in 1 N, pH 7 ammonium acetate extracts by flame spectrophotometry. CEC was considered
as the sum of all exchangeable cations.

2.3. Spectral Measurements

Soil reflectance measurements were performed in laboratory conditions to avoid the
interference of soil moisture with spectral features of the investigated soil properties, using
a portable field spectroradiometer FieldSpec®3 (Analytical Spectral Devices, Inc., Boulder,
CO, USA) with a wavelength range from 350 to 1050 nm (VNIR region), a sampling interval
of 1.4 nm, and a spectral resolution of 3 nm at 700 nm. Milled and sieved soil was placed on
9-cm diameter Petri dishes (borosilicate glass), forming a 1.5-cm soil layer, and reflectance
was measured at a fixed distance of 0.5 cm using a vertically positioned, hand-held fibre-
optic probe with artificial illumination. Calibration panel (Spectralon®, Labsphere, Inc.,
North Sutton, NH, USA) measurements were taken before initial soil readings and repeated
approximately every 15 min. Five scans of each sample were recorded at each position at an
optimised integration time, with a dark current correction at every spectral measurement to
minimise instrument noise and obtain an average spectrum, used for further analysis and
comparisons within and between the treatments [42]. Spectral reflectance of the sample
was represented as a reflectance factor calculated as the ratio of radiation reflected from the
sample to that reflected from the calibration panel.

2.4. Statistical Analysis

Soil reflectance of all the samples was used as a continuous independent dataset. The
eleven soil chemical properties were used as continuous target data to develop the predic-
tion models. Multivariate analyses were applied for data analysis. Spectral bands below
430 nm were removed due to the large noise effect. Original spectra were smoothed using a
Savitzky-Golay algorithm [43] with a window size of three to avoid signal noise disturbance.
All data were mean centred by subtracting the average from each variable before being
included in multivariate calibrations. This step ensures that all results will be interpretable
in terms of variation around the mean. Internal structure and significant variability in the
data were explored using a PCA based on original soil reflectance and the first derivative
of reflectance. Moreover, PCA reduced data dimensionality and collinearity. Factor scores
acquired from the calculated principal components (PC) were used as predictor variables in
selected calibration methods. Discriminant analysis as a supervised classification method
was applied with a subset of the selected PCs to classify samples by fire severity treatments.
PLSR and an ANN were used to build general soil properties prediction models based
on original soil reflectance data and the first derivative of reflectance (n = 120). The PLSR
model was calibrated using full cross-validation (each observation is used as a test set to
validate the predictive model). In ANN regression analysis, spectra were randomly divided
into training (50%) and testing (50%) sets, while independent input data consisted of PCs
representing the total variation of the soil spectra and corresponding to the number of input
neurons. The neural network was supervised back-propagation with a structure consisting
of one input layer, one output layer, and one hidden layer. A multi-layer perceptron (MLP)
network with a prevailing exponential activation function and BFGS training algorithm was
applied for all investigated soil properties. Models were validated for accuracy evaluation
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and predictive capability based on the coefficient of determination (R2), root mean squared
error (RMSE), and residual prediction deviation (RPD) (confidence limits of 95%).

To compare the R2, the classification of Moore and Kirkland [44] was considered,
whereby R2 is strong (> 0.70), moderate (0.5 < R2 < 0.7), weak (0.3 < R2 < 0.5), and very
weak (< 0.3). RPD is used to investigate the prediction error with variation in the data (Jiang
et al., 2016). The model with the highest RPD is considered the most accurate. According to
Viscarra Rossel et al. [45], RPD was interpreted as excellent predictions (RPD > 2.5), good
(RPD between 2.0 to 2.5), approximate quantitative predictions (RPD between 1.8 to 2.0),
possibility to distinguish high and low values (RPD between 1.4 to 1.8), and unsuccessful
(RPD < 1.40). The RPD is calculated by the following equation:

RPD =
SD

RMSEP
, (1)

where SD is the standard deviation of the observed data; RMSEP is the root mean squared
error of prediction.

Descriptive statistics and ANOVA were computed for soil chemical properties. Data
normality was assessed using the Shapiro–Wilk test. A two-way ANOVA was applied to test
the effects of treatment, time, and treatment × time, based on reflectance data. If significant
differences were observed at a p < 0.05, a Tukey or multiple comparisons of the mean rank
test were applied. The Pearson correlation coefficient was used to assess the correlation
among all the variables. Significant correlations were considered at a p < 0.05. Data analysis
was carried out using the spectroscopy software Unscrambler 9.7 [46] and STATISTICA
12 [47]. Spectra were evaluated and preprocessed using ViewSpec Pro 6.2.0. [48].

3. Results
3.1. Soil Chemical Properties

Descriptive statistics of the investigated soil properties are presented in Table 2. The
Shapiro–Wilk test determined non-normal distribution for SOC, K2O, P2O5, EC, CaCO3,
exCa, exMg, exK, exNa, and CEC, and normal distribution only for soil pH. Accordingly,
a one-way ANOVA test was applied for soil pH and Kruskal–Wallis for the rest of the
soil parameters. The skewness results imply that the distribution of soil properties varied
from fairly negatively symmetrical (skewness: −0.002, e.g., SOC in HS treatment) to highly
positive skewness (skewness: 2.77, e.g., exNa in CON treatment). For all three treatments,
soil pH, SOC, P2O5, exCa, exMg, and exK had low negative kurtosis values, indicating
a platykurtic distribution. Leptokurtic distribution prevailed on all treatments for EC
and exNa (kurtosis > 3), indicating outliers. Results showed significant differences in
all investigated soil properties among the treatments. Soil pH, EC, CaCO3, K2O, exCa,
exMg, exK, and CEC in MS and HS were significantly higher than in the CON. SOC was
significantly different among treatments as follows: MS (17.8%) > HS (11.8%) > CON
(7.23%). P2O5 and exNa values were significantly higher in the CON than in HS and MS
treatments. The CV value of EC, CaCO3, P2O5, K2O, and exNa was higher than 35% in all
the treatments showing a high heterogeneity in the values observed.

The correlation coefficients between the studied soil chemical properties are shown in
Table 3. They indicate relations in prediction accuracy of certain soil properties obtained
later by PLSR and an ANN based on spectral data. As expected, significant correlations
were calculated between CEC and all properties except exK and K2O in the following order
of strength: exCa > exMg > SOC > P2O5 > EC > CaCO3 > exNa. P2O5 was significantly
correlated with all investigated soil properties. A strong, significant relation was found
between SOC and exCa and CEC. EC significantly correlated with P2O5 and CEC. A negative
significant relation was obtained between exNa and most of the analyzed properties.
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Table 2. Descriptive statistics of soil properties within one year after the wildfire. Abbreviations:
unburned control (CON); moderate fire severity (MS); high fire severity (HS). Different letters
represent significant differences at a p < 0.05. (n = 120).

Treatment
Mean Min. Max. CV, % Skewness Kurtosis

pH

CON 7.45 b 6.81 7.96 3.00 −0.187 0.837
MS 7.65 a 7.18 8.03 2.42 −0.286 0.122
HS 7.71 a 6.91 8.47 3.82 −0.543 1.77

EC (µS cm−1)
CON 309 b 130 1308 80.3 2.55 7.03
MS 463 a 213 1345 46.7 2.01 5.86
HS 500 a 178 1917 67.9 2.71 8.53

CaCO3 (%)
CON 0.23 b 0.09 0.64 53.1 1.85 3.39
MS 2.18 a 0.22 10.7 104.7 2.32 5.41
HS 2.50 a 0.32 9.33 82.2 1.72 2.89

OC (%)
CON 7.23 c 4.80 9.62 15.5 0.424 −0.191
MS 17.8 a 7.59 31.4 27.5 0.364 0.464
HS 11.8 b 1.33 21.4 43.4 −0.002 −0.876

P2O5 (g kg−1)
CON 0.025 b 0.001 0.059 64.4 0.056 −0.680
MS 0.187 a 0.006 0.421 57.9 0.406 −0.576
HS 0.218 a 0.038 0.456 54.2 0.142 −0.977

K2O (g kg−1)
CON 0.766 b 0.306 2.19 59.8 1.45 1.16
MS 1.322 a 0.486 4.57 66.8 1.92 4.16
HS 1.620 a 0.486 4.91 65.2 1.24 1.35

exCa (cmol(+)kg)
CON 31.4 b 20.9 37.7 11.0 −0.587 0.955
MS 47.4 a 25.6 62.0 18.2 −0.548 −0.145
HS 42.2 a 23.8 61.9 23.4 0.048 −0.816

exMg (cmol(+)kg)
CON 2.28 b 1.73 3.11 15.0 0.309 −0.282
MS 3.51 a 2.45 4.92 18.5 0.266 −0.756
HS 3.38 a 2.05 4.47 16.3 −0.384 −0.095

exK (cmol(+)kg)
CON 1.29 b 0.92 1.65 14.1 −0.109 −0.735
MS 1.85 a 0.82 4.39 34.4 1.80 5.53
HS 2.45 a 1.20 5.73 48.6 1.33 0.758

exNa (cmol(+)kg)
CON 0.80 a 0.16 3.74 87.4 2.77 8.79
MS 0.25 b 0.09 0.73 62.5 1.72 2.49
HS 0.30 b 0.09 1.08 66.3 2.15 6.03

CEC (cmol(+)kg)
CON 35.7 b 24.7 44.4 10.9 −0.176 0.821
MS 53.0 a 29.4 66.8 16.7 −0.601 0.137
HS 48.4 a 33.1 67.6 19.7 0.188 −0.931

Table 3. Correlation coefficients among eleven soil chemical properties (n = 120).

Variable CaCO3 EC P2O5 K2O pH SOC exCa exMg exK exNa CEC

CaCO3 1
EC 0.03 1

P2O5 0.30 0.33 1
K2O 0.16 0.15 0.38 1
pH 0.52 −0.15 0.35 0.01 1

SOC 0.37 0.05 0.39 0.16 0.08 1
exCa 0.28 0.32 0.54 0.02 0.38 0.62 1
exMg 0.42 0.51 0.67 0.20 0.32 0.50 0.61 1
exK 0.28 0.46 0.45 0.52 0.27 −0.12 −0.01 0.51 1

exNa −0.29 0.44 −0.28 −0.21 −0.31 −0.41 −0.26 −0.18 −0.04 1
CEC 0.31 0.41 0.59 0.07 0.39 0.61 0.99 0.69 0.11 −0.22 1

Marked (bold) correlations are significant at p < 0.05.
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3.2. Qualitative Evaluation of Soil Reflectance

Most of the variability between different treatments was identified in the visible and
NIR spectrum (reflectance peak from 550–570 and 650–700 nm) (Figure A1 in Appendix A).
As seen in Table 4, significant differences in soil reflectance were observed for time and fire
severity factors. However, they were not identified in the interaction between time x fire
severity, which justified using a multi-temporal dataset in PLSR (n = 120; larger dataset and
higher soil variability). Reflectance was significantly higher in the unburned plot than in
all the plots in all sampling periods. Regarding the sampling periods, in HS the reflectance
of the samples obtained immediately after the wildfire was significantly higher than in the
samples observed three months after (Figure 2).

Table 4. Two-way ANOVA results. Significant differences at p < 0.05 *, and p < 0.001 ***. Abbreviation:
not significant at a p < 0.05 (n.s.).

ANOVA Results p-Value

Average reflectance Time *
Fire severity ***

Time x fire severity n.s.

Figure 2. Two-way ANOVA results for soil reflectance. Box plot of soil reflectance from four sampling
dates grouped by fire severity. Hanging bars (upper and lower fence), upper box line (quartile 3),
line inside the box (median), and lower box line (quartile 1). Different letters represent significant
(p < 0.05) differences between sampling periods (upper-case letters) and fire severity (lower-case
letters). Abbreviations: moderate fire severity (MS); high fire severity (HS).

3.3. Principal Component Analysis and Discriminant Function Analysis

The PCA of VNIR spectra for the whole dataset is presented in Figure 3. The first
factor accounted for 98% of the total spectral variance. As seen on the score plot, differences
were observed especially between the unburned and the burned plots (Figure 3A). The
variability was higher in HS and MS than in the CON. Two HS and one MS samples were
marked as outliers according to Hotelling’s T2 test. The spectra loadings (x—loadings)
were comparable to the score plot, showing the relationship between the PC1 and the
soil spectral variables and indicating the importance of spectral features for differing fire
severities (Figure 3B). All loadings on PC1 are positive. Red to red-edge and the NIR part
of the spectrum were significant for extracting most of the variance in reflectance data due
to its strong relationship with the organic composition of the soil samples [29]. Figure 3C
identifies some outliers, especially in HS.
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Figure 3. The PCA results overview for soil reflectance of 120 samples with wavelength range
430–1050 nm. (A) PC1 and PC2 score plot, (B) spectral loadings plot, (C) residual spectral variance,
and (D) Figure 3C zoomed area. Abbreviations: unburned control (CON); moderate fire severity
(MS); high fire severity (HS).
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The DA generated discriminant functions based on linear combinations of the spectral
variables that provided the best discrimination between fire severity treatments (Figure 4).
Five PCs were found to provide significant contributions to fire severity discrimination
(p < 0.05). Table 5 shows parameters that explain the significance of the two selected dis-
criminant functions (roots). The first function accounted for 86% of the explained variance,
while the second was not significant. Figure 4 represents a scatterplot of canonical scores
for the two discriminant functions. Soil samples from the unburned area (CON) are plotted
right in the scatterplot with positive values for the first discriminant function. MS and HS
treatments were mostly mixed, showing negative values. The second canonical function
was not significant and did not differ among fire severities. This result is in accordance
with the classification matrix presented in Table 6, where the CON treatment achieved
98% of successful classifications, MS 70%, and HS only 55% of successful predictions. For
example, 17 samples from HS treatment were misclassified as MS, and only 22 samples
were correctly classified.

Figure 4. Sampled soil spectra represented as a function of discriminant factors (roots) 1 and 2.
Samples are labeled according to the fire severity treatments. Abbreviations: moderate fire severity
(MS); high fire severity (HS).

Table 5. Chi-Square Tests with Successive Roots Removed.

Roots Removed Eigenvalue Canonical R Wilks Lambda Chi-Sqr. df p-Level

0 2.854 0.861 0.249 159.660 10 0.000
1 0.040 0.196 0.961 4.525 4 0.340

Table 6. Classification Matrix. Rows: observed classifications. Columns: predicted classifications.

Group % CON MS HS

CON 97.5 39 0 1
MS 70.0 3 28 9
HS 55.0 1 17 22

Total 74.2 43 45 32

3.4. Multivariate Modelling Based on Soil Spectra—PLSR and ANN

Table 7 summarizes the multivariate calibration model results based on VNIR soil
reflectance. PLSR and ANN models were built based on raw reflectance and first derivative
spectra. They were chosen based on the best predictive ability for each soil attribute (raw
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reflectance: SOC, pH, K2O, CaCO3, exCa, exK, exNa, and CEC; first derivative: EC, P2O5,
and exMg). Scatter plots of observed vs. predicted values of investigated soil chemical
properties are shown in Figure A2. The results show a very high relation between VNIR
spectra and most soil properties for calibration and validation datasets. With respect to the
PLSR model calibrations, R2 was strong for SOC (0.76), P2O5 (0.76), K2O (0.8), exCa (0.9),
exK (0.73), and CEC (0.9); moderate for pH (0.54), CaCO3 (0.51), and exMg (0.69); weak for
EC (0.35); and very weak for exNa (0.29). In PLSR model validations, R2 was strong for
exCa (0.8) and CEC (0.82); moderate for SOC (0.64), P2O5 (0.63), K2O (0.61), exMg (0.61),
and exK (0.53); weak for pH (0.31) and CaCO3 (0.48); and very weak for EC (0.18) and exNa
(0.26). In ANN model calibrations, R2 was strong for SOC (0.77), P2O5 (0.79), exCa (0.94),
exK (0.81), and CEC (0.96); moderate for pH (0.55), K2O (0.65), CaCO3 (0.59), and exMg
(0.68); and weak for EC (0.31) and exNa (0.43). In ANN model validations, R2 was strong
for SOC (0.74), P2O5 (0.74), exCa (0.78), exK (0.73), and CEC (0.79); moderate for K2O (0.54)
and exMg (0.66); weak for CaCO3 (0.38); and very weak for pH (0.29), EC (0.2), and exNa
(0.27).

Table 7. Summary of calibration and validation results of PLSR and ANN models for soil chemical
properties (n = 120).

Variable/Model NPC
Calibration Validation

R2 RMSEC R2 RMSEP RPD

OC (%)
PLSR 0.76 4.19 0.64 5.25 1.66
ANN 11 0.77 4.19 0.74 4.44 1.97

pH
PLSR 0.54 0.17 0.31 0.21 1.24
ANN 11 0.55 0.17 0.29 0.22 1.18

EC (µS cm−1)
PLSR 0.35 227.73 0.18 258.87 1.09
ANN 10 0.31 234.62 0.20 253.76 1.12

P2O5 (g kg−1)
PLSR 0.76 0.06 0.63 0.08 1.63
ANN 10 0.79 0.06 0.74 0.06 1.97

K2O (g kg−1)
PLSR 0.80 0.39 0.61 0.55 1.65
ANN 11 0.65 0.54 0.57 0.59 1.52

CaCO3 (%)
PLSR 0.51 1.42 0.48 1.47 1.38
ANN 11 0.59 1.30 0.38 1.60 1.27

exCa (cmol(+)kg)
PLSR 0.90 3.22 0.80 4.67 2.20
ANN 11 0.94 2.57 0.78 4.80 2.14

exMg (cmol(+)kg)
PLSR 0.69 0.42 0.61 0.47 1.62
ANN 10 0.68 0.43 0.66 0.45 1.69

exK (cmol(+)kg)
PLSR 0.73 0.41 0.53 0.55 1.65
ANN 11 0.81 0.40 0.73 0.47 1.94

exNa (cmol(+)kg)
PLSR 0.29 0.42 0.26 0.43 0.15
ANN 11 0.43 0.37 0.27 0.42 1.17

CEC (cmol(+)kg)
PLSR 0.90 3.26 0.82 4.52 2.36
ANN 11 0.96 2.13 0.79 4.93 2.17

Abbreviations: optimal number of PCs (NPC); coefficient of determination (R2); root mean square error of
calibration (RMSEC); root mean square error of prediction (RMSEP); residual prediction deviation (RPD).
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Overall, exchangeable Ca and CEC showed the highest R2 in the PLSR model, while
SOC and P2O5 showed the highest R2 in the ANN model. The prediction of K2O, CaCO3,
exCa, and CEC was more accurate using PLSR, while the ANN model’s SOC, P2O5, exMg,
and exK were better estimated. RPD values for exCa and CEC had a good quantitative
prediction power in the PLSR model. Unlike PLSR, RPD showed approximate quantitative
prediction power for SOC and P2O5 in the ANN. Soil pH, EC, CaCO3, and exNa showed
low predictability in both models.

As a product of PLSR, the regression coefficient plot shows how much each wavelength
contributed to the prediction of investigated soil chemical properties (Figure A3). The
highest significant adsorption peaks were found for SOC, P2O5, K2O, CaCO3, exCa, and
CEC. Peaks from 450–600 nm and 900–1050 were identified as zones of major importance
for the PLSR model of SOC content. Significant wavelengths were distributed throughout
the VNIR spectrum with positive and negative peaks for the other soil mentioned above.

4. Discussion

The results of this study show an increase in SOC in MS and HS treatments, which
contrasts with some previous works [49,50] where the SOM decreases after moderate-to-
high-severity wildfires. Moreover, some research did not even identify significant differ-
ences [51]. The SOM/SOC content usually decreases after high severity fire [52,53], while
low-to-moderate-severity fires induce SOM increase due to the incorporation of burned
vegetation necromass into the soil [54,55]. In our case, ash was very likely incorporated
in the topsoil. However, this increase was more pronounced in MS treatment, indicating
that high temperature had affected the degree of SOC combustion in HS treatment. The
highest pH in HS was confirmed in previous works [56,57]. Typically, soil pH increases
due to organic matter combustion and the incorporation of ash into the soil profile [53].
Usually, ash pH increases with the time and temperature of contact [58]. Moreover, fire
increases nutrient availability, which may persist over a year, depending on the post-fire
weather conditions [57]. The observed increase of exchangeable cations agrees with several
other studies, and this is attributed to the organic matter mineralisation imposed by fire
temperatures and the pH increase [52]. Moreover, the high pH in the ash produced at
moderate-to-high-intensity fires facilitates the solubility of major cations [53]. EC values
were the highest in HS treatment, corresponding with the major cation peak in the same
treatment. These results agree with previous works, which identified an EC increase after
moderate-to-high-severity fires [52,57]. Similar to pH, this was due to the organic matter
combustion and incorporation of ash, rich in base cations, into the soil profile.

The higher reflectance of the CON soil samples was attributed to the lower SOC,
affecting the soil colour. The higher the SOC, the lower the reflectance of the soil samples.
PCA scores discriminated unburned and burned samples (Figure 3). Using the 350–1050 nm
spectral range, we observed that MS and HS were mixed. Both were similar in colour, and,
therefore, in reflectance intensity. These results are confirmed by Vergnoux et al. [35] and
Zornoza et al. [59]. Discriminant analysis was employed as supervised classification based
on soil reflectance with the overall success of fire severity prediction of 74.2%. The first
discriminant function discriminated between the CON and two burned treatments (MS
and HS). For example, Arcenegui et al. [60] obtained successful classification (>97%) of soil
samples using DA, according to the maximum temperature reached using NIR reflectance
spectroscopy.

According to RPD values, CEC and exCa had a good prediction, and SOC, P2O5, and
exK had an approximate quantitative prediction (Table 7). As seen in Table 3, a strong
correlation (r > 0.60; p < 0.05) was observed between these soil properties. The high ability
of VNIR and PLSR to predict CEC and exCa is attributed to the fact that these properties
are strongly linked with SOM. A limited prediction was identified for pH, EC, and exNa,
which was previously reported in the literature [61–63]. Despite this, the coefficient of
determination between most soil parameters and soil reflectance was high. Rosero-Vlasova
et al. [31] developed SOM predictions of good quality and acceptable accuracy levels
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(R2 = 0.75) using laboratory VIS-NIR-SWIR spectra. Moreover, the moderately useful
calibration acceptable for a rapid sample screening for large area soil survey (R2 = 0.73 and
RPD = 1.76) was achieved for SOC model prediction by Miloš and Bensa [64], which is
similar to the prediction obtained in the present study. Overall absorption due to SOM in
the visible region is broad but clear and, therefore, recognizable and useful in soil spectral
sensing. SOM contains spectrally active groups like chlorophyll, oil, cellulose, pectin,
starch, lignin, and humic acid in the VNIR and NIR region [65]. VNIR reflectance provides
information about soil colour, which is directly influenced by fire severity through changes
in SOC content. Reflectance decreases with increasing SOM content [66]. In our case, SOC
content, exCa, and CEC were highest in the burned plots (Table 2). Regarding the predictions
of soil properties based on utilising different spectral regions, comparable findings were
reported by Viscarra Rossel et al. [24]. In their study, the PLSR cross-validation predictions
based on VIS revealed RMSE and R2 values of 0.21 and 0.36 for pH, 0.18 and 0.60 for
SOC, 6.70 and 0.31 for exCa, 2.02 and 0.29 for exK, and 0.01 and 0.05 for EC, respectively.
PLSR loading weight vectors determined moderate positive peaks important for SOC
prediction (570 and 660 nm). Using NIR, exK and pH predictions improved slightly,
while SOC, CEC, exCa, available P2O5, and EC were better predicted in the VIS region.
Similar results have been reported in previous studies. Stevens et al. [67] applied PLSR on
airborne hyperspectral data and achieved the highest correlations between SOC content
and reflectance in the VIS ranges (600–750 nm). The CEC using VNIR was successfully
predicted by Chang et al. [61] and Islam et al. [63] (R2 of 0.81 and 0.64, respectively). They
found R2 values for exCa of 0.75 and 0.67, respectively, but poor prediction of EC and exNa,
R2 of 0.10 and 0.34, respectively. The reduced prediction of exNa, EC, pH, and exK indicates
that these properties do not have a response in the VNIR region and were not correlated
with SOM [59]. The soils sampled in the studied area have a high CEC saturation with exCa
and exMg (above 80%) [68]. Zornoza et al. [59] stated that exCa and exMg concentrations
highly depend on SOM functional groups and are well predicted using VNIR spectroscopy.
Daniel et al. [69] applied an ANN with the same spectral range (400–1100 nm) as our study
and achieved the following predictions: K2O-R2 of 0.80, plant-available P-R2 of 0.81, and
SOM-R2 of 0.86. Also, Chang et al. [61] reported 55% and 57% of exK and soil pH variability
explained by spectral data, respectively. Mouazen et al. [70] obtained comparable results
using the spectral range between 306–1710 nm and PLSR for on-the-go measurement of
some soil properties and achieved a quantitative approximation for soil total C, pH, and
P2O5 (R2 between 0.66 and 0.81). One potential reason for moderate SOC prediction in
our work can be the transition of clay particles to sand-sized particles under the influence
of fire [71]. They induced light scattering, masked the absorption of SOC, and lowered
reflection [28], as can be seen in Figure A1. Nevertheless, this needs to be confirmed in
future works.

As observed in the regression coefficients for the best-predicted soil properties (SOC,
P2O5, exK, CaCO3, exCa, and CEC) (Figure A3), the peaks in the visible part of the spectrum
indicated a colour effect (SOM and Fe oxides), while adsorption in NIR wavelengths was
probably associated with N-H, O-H, and C-H bonds [64,70]. Viscarra Rossel et al. [45]
recorded moderate positive peaks in the VIS region, important for the SOC prediction
at 410, 570, and 660 nm, which is supported by our research. They also analysed factor
loading weights for soil pH and found negative contributions for bands between 470 and
670 nm and positive contributions for bands > 670. Similar results were obtained by Šestak
et al. [72], emphasising the red part of the spectrum (670–710 nm) as the zone of major
importance for the PLSR model of SOM content. Nanni and Demattê [73] recorded spectral
ranges of 480–600 nm and 720–820 nm as key SOM prediction model development regions.
The VIS region was responsible for the determination of soil C content (peaks at 439, 490,
and 661 nm) [70].

However, despite moderately accurate prediction models, the general calibration
approach was helpful for rapid soil assessment. Therefore, it can serve as a good reference
for remote data identification. In this study, soil pH, EC, CaCO3, and exNa predicted with
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low accuracy need further investigation to identify their spectrally active fractions within
the infrared range. When evaluating variability among the data (Table 2), we can state that
CV from 10–35% representing moderate variability in the reference dataset induced good
prediction as developed for SOC, P2O5, exK, exCa, and CEC. Zornoza et al. [59] observed
that to ensure the VNIR spectroscopy results reliability, it is important to include a large
number of samples. Additionally, Kuang et al. [74] reported that many authors support a
general rule that soil variation can influence prediction performance. According to Stenberg
et al. [28], Viscarra Rossel and Behrens [75], and Viscarra Rossel et al. [24], ANN models
seem to perform better when dealing with non-linear relationships between soil spectral
signatures and soil properties of interest, as was observed in this study, especially in the
case of SOC and P2O5. However, it remains unclear why the also highly variable CaCO3
did not benefit from the ANN model in the same way. In order to tackle the problem of
the high variability of soil properties, specific studies need to be conducted with a large
number of samples of soils burned at the same severity on the same sampling date. Future
studies need to address this question.

5. Conclusions

Soil properties’ variability among different fire severities was identified in the VIS
and NIR spectrum. The average reflectance was significantly higher five days after the fire
than on the other sampling dates. CON soil exhibited a higher reflectance than MS and
HS soil due to low SOC concentrations. The PCA results highlighted the importance of
the NIR spectrum to extract most of the variance in reflectance and identify the differences
between unburned and burned soils. DA discriminated between the CON and two burned
treatments (MS and HS) with an overall fire severity classification success of 74.2%. PLSR
and ANN calibration techniques based on hyperspectral reflectance successfully predicted
SOC, P2O5, exCa, exK, and CEC. According to RPD values, a good prediction was obtained
for CEC and exCa, and an approximate quantitative prediction was observed in SOC, P2O5,
and exK. Soil pH, EC, CaCO3, and exNa were poorly predicted in both models. Future
research should focus on two main aspects: (1) work with a large number of samples and
(2) work with the short and mid-infrared part of the spectrum. However, we consider that
as an additional tool to standard laboratory analysis, soil spectroscopy in the VNIR region
proved to be a reliable method for rapid, low-cost, and non-destructive screening of soil
properties in areas affected by fire.

Author Contributions: Conceptualization, I.B. and P.P.; methodology, P.P. and I.Š.; software, I.Š.;
validation, P.P., I.H. and I.Š.; formal analysis, I.Š. and A.P.; investigation, I.B., L.J.T. and P.P.; resources,
I.B.; writing—original draft preparation, I.Š.; writing—review and editing, I.B., I.Š., I.H. and P.P.;
visualization, I.Š., I.H. and P.P.; supervision, I.B., P.P. and I.Š.; project administration, I.B.; funding
acquisition, I.B. and I.Š. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Croatian Science Foundation through the project “Soil
erosion and degradation in Croatia” (UIP-2017-05-7834) (SEDCRO).

Data Availability Statement: The data presented in this study are available on request from the cor-
responding author. The data are not publicly available due to their current usage for the preparation
of another draft for publication.
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Appendix A

Figure A1. Difference in mean soil reflectance (left) and average first derivative of soil reflectance
(right) according to treatments and sampling time: (a) 5 days, (b) 3 months, (c) 6 months, and (d)
12 months after the fire.



Agronomy 2022, 12, 129 15 of 20

Figure A2. Cont.
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Figure A2. Scatter plots of observed vs. predicted values for (a) OC (%); (b) pH; (c) EC (µS cm−1); (d)
P2O5 (g kg−1); (e) K2O (g kg−1); (f) CaCO3 (%); (g) exCa (cmol(+)kg); (h) exMg (cmol(+)kg); (i) exK
(cmol(+)kg); (j) exNa (cmol(+)kg); (k) CEC (cmol(+)kg); (n = 120); blue—calibration, red—validation.

Figure A3. Cont.
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Figure A3. Regression coefficients as a result of PLSR model for 11 chemical soil properties from
control (CON), medium severity (MS), and high severity (HS) treatment: (a) OC; (b) pH; (c) EC;
(d) P2O5; (e) K2O; (f) CaCO3; (g) exCa; (h) exMg; (i) exK; (j) exNa; (k) CEC; (n = 120). Significant
wavelengths are marked as dark blue at a p < 0.05.
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72. Šestak, I.; Mesić, M.; Zgorelec, Ž.; Perčin, A.; Stupnišek, I. Visible and near infrared reflectance spectroscopy for field-scale

assessment of Stagnosols properties. Plant Soil Environ. 2018, 64, 276–282.
73. Nanni, M.R.; Demattê, J.A.M. Spectral reflectance methodology in comparison to traditional soil analysis. Soil Sci. Soc. Am. J.

2006, 70, 393–407. [CrossRef]
74. Kuang, B.; Tekin, Y.; Mouazen, A.M. Comparison between artificial neural network and partial least squares for on-line visible

and near infrared spectroscopy measurement of soil organic carbon, pH and clay content. Soil Till. Res. 2015, 146, 243–252.
[CrossRef]

75. Viscarra Rossel, R.V.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158,
46–54. [CrossRef]

http://doi.org/10.1111/j.1399-3054.1996.tb00185.x
http://doi.org/10.1016/j.soilbio.2008.04.003
http://doi.org/10.1016/j.catena.2007.11.004
http://doi.org/10.2136/sssaj2001.652480x
http://doi.org/10.2136/sssaj2002.9880
http://doi.org/10.1071/SR02137
http://doi.org/10.1016/S0034-4257(96)00120-4
http://doi.org/10.1016/j.geoderma.2009.11.032
http://doi.org/10.1071/SR02027
http://doi.org/10.1016/j.still.2006.03.009
http://doi.org/10.1007/s11676-016-0299-x
http://doi.org/10.2136/sssaj2003.0285
http://doi.org/10.1016/j.still.2014.11.002
http://doi.org/10.1016/j.geoderma.2009.12.025

	Introduction 
	Materials and Methods 
	Study Area 
	Experimental Design and Laboratory Analyses 
	Spectral Measurements 
	Statistical Analysis 

	Results 
	Soil Chemical Properties 
	Qualitative Evaluation of Soil Reflectance 
	Principal Component Analysis and Discriminant Function Analysis 
	Multivariate Modelling Based on Soil Spectra—PLSR and ANN 

	Discussion 
	Conclusions 
	Appendix A
	References

