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Abstract: This study’s objective was to assess the impact of the COVID-19 pandemic on tomato
supply and prices in Gudimalkapur market in Hyderabad, India. The lockdown imposed by the
government of India from 25 March 2020 to 30 June 2020 particularly affected the supply chain of
perishable agricultural products, including tomatoes as one of the major vegetable crops in the study
area. The classical time series models such as autoregressive integrated moving average (ARIMA)
intervention models and artificial intelligence (AI)-based time-series models namely support vector
regression (SVR) intervention and artificial neural network (ANN) intervention models were used
to predict tomato supplies and prices in the studied market. The modelling results show that the
pandemic had a negative impact on supply and a positive impact on tomato prices. Moreover, the
ANN intervention model outperformed the other models in both the training and test data sets. The
superior performance of the ANN intervention model could be due to its ability to account for the
nonlinear and complex nature of the data with exogenous intervention variable.

Keywords: intervention; artificial intelligence; COVID-19 pandemic; ARIMA; SVR; ANN

1. Introduction

Marketing is critical to moving agricultural products from producer to consumer and
maintaining price stability. Changes in the demand and supply of agricultural products
and marketing must be coordinated with projected increases in agricultural production.
The COVID-19 crisis has caused significant damage to the national and global economy
due to the lockdown measures initiated in March 2020 in many countries, including India.
Due to the imposed lockdown, activities related to supply chains from the agriculture
were notably disrupted and there was delayed of agricultural foodstuff. Tomatoes are the
second most productive crop in the world after potatoes with a productivity of 32.8 t/ha.
The major tomato producers in India are Andhra Pradesh, Madhya Pradesh, Karnataka,
Gujarat, Odisha, and West Bengal. With a production of 2744.32 thousand tons, Andhra
Pradesh is the state with the highest tomato production in India, followed by Madhya
Pradesh with a production of 2419.28 thousand tons. Tomato is grown throughout the year
in Telangana, which ranks seventh in India’s tomato production with a total area of over
41,000 hectares and production of 1171.5 tons [1]. Tomato is one of the major vegetable
crops whose supply and price are affected by unexpected changes in government policies
or other interventions.
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Modelling and forecasting of supplies and prices helps in decision making and effec-
tive planning of the future for a developing economy and in determining the necessary
policies for sustainable and overall development of the economy. Time series models are
used to develop appropriate forecasting methods based on historical time series data of the
variables under consideration. The autoregressive integrated moving average (ARIMA)
model is extremely popular due to its statistical characteristics and well accepted Box–
Jenkins methodology [2] for model building. Many researchers have used ARIMA models
for time series forecasting of various agricultural commodities in the past, e.g., Naveena
and others [3] for forecasting coconut production in India, Jalikatti and others [4,5] for
forecasting onion prices and agricultural commodity prices; Kaur and others [6] used time
series and SVR model for forecasting arrivals and process in Punjab. Rathod and others [7]
applied an ARIMA genetic algorithm approach for predicting maize yield in India, while
Rathod and others [8] used ARIMA and artificial intelligence (AI) techniques for predicting
oilseed production in India. Tatarintsev and others [9] forecasted the prices of sugar using
ARIMA model. In intervention time series modelling, ARIMA intervention [10] is the
most commonly used model for forecasting time series in the context of interrupted time
series. Earlier, ARIMA modelling with intervention was used in application planning and
budgeting [11]. Ray and others [12] applied ARIMA intervention model to forecast cotton
yield in India; and Ramasubramanian and Ray [13] applied ARIMA intervention model
in power computation and they claimed that ARIMA intervention model was superior
in performance to classical ARIMA model. Jeffrey and Kyner [14] developed an ARIMA
intervention model for forecasting Chinese stock prices.

Corchuelo Martínez-Azúa and others [15] estimated the impact of on agri-food com-
panies in the region of Extremadura in Spain using in-depth interviews from February 2020
to January 2021. Di Marcantonio and others [16] identified the factors influencing impact
of the COVID-19 pandemic on food wastage using multinomial logit regression model.
However, the classical time series models such as ARIMA and ARIMA intervention models
are not able to detect the nonlinear components in the time series and lead to non-robust
forecasts. Many parametric nonlinear models have been developed to solve the problem of
modelling nonlinear components in time series data. When the data generation process is
highly heterogeneous, nonlinear, and complex, even the parametric nonlinear time series
models cannot model the nonlinear, complex, and chaotic nature of time series data. The
only way to model and predict such time series is by using AI techniques [17,18].

Khan and others [19] used multiple hidden layer neural network to predict the growth
in fruit crops. Niazkar and others applied artificial neural networks (ANN) in the prediction
of the COVID-19 outbreak and also applied ANN in other data sets [20–22]. ANN and SVR
have been the most commonly used techniques in modelling and predicting time series
data in the last decade. Xun and others [23] used SVR in forecasting of crude oil. The main
advantage of ANN and SVR is their flexibility in modelling nonlinear, complex, and ill-
defined data without the need for precise model specification. The classical AI techniques
predict the phenomenon based only on its past values, while intervention-based AI models
use interventions as exogenous variables and model the time series. Harini and others [24]
used deep neural networks to model clinical intervention predictions. Hu and others [25]
evaluated and predicted multiple interventions for the global outbreak of COVID-19 using
AI techniques. Refs. [26,27] used an artificial neural network for forecasting of agricultural
commodity prices. Ref. [28] stated that a hybrid model performed better than single
ARIMA and SVR models. Ref. [29] studied the relationship between market arrivals of
tomato. Ref. [30] used an artificial neural network in predicting the crop yield. The authors
of [31] used a neural network approach to extract enough useful information from ACF
and PACF patterns in order to find acceptable ARMA model for an unknown time series.
Most of the classical times series models, such as ARIMA and ARIMA intervention models,
were used in analyzing impact of policies or sudden changes in agriculture. The classical
time series models fail to capture the nonlinear pattern in time series intervention data
sets. To overcome this problem, we have developed ANN and SVR-based intervention



Agronomy 2021, 11, 1878 3 of 16

models by incorporating the intervention as exogenous variable in the input layer. The
objective of this study was to investigate the impact of national lockdown in India on
tomato supply and prices in Gudimalkapur market in Hyderabad, Telegana, by applying
the intervention-based ANN and SVR models and comparing them with some of widely
used approaches.

2. Materials and Methods
2.1. Data Description

The secondary data on tomato prices and arrivals were collected daily from 1 January
2020 to 30 June 2020 from the website http://tsmarketing.in/DailyArrivalsnPricesCommB
etweenDates.aspx, accessed on 12 September 2020. The Government of India announced
a nationwide lockdown from 25 March 2021 to 30 June 2020; thus, 25 March 2020 was
considered as the intervention date and the data from 1 January 2020 to 24 March 2020
were considered as the pre-intervention period, whereas the data from 25 March 2021 to 30
June 2020 were considered as the post-intervention period. For modeling and forecasting,
the data from 1 January 2020 to 23 June 2020 was used for model building and the data
from 24 June 2020 to 30 June 2020 were used for model testing and validation. The map of
the study area is shown in the Figure 1.
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2.2. ARIMA Model

The Box–Jenkins [2] ARIMA is the most commonly used model in forecasting time
series data. When the time series Yt is non-stationary or integrated, this procedure is an
amalgamation of the ARMA process. To build the ARMA model in the case, the series must
be differenced to make it stationary, and this differenced series, which is now stationary,
must be subjected to ARIMA model fitting. This procedure is known as ARIMA (p,d,q),
where p and q denote the number of AR and MA terms, respectively, and d denotes the

http://tsmarketing.in/DailyArrivalsnPricesCommBetweenDates.aspx
http://tsmarketing.in/DailyArrivalsnPricesCommBetweenDates.aspx
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order of differencing required to make the series stationary. An ARIMA model is expressed
by the following expression:

Ø(B)(1 − B)dYt = θ(B)εt . . . (1)

where:

Ø(B) = 1 − Ø1B1 − Ø2B2 − . . . − Øp BP (autoregressive parameter)

Ø(B) = 1 − Ø1B1 − Ø2B2 − . . . − Øp Bq (Moving average parameter)

where d = differencing term, B = backshift operator, i.e., BaYt = Yt−aεt = white noise or error
term. The ARIMA methodology is conducted in three steps, namely identification, estima-
tion and diagnostic checking. For diagnostic checking, the Box–Pierce non-correlation test
is most commonly used.

2.3. ARIMA Intervention Model

ARIMA intervention analysis [10] is a time series analysis technique that uses mod-
elling approaches to incorporate the effect of exogenous forces or interventions. Govern-
ment policies, strikes, earthquakes, price shifts, folds, pandemic, and other unforeseen
catastrophes are all examples of interventions. It produces unexpected shifts in time series.
Simply put, intervention analysis in time series refers to the study of how a series mean
level changes as a result of an intervention.

Yt =
ω(B)
δ(B)

Bb It +
θ(B)
φ(B)

εt (2)

In this, the dependent variable is Yt, indicator variable. It = indicator variable coded
according to the type of intervention (step, pulse/point, and impulse). Here, δ(B) = 1 + δ1 B
+ . . . δr Br is the slope parameter, ω(B) = ω0 + ω1 B + . . . ωs Bs is the impact parameter, ϕ(B)
= 1 − ϕ1 B − ϕ2B2 − . . . − ϕp Bp is the autoregressive parameter, θ(B) = 1 − θ1 B − θ2B2

− . . . − θqBq is the moving average parameter, b is the delay parameter, B is the backshift
operator, i.e., BaYt = Yt−a, εt is the white noise or error term. The step intervention occurs
at a specific point in time and persist over successive time periods. The impact of the step
intervention may be stable over time, or it may rise or diminish.

The indicator variable is coded as follows since the occurrence of COVID-19 is a step
intervention type, It = 0, t < T′ and 1, t ≥ T′. The COVID-19 intervention, which was
classified as a lockdown, began on March 25 2020 and was later extended in multiple
phases. As a result, the indicator variable Itwas given a value of 0 before intervention
period and 1 during the intervention period.

2.4. Support Vector Regression (SVR) Model

The SVR model was basically developed for classification problem, later adopted to
regression problem by adding ε-insensitive loss function [32]. The main concept behind
SVR is to solve a nonlinear regression in a linear manner by transferring nonlinear input
data from a lower dimensional feature space to a higher dimensional feature space. The
SVR estimation function is written as follows:

f (x) = θTΦ(X) + b (3)

where Φ(.) stands for a nonlinear space transformation, is the weight vector, and b stands
for the bias. By further introducing a kernel function, θ is no longer needed to be given
explicitly in the SVR estimation function, which becomes:

f (x) =
n

∑
i=1

(ai − ai
∗)k(x, xi) + b (4)
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where k(x, xi) = Φ(xi)
TΦ(xi) is the kernel function. The radial basis function (RBF) kernel

function is the most commonly used kernel function in SVR and is represented as follows:

(x, xi) = exp
(
−γ‖x− xi‖2

)
(5)

The coefficients W and b are estimated from data by minimizing the following regular-
ized risk function:

R(θ) =
1
2
‖w‖2 + C

[
1
N

N

∑
i=1

Lε(yi, f (xi))

]
(6)

This regularized risk function minimizes both the empirical error and regularized
term simultaneously, which helps in avoiding both under- and overfitting of the model.
In Equation (6), the first term 1

2‖w‖
2 is called the ‘regularized term’, which measures the

flatness of the function. Minimizing 1
2‖w‖

2 will make a function as flat as possible. The
second term 1

N ∑N
i=1 Lε(yi, f (xi)) is called ‘empirical error’, which was estimated by the

Vapnik ε-insensitive loss function as follows:

Lε(yi, f (xi)) = f (x) =
{
|yi, f (xi)− ε|; |yi − f (xi)| ≥ ε,

0 |yi − f (xi)| < ε,
(7)

The performance of the RBF kernel function requires the optimization of two hyper-
parameters: regularization parameter C, which balances the complexity and approximation
accuracy of the model; and Kernel bandwidth parameter γ, which represents the variance
of the RBF kernel function [33].

2.5. Artificial Neural Network (ANN) Model

The ANN is the most widely used AI technique in the last three decades in time series
modelling and prediction. In the field of time series modelling, ANN is commonly referred
to as an autoregressive neural network because it considers time lags as inputs. The time
series framework for ANN can be mathematically modelled using a neural network with
implicit functional representation of time. The general expression for the final output Y of
a multilayer autoregressive neural network with feedforward is expressed as follows:

Yt = α0 +
q

∑
j=1

αjg

(
β0j +

p

∑
i=1

βijYt−p

)
+ εt (8)

where αj(j = 0, 1, 2, . . . , q) and βij(i = 0, 1, 2, . . . , p, j = 0, 1, 2, . . . , q) are the model param-
eters, also called the synopsis weights; p is the number of input nodes; q is the number of
hidden nodes; and g is the activation function. The training part in ANN minimizes the
error function between actual and predicted values. The error function of autoregressive
ANN is expressed as follows:

E =
1
N

N

∑
t=1

(et)
2 =

1
N

N

∑
t=1

{
Xt − (w0 + (

Q

∑
J=1

wJ g

(
woj +

P

∑
i=1

wijXt−i))

)}2

(9)

where N is the total number of error terms. The parameters of the neural network wij are
changed by a number of changes in ∆wij as ∆wij = −η ∂E

∂wij
, where η is the learning rate [34].

The schematic representation of neural network structure is depicted in Figure 2.
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2.6. Artificial Intelligence (AI)-Based Intervention Models

The traditional artificial intelligence approach allows for forecasting based solely on
the past values of the forecast variables. The model assumes that the future values of
a variable are determined by its previous values as a well as the values of exogenous
variable in the past. The artificial intelligence intervention model is a modified version of
the artificial intelligence model that adds an additional independent variable called the
intervention variables; this model is also referred to as the vector artificial intelligence
model. The artificial intelligence forecasting models typically assume that each observed
value is an unknown nonlinear function F of clagst1, t2, . . . , tc, for a given univariate time
series {xt, t = 1, 2, . . . , n}, where xtε R,

xt = F(xt−t1, xt−t2, . . . , xt−tc) + εt (10)

where the error εt is error of zero mean. Next, we assume that m interventions have
been observed throughout time periods r1, r2, . . . , rm. Depending on the nature of the
interventions, we define m auxiliary variables δ1

t, δ2
t, . . . , δm

t. As a result, we can have a
nonlinear forecasting model with clagst1, t2, . . . , tc and m interventions:

xt = F
(
xt−t1, xt−t2, . . . , xt−tc , δ1

t, δ2
t, . . . , δm

t)+ εt (11)

In this article, two AI-based intervention models, namely SVR and ANN intervention
models, were developed by the intervention concept explained in this section. Along with
the above explained models, the BDS (Brock–Dechert–Scheinman) test for non-linearity
checking and the Diebold–Mariano test for significance comparison of model performance
are used in this study; details about these tests are available in the literature [35,36]. Finally,
the mean absolute percentage error (MAPE) is the most commonly used measure for
forecasting error.

MAPE =
1
N

∣∣∣∣A− F
A

∣∣∣∣× 100 (12)

where A is the actual value, F is forecast or predicted value, and N is the number of
observations.

3. Results

Figure 3 shows the time series of supplies, maximum price, minimum price, and
modal price in the Gudimalkapur market, where the blue line indicates the intervention
date, i.e., 25 March 2020, when the government of India announced the lockdown.
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Table 1 shows the descriptive statistics for all four series of the Gudimalkapur market.
The arrival price series are highly skewed and leptokurtic. The coefficient of variation for
all four series are 31%, 78%, 80%, and 76% for arrivals, maximum price, minimum price,
and modal price, respectively, indicating that the data are inherently heterogeneous.

Table 1. Descriptive statistics of Gudimalakpur market.

Statistic Supply (t) Maximum Price
(Rs/t)

Minimum Price
(Rs/t)

Modal Price
(Rs/t)

Observation 179 179 179 179

Mean 139.74 9346.37 4127.78 6612.60

Median 137.4 6000 3000 4500

Mode 164.2 4000 2000 4000

Standard Deviation 46.42 7335.47 3310.34 5079.42

Minimum 15.15 3000 1000 2000

Maximum 363.8 40,000 20,000 30,000

Skewness 1.47 2.15 2.33 2.24

Kurtosis 5.84 4.32 5.75 5.07

Coefficient of
Variation (%) 31.22 78.48 80.20 76.81

The BDS (Brock–Dechert–Scheinman) test indicates that the data under consideration
is nonlinear as the probability value p 0.0001 for all the four series of Gudimalkapur market
is given in Table 2.
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Table 2. BDS test for non-linearity.

Time
Series

Eps (1) Eps (2) Eps (3) Eps (4)

Statistic at
m = 2

Statistic at
m = 3

Statistic at
m = 2

Statistic at
m = 3

Statistic at
m = 2

Statistic at
m = 3

Statistic at
m = 2

Statistic at
m = 3

Supply 4.19
(p < 0.001)

4.65
(p < 0.001)

5.44
(p < 0.001)

5.55
(p < 0.001)

6.69
(p < 0.001)

6.92
(p < 0.001)

7.48
(p < 0.001)

7.83
(p < 0.001)

Maximum
Price

20.47
(p < 0.001)

25.81
(p < 0.001)

16.13
(p < 0.001)

16.86
(p < 0.001)

14.58
(p < 0.001)

14.36
(p < 0.001)

16.15
(p < 0.001)

15.27
(p < 0.001)

Minimum
Price

27.02
(p < 0.001)

39.03
(p < 0.001)

15.07
(p < 0.001)

15.86
(p < 0.001)

13.53
(p < 0.001)

13.66
(p < 0.001)

12.38
(p < 0.001)

11.55
(p < 0.001)

Modal
Price

20.51
(p < 0.0001)

25.15
(p < 0.001)

16.31
(p < 0.001)

17.07
(p < 0.001)

14.35 (p <
0.001)

14.55
(p < 0.001)

13.48
(p < 0.001)

12.55
(p < 0.001)

3.1. Results of ARIMA Models

For the series of supplies in Gudimalkapur market, ARIMA (1,0,0) was found to
be suitable; for the series of prices, ARIMA (0,1,1), ARIMA (0,1,1), ARIMA (0,1,1) were
found suitable for maximum price, minimum price, and modal price, respectively (Table 3).
The parameters of the models were estimated using the maximum likelihood method
and the estimated values are given in Table 3. Diagnostic testing of the residuals was
performed using the Box–Pierce non-correlation test for residuals and the results show that
the residuals are not autocorrelated and random as the probability values of significance
are 0.61, 0.81, 0.97, and 0.98 for the arrivals, maximum price, minimum price, and modal
price, respectively.

3.2. Results ARIMA Intervention Models

Like the ARIMA model, the ARIMA intervention models were built for all four time
series dates. The ARIMA intervention model (1,0,0) was found to be appropriate for supply
series, and the ARIMA intervention models (0,0,1), ARIMA intervention models (0,0,1), and
ARIMA intervention models (0,0,1) were found to be appropriate for the maximum price,
minimum price, and modal price, respectively. The parameters estimated using maximum
likelihood estimation techniques are shown in Table 4. The intervention parameters (impact
(ω)) are estimated as −5.73 (p = 0.023), 171.29 (p = 0.029), 179.82 (p = 0.017), and 124. 88
(p = 0.039) for supplies, maximum price, minimum price, and modal price, respectively.
The results show that the lockdown had a negative impact on tomato supplies and a
positive impact on price series, which means about 600 kg of tomato per day less supplies.
The results showed that there was an increase in the maximum price by Rs.17.1/t/day,
minimum price by Rs.18/t/day, and average price by Rs.12.5/t/day for Gudimalkapur
market. The fitted models were appropriate as the Box–Pierce non-correlation test for the
residuals is not autocorrelated and random as the probability values of significance are
0.71, 0.83, 0.93, and 0.98 for arrivals, maximum price, minimum price, and modal price,
respectively. Similar results were obtained in the study conducted by Ray and others [12]
on cotton yield prediction. It was found that the performance of ARIMA intervention
models was superior to conventional ARIMA models for all the three locations.
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Table 3. Parameter Estimation of ARIMA Model.

Time
Series Model Parameters Estimation S. E Z Value p Value Model Fitting

Box–Pierce Non-Correlation Test

Original Residuals

Supply ARIMA (1,0,0) AR1 0.53 0.06 8.33 <0.001

Log-likelihood −1292.85
X-squared = 51.378

(p = 0.0001)
X-squared = 0.152

(p = 0.61)AIC 2591.7

BIC 2601.19

Maximum Price ARIMA (0,1,1) MA1 −0.37 0.072 −5.059 <0.001

Log-likelihood −1180.29
X-squared = 144.61

(p = 0.0001)
X-squared = 0.06

(p = 0.81)AIC 2364.58

BIC 2370.9

Minimum Price ARIMA (0,1,1) MA1 −0.54 0.07 −7.24 <0.001

Log-likelihood −1117.4
X-squared = 115.34

(p = 0.0001)
X-squared = 0.001

(p = 0.97)AIC 2238.8

BIC 2245.12

Modal Price ARIMA (0,1,1) MA1 −0.38 0.07 −4.90 <0.001

Log-likelihood −1140.81
X-squared = 138.85

(p = 0.0001)
X-squared = 0.0003

(p = 0.98)AIC 2285.62

BIC 2291.93
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Table 4. Parameter estimation of ARIMA intervention model.

Time Series Model Parameters Estimation S. E Z Value p Value Model Fitting
Box–Pierce Non-
Correlation Test

Original Residuals

Supply ARIMA (1,0,0)

AR1 0.53 0.06 8.25 <0.001 Log-likelihood −1292.74 X-squared =
51.37

(p = 0.0001)

X-squared
= 0.13

(p = 0.71)Impact (ω) −5.73 2.86 −2.00 0.023
AIC 2593.49

BIC 2606.15

Maximum Price ARIMA (0,1,1)

MA1 −0.36 0.07 −4.86 <0.001 Log-likelihood −1179.93 X-squared =
144.61

(p = 0.0001)

X-squared
= 0.04

(p = 0.83)Impact (ω) 171.29 90.10 1.90 0.39
AIC 2365.85

BIC 2375.33

Minimum Price ARIMA (0,1,1)

MA1 −0.52 0.07 −6.91 <0.001 Log-likelihood −1116.43 X-squared =
115.34

(p = 0.0001)

X-squared
= 0.007

(p = 0.93)Impact (ω) 179.82 84.82 2.12 0.017
AIC 2238.86

BIC 2248.34

Modal Price ARIMA (0,1,1)

MA1 −0.38 0.07 −4.88 <0.001 Log-likelihood −1140.49 X-squared =
138.85

(p = 0.0001)

X-squared
= 0.0005
(p = 0.98)Impact (ω) 124.88 70.91 1.76 0.039

AIC 2286.99

BIC 2296.46
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3.3. Results of SVR and SVR Intervention Models

Based on the required user-defined parameters, the SVR model and SVR intervention
models (Table 5) were constructed. The radial basis function (RBF) is used as the kernel
function. The number of support vectors obtained at optimal level was 117 for arrival
series and 118, 123, 116 for maximum price, minimum price, and modal price, respectively.
For the support vector regression with intervention model, the number of support vectors
obtained at the optimal level was 111 for the arrival series and 115, 133, and 112 for
the maximum price, minimum price, and maximum price, respectively. The Box–Pierce
non-autocorrelation shows that the residuals are not autocorrelated or random (Table 5).

Table 5. Parameter specification of SVR and SVR intervention model.

Parameter
Supply Maximum Price Minimum Price Modal Price

SVR SVR
Intervention SVR SVR

Intervention SVR SVR
Intervention SVR SVR

Intervention

Kernel Function Radial

No. of S.Vs 117 111 118 115 123 133 116 112

Cost 2.1 2.29 2.4 2.1 2 2 1.94 2.07

Gamma 1 0.5 1 0.5 1 0.5 1 0.5

Epsilon 0.01 0.001 0.0001 0.0001 0.001 0.001 0.0001 0.0001

Box–pierce
non-correlation test 0.364 0.03 0.05 0.005 0.30 0.14 0.07

p-value 0.827 0.721 0.963 0.654 0.782 0.985 0.924 0.754

3.4. Results of ANN and ANN Intervention Model

Given the low training MAPE, appropriate models were selected with three tapped
and ten hidden nodes (3: 10S: 1L) for the arrival series and maximum price, respectively,
and two tapped and nine nodes (2: 9S: 1L) and two tapped and nine hidden nodes (2:
9S:1L) for the minimum price and modal price, respectively. Diagnostic testing of the
residuals by the Box–Pierce test is performed after model fitting. The residuals were not
autocorrelated or random as the probability values are 0.79, 0.69, 0.63, and 0.73 for the
arrivals, maximum price, minimum price, and modal price, respectively. For the arrival
and maximum price series of the Gudimalkapur market, the intervention model with three
tapped nodes and ten hidden nodes and one exogenous intervention variable (4: 10S: 1L)
was selected; and for the minimum price and modal price, the model with (3;9S: 2L) and
(3:9S: 1L), respectively, was selected due to low MAPE values. The sigmoidal activation
function was used in the input to the hidden layer and the linear activation function from
the hidden to output layer. The residual values of all four series of the Gudimalkapur
market are shown in Table 6, indicating that the residuals are not autocorrelated or random
in nature.
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Table 6. Parameter specification of ANN and ANN intervention model.

Parameter
Arrivals Maximum Price Minimum Price Modal Price

ANN ANN
Intervention ANN ANN

Intervention ANN ANN
Intervention ANN ANN

Intervention

Input Lag 3 3 3 3 2 2 2 2

Dependent/Output
Variable 1 1 1 1 1 1 1 1

Hidden Layers 1 1 1 1 1 1 1 1

Hidden Nodes 10 10 10 10 9 9 9 9

Exogenous Variables 1 7 1 7 1 7 1 7

Model 3:10S:1L 4:10S:1L 3:10S:1L 4:10S:1L 2:9S:1L 3:9S:1L 2:9S:1L 3:9S:1L

Total Number of
Parameters 51 61 51 61 37 46 37 46

Network Type Feed Forward

Activation Function I:H Sigmoidal

Activation Function H:O Identity

Box–Pierce
Non-Correlation Test for

Residuals

0.06
(p = 0.79)

0.003
(p = 0.95)

0.16
(p = 0.69)

0.04
(p = 0.83)

0.22
(p = 0.63)

0.60
(p = 0.43)

0.11
(p = 0.73)

0.19
(p = 0.66)

4. Discussion

The results show that the lockdown has a negative effect on tomato supply and a
positive effect on tomato price series. About 600 kg of tomatoes per day were supplied
less due to the lockdown. The results also showed that the maximum price increased by
Rs.17.1/t/day, minimum price increased by Rs.18/t/day, and modal price increased by
Rs.12.5/t/day. The negative impact of the lockdown on deliveries is likely to be related to
the decline in production during this period and could also be due to the problems faced by
farmers and suppliers in transporting tomatoes to the market. The low volume of deliveries
might have contributed to the higher price, which is evident from the positive impact of
the lockdown on the price series. The forecasting performance of the six selected models—
ARIMA, ARIMA intervention, SVR, SVR intervention, ANN, and ANN intervention—was
evaluated for their forecasting ability based on model errors in both training and test
data sets. Based on the MAPE values obtained (Table 7), the ANN intervention model
outperformed the ANN and other models in both model building and validation data sets
for the supply and price time series. The ANN intervention model also performed better
than ANN and the other models in both the training and test data sets for the price series.
The predicted values of the ARIMA and ARIMA intervention models, as well as the SVR
models, produced the same predicted values for all days, implying that the model does not
have the generalization ability to provide different predicted values compared to the ANN
intervention models.

In this study, the developed AI models outperformed the classic ARIMA and ARIMA
intervention models. Among the AI models, the ANN intervention model performed better
than all other models in both training and test data sets. The performance hierarchy of
the Gudimalkapur market in the training and testing datasets is ANN intervention ANN
SVR intervention SVR ARIMA intervention ARIMA in all four datasets. The MAPE values
only show the observed difference between the actual and predicted values. To overcome
this, we used DM test statistics to identify the significance difference in performance
between the different evolutions. The DM test shows that the ANN intervention model
was significantly superior to the other models in both the training and test data sets, and
their intercombinational superiority is shown in Table 8. The actual vs. fitted plots of the
different models for all four markets are shown in Figure 4 and the actual vs. fitted values
are given in supplementary Tables S1 and S2.
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Table 7. Comparison of model performance in terms of MAPE in training sets.

Time Series
ARIMA ARIMA

Intervention SVR SVR Intervention ANN ANN Intervention

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing

Supply 25.52 37.86 25.20 31.81 23.98 33.12 24.16 29.02 18.4 29.86 16.52 27.84

Maximum Price 12.40 10.77 12.28 10.68 11.13 10.09 11.01 10.02 9.78 8.98 8.95 6.51

Minimum Price 17.24 16.04 16.78 15.78 16.24 15.35 15.87 15.04 12.03 13.28 11.16 11.18

Modal Price 13.04 10.14 12.96 10.04 12.81 9.78 12.35 9.67 10.77 9.76 9.83 8.52

Table 8. Diebold–Mariano test for significance comparison of different models in training and testing data sets.

Time
Series

Data
Type

M1,
M2

M1,
M3

M1,
M4

M1,
M5

M1,
M6

M2,
M3

M2,
M4

M2,
M5

M2,
M6

M3,
M4

M3,
M5

M3,
M6

M4,
M5

M5,
M6

Supply
Training 2.42

(0.016)
0.73

(0.466)
2.70

(0.007)
1.77

(0.076)
1.79

(0.075)
−2.31
(0.021)

2.81
(0.003)

−2.78
(0.006)

−2.72
(0.007)

2.60
(0.009)

1.70
(0.090)

1.82
(0.070)

−3.09
(0.002)

0.33
(0.740)

Testing 2.79
(0.031)

3.36
(0.015)

3.65
(0.01)

1.28
(0.241)

1.84
(0.107)

2.36
(0.556)

−2.17
(0.073)

0.47
(0.648)

0.55
(0.597)

−3.20
(0.019)

0.47
(0.649)

0.61
(0.055)

0.19
(0.855)

−0.30
(0.767)

Maximum
price

Training 2.74
(0.006)

0.27
(0.788)

2.82
(0.005)

1.78
(0.075)

4.15
(<0.001)

−2.68
(0.008)

0.41
(0.683)

−1.07
(0.285)

2.66
(0.008)

2.77
(0.006)

1.62
(0.106)

4.08
(<0.001)

−0.98
(0.323)

3.70
(0.0002)

Testing −7.10
(0.0004)

3.27
(0.017)

−4.10
(0.006)

1.24
(0.254)

2.09
(0.074)

7.08
(0.0004)

7.09
(0.0003)

2.71
(0.030)

2.25
(0.058)

−4.11
(0.006)

1.08
(0.314)

2.07
(0.076)

4.48
(0.002)

1.49
(0.177)

Minimum
price

Training 2.38
(0.015)

0.43
(0.667)

2.41
(0.017)

0.44
(0.659)

1.07
(0.284)

−2.18
(0.03)

0.76
(0.448)

−2.73
(0.006)

−2.53
(0.012)

2.23
(0.027)

0.13
(0.899)

0.66
(0.509)

−2.71
(0.007)

0.31
(0.759)

Testing 2.32
(0.06)

2.02
(0.089)

1.19
(0.28)

0.81
(0.442)

0.32
(0.757)

−0.03
(0.977)

1.03
(0.339)

0.03
(0.973)

−0.11
(0.918)

1.13
(0.30)

0.41
(0.690)

0.06
(0.948)

−1.21
(0.265)

−0.24
(0.816)

Modal
price

Training 2.34
(0.02)

0.06
(0.54)

2.31
(0.018)

1.53
(0.128)

1.60
(0.111)

−2.31
(0.022)

0.45
(0.651)

1.47
(0.143)

1.51
(0.130)

2.35
(0.02)

−2.17
(0.031)

−2.09
(0.037)

−2.33
(0.025)

0.27
(0.787)

Testing −4.83
(0.003)

2.52
(0.045)

−3.20
(0.018)

1.06
(0.324)

1.11
(0.301)

4.83
(0.003)

4.81
(0.003)

1.01
(0.346)

1.01
(0.346)

−3.19
(0.018)

2.57
(0.037)

2.63
(0.033)

−1.69
(0.135)

−0.22
(0.830)
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The empirical results show the superiority of the ANN intervention model over the
other models examined in this study. The superiority of the ANN intervention model may
be due to its ability to mimic the nonlinear and detailed nature of the data while allowing
for an external intervention variable, making it very useful in explaining the dynamics
of the impact of the COVID-19 pandemic on tomato supply and price fluctuations in
the market.

Similar results were obtained in the study conducted by Ray and others [12], who
found a positive impact of Bacillus thuringiensis technology on the cotton yield. Another
study reported that the decline in Chinese manufacturing during the reported period had
a negative impact on stock market prices, as revealed by the ARIMA intervention model
results [14]. A study conducted by Ismail and others [37] also reported similar results; they
found a negative impact of bombing on the tourism industry using ARIMA intervention
model. Several studies [38–41] revealed that artificial-intelligence-based models, namely
ANN and SVR, outperformed the classical ARIMA models in predicting the time series
data in agriculture and other fields. Harini and others [24] also showed that ANN-based
intervention models performed better compared to classical models in clinical intervention
prediction.

5. Conclusions

The present study was undertaken to investigate the impact of the COVID-19 lock-
down on the supplies and prices of tomato in Hyderabad market in Telangana state, India.
The ARIMA intervention model significantly confirmed that there was a negative impact on
the supply, but a positive impact on the price of tomato in examined market. The spillover
effects from the pandemic to the tomato supplies have been significant with the increase in
transportation costs, which resulted in an increase in the prices of the tomato and might
also have contributed to low consumption levels. Additionally, the high prices of tomato
combined with low supplies might have contributed to the increased vulnerability of the
producers and food insecurity of the consumers. The classical times series models such as
ARIMA and ARIMA intervention models were used in analyzing the impact of policies or
sudden changes in agricultural impact studies. These models fail to capture the nonlinear
structure present in data sets. To overcome this problem, we have developed ANN- and
SVR-based intervention models by incorporating the intervention variable as an exogenous
variable in the input layer. The data considered were nonlinear in nature, the classical
linear time series models, namely the ARIMA and ARIMA intervention time series models,
were not able to capture the nonlinear and chaotic patterns in the data identified by the
BDS test. Therefore, an AI-based model was applied in this study to capture the nonlinear
and complex nature of the data. The ANN intervention model outperformed all other
models for modeling and predicting supply and price series of tomato; thus, it can be used
to study the nonlinear complex nature of data under intervention in other time series data.
The AI-based intervention models developed in this study can be used to evaluate the
potential effects of government policies and programmes. The model has a wider scope to
study the impact of interventions in agriculture. For example, it can be applied to study the
impact of government subsidies on inputs in agriculture, price support to the producers,
and the impact of pest and disease outbreak, to forecast the supply and price of agricultural
products.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/1
0.3390/agronomy11091878/s1, Table S1: actual vs. fitted values of supply and price time series by
different models are given in the excel file. Table S2: comparison of model performance in terms of
MAPE in testing sets.
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