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Abstract: Food production systems can contribute to the degradation of the environment; thereby
endangering the very resource, they depend on. However, while overall large, the environmental
impacts of individual agricultural products are disparate. Therefore, in order to gain a better under-
standing of the impact different food production systems have on the environment, we should start
at the produce level. In this study, we combine life cycle assessment (LCA) methodology and data
envelopment analysis to calculate environmental efficiency scores (i.e., agricultural output divided by
environmental impacts) for eight product groups (Milk, Cattle, Pig fattening, Cereals, Beets, Potatoes,
Vegetables, Fruits) in Switzerland. First, LCA is used to calculate “cradle to farm-gate” environmental
impacts. These impacts are then used as inputs in a data envelopment analysis, with the amount of
produced agricultural products as outputs. The resulting environmental efficiency scores reflect the
relative efficiency (i.e., related to the best-observed performance) of the observed product groups.
We find large differences in environmental impacts and environmental efficiency score distribution
between the product groups. While we find some variability of environmental efficiency between
farming systems (Organic and Proof of Ecological Performance) within a product group (differ-
ence in coefficient of variation between farming systems: Fruits = 48%, Vegetables = 13%, Cereals,
Potatoes = 8%), we did not find any significant differences in environmental efficiency between
organic and integrated farming systems for any of the considered product groups. Furthermore,
we did not find a negative effect of multifunctionality of Swiss farms (i.e., multiple simultaneously
produced product groups), but found a small positive effect for Milk in the presence of other product
groups. However, the high within product group variance of environmental efficiency suggests the
potential for improvements (notably >40% for Fruits and >30% for Cattle and Potatoes).

Keywords: life cycle assessment; environmental efficiency; data envelopment analysis; agriculture;
product groups

1. Introduction

Swiss farmers and agricultural policymakers are under increasing pressure to reduce
the environmental impacts of agricultural production while maintaining or increasing
productivity. One approach to analyzing environmental performance is the concept of
environmental efficiency as proposed by Huppes and Ishikawa [1]. The concept relates one
or multiple outputs of a process to its environmental impacts (environmental performance).
Several studies examined the environmental impacts of agricultural production on climate
change [2–4] loss of biodiversity [5] environmental pollution (aquatic and terrestrial ecotox-
icity) [6] and freshwater appropriation (water scarcity) [7–9] at the global scale [10,11], the
local and global scale [12,13] or with a focus on the regional scale [14]. Life cycle assessment
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(LCA) is a commonly used tool to assess the environmental impacts of the whole value
chain up to the farm gate (cradle to gate) [15,16]. While the overall impact of agricultural
production is quite large (ca. 32% of global terrestrial acidification, ca. 26% anthropogenic
greenhouse gas (GHG) emissions, ca. 38% arable land use [10]), the environmental impacts
show high variability, depending on, among other factors, the product groups (PG) pro-
duced on the farms [4,17,18]. In the context of this study, a product group is defined as a
grouping of similar agricultural products that can be considered an output of the farm (i.e.,
internal flows of feed and intermediary products are not considered product groups, but
their economic and environmental effects are attributed to the output of the product group,
for example, Cattle and Milk). The product group-based approach is an extension of the
suggestion of Keating and McCown [19] that, in order to assess differences between farms,
one has to account for single fields as the basic managerial unit of a farm.

The way in which individual product groups contribute to the environmental im-
pact is only partially understood. However, some studies investigated the environmental
performance of farms as a whole [20,21] or assessed multiple product groups of a farm
simultaneously [22,23]. In order to better understand the different potentials for im-
provement between product groups, we suggest analyzing the within-group variance of
environmental efficiency.

Applied to agricultural products, the environmental efficiency approach requires
aggregation of all outputs and all environmental impacts (so-called midpoint impacts) into
one single value each. In order to summarize the environmental impacts, a methodology
that allows adding impacts with different units and magnitudes is needed. One well-
established method that allows the reduction of dimensions of life cycle impact measures
is endpoint analysis. Endpoints aggregate all impacts to one or more areas of protection
(e.g., damage to human health, damage to ecosystems, damage to resource availability)
using so-called “damage-pathways” [24] and finally to a small number of single-score
impact indicators. The selection and definition of the damage-pathways require normative
valuation and knowledge that transcends LCAs scope [25]. An alternative method to
calculate environmental efficiency (or eco-efficiency) was formulated by Kuosmanen and
Kortelainen [26]. They used data envelopment analysis (DEA) to estimate eco-efficiency
scores. DEA [27], a linear programming technique, serves here two goals: it allows the
aggregation of impacts without having to specify damage-pathways or any other weighting
or normalization factors and, as a benchmarking technique, it calculates efficiency scores in
relation to observed efficiencies (as opposed to a theoretical efficiency). For this study, we
decided to use DEA for two reasons: we wanted to specify (environmental) efficiency in
relation to observed behavior (and not with regard to a theoretically achievable maximum)
and avoiding specifying a production function, damage pathways, or weighting factors.

Thus, the objective of this study is to assess the environmental efficiency of agricultural
production systems at the product group level. In order to achieve this, we first develop
the methodology. Then, we test the method on a sample of 239 farm-year observations of
Swiss farms. The environmental efficiency scores are used to identify explanatory variables
for the differences in performance, assess the potential for improvement, and quantify
environmental impacts.

Then, we discuss the results and methodological aspects of combining LCA and DEA
in order to assess environmental efficiency. Ultimately, the newly developed methodology
allows to address the following research questions:

1. What are the environmental impacts for the different product groups?
2. What is the relative environmental efficiency (compared to its peers) of the observed

product groups produced on the farms?
3. What is the within-product group variance of environmental efficiency?
4. What are the effects of farming-system (Organic and Proof of Ecological Performance

(PEP)), production-region (valley, hills, and mountain), product-group size, and
number of simultaneously produced product groups on product group environmental
efficiency variance?
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5. What is the potential for improvement if below-median producers achieve above-
median environmental efficiency?

2. Materials and Methods

LCA is an established methodology to assess the environmental impacts of a product
over its whole lifespan. The method allows the comparison of different agricultural
production technologies or agricultural products while considering all impacts from the
production of inputs, the on-farm emissions, and impacts from the usage phase.

Our LCA was conducted in four steps, “goal and scope definition”, “inventory analy-
sis”, “impact assessment”, and “interpretation”, according to ISO 14040 and 14044 [28,29].

2.1. Goal and Scope

Our goal of the LCA is to estimate environmental impacts per functional unit (1 unit
of product (kg)) at the product group level. The choice of a functional unit (FU) is crucial
for the interpretability of the results. The FU should reflect the function fulfilled by the
agricultural production. In order to reflect the function of agriculture to provide food, the
amount of produced goods in (kg) was chosen as FU. The goal of this study is to assess
intra-product group variability of environmental efficiency. The product groups are chosen
such that their homogeneity is suitable and one unit of agricultural product is comparable
within the product group.

In LCA studies of agricultural production, the usage phase is often omitted and a
so-called “cradle to farm gate” system boundary is used. Since this study is focused on the
effects of farm managers’ decision-making on environmental impacts, the “cradle to farm
gate” approach was indeed employed. The temporal system boundary is 1 year.

2.2. Inventory Analysis

The inventory data for this study were collected from 2006 to 2008 during the Swiss
Farm Accountancy Network FADN-LCA project [23]. The inventory data consists of
records of all inputs and outputs of the farm (animal husbandry and crops), management
data, as well as detailed information about the farm (buildings, technologies, farming
systems, etc.). Effects on the environment from managerial decisions, production intensity,
and production techniques are considered when calculating the impact.

In order to be able to use the updated emissions model and impact assessment
methodology, the inventory data had to be supplemented and updated. Due to errors
during data recording by the farmers, amounts of used plant protection products were
in some cases recorded with the wrong units, i.e., the recorded value was 1000 times too
large (g instead of kg) or 1000 times too small (kg instead of g). We used the suggested
amounts and number of applications from the Swiss plant protection products inventory to
estimate sensible lower and upper limits for each substance and corrected values outside
of this range accordingly. In order to specify the composition of feed (e.g., protein content,
ash content, etc.), we used average daily rations from the Swiss Agricultural Life Cycle
Assessment (SALCA) model farms, corrected for net energy lactation (NEL) for dairy cows.
If available, existing information on the specific farm was used to get the best estimates
for the missing values. Where no additional information was available, the “SALCA
model farm” default values, which consider the farming system and production region
and farm type were used (Appendix A, Table A1). Up-stream emissions were included
using the SALCA database and the ecoinvent V3.6 database [30]. The calculations were
done with the SALCA farm tool V3.60 (Agroscope, Zurich, Switzerland) and the SimaPro
V9.1.0.11 software (PRé Sustainability B.V., Amersfoort, The Netherlands). All inventory
and on-farm emission data were assessed for plausibility (value ranges, consistency of land
occupation data and check for complete allocation of farm values on the product group).
All direct (on-farm) environmental impacts were calculated using SALCA and checked for
plausibility.
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2.3. Allocation

The environmental impacts had to be allocated to one of 14 product groups (see
Appendix A, Table A2). A hierarchical process was used to assign all infrastructure,
processes, and inputs to a product group:

1. If possible, the whole impact was assigned to the causal product group (i.e., environ-
mental impacts from concentrated feed for milk production are assigned to product
group Milk). In these cases, no allocation is necessary.

2. If an impact could not be assigned causally, physical criteria were used. In these
cases, the allocation was done using livestock units (animal products) or area (crop
products).

3. If physical criteria were not sensible (for example when allocating between multi-
ple diverse product groups) monetary criteria (economic return) were used. If the
allocation was necessary (type 2 or 3), the following distinction was made:

4. Emissions from fields: one allocation key per field (i.e., 14 allocation factors per field,
one for each potential SALCA product group).

5. Emissions from buildings, machines, energy, animals, feed, and direct emissions from
stables: one allocation factor for each potential SALCA product group.

In the case of milk production, the environmental impacts and output from surplus
animals (surplus calves and heifers, male calves, and culled cows) were allocated to the
product group Cattle. The biophysical allocation of the environmental impacts was done
using the ratio of the required net energy for the produced amount of milk and life weight,
respectively (net energy for pregnancy and growth) [31].

2.4. Emission Models

The direct field and farm emissions were calculated by the SALCA farm tool as follows:

• Flows of N, P, and K in animal production were modeled by a mass flow approach. For
a detailed description see Bystricky, et al. [32]. N excretion was partitioned between
urine and dung based on the N concentration in the diet [33].

• The losses of ammonia (NH3) from animal husbandry, manure management, includ-
ing manure application, were calculated according to the Agrammon model [34,35].
Emissions from mineral N fertilizers were calculated with emissions factors according
to EEA (2013). For mineral N fertilizers, different factors for pH above and below
seven apply (see Bystricky, Nemecek, Baumgartner, and Gaillard [32]).

• Emissions of nitrogen oxides (NOx) were modeled according to EEA (2013) [32].
• Direct and indirect emissions of nitrous oxide (N2O) were considered according to the

IPCC method [36]. Direct emissions come from the application of mineral N fertilizer
(factor 1% of N released as N2O), incorporation of crop residues (1% of the N released
as N2O). Emissions from organic fertilizer application were calculated according to
Nemecek and Ledgard [33]. In addition to the direct emissions, indirect emissions
from ammonia and nitrate losses were considered. The respective factors are 1% for
ammonia-N and 0.75% for nitrate-N. Emissions from manure storage were 0.5% of the
N in slurry and liquid manure and 2% of the N in solid manure [32].

• Nitrate (NO3
−) leaching was estimated on a monthly basis by accounting for N

mineralization in the soil and N-uptake by the vegetation, specific to each crop by
the SALCA-nitrate model [37]. If mineralization exceeds uptake, nitrate leaching can
potentially occur. In addition, the risk of nitrate leaching from fertilizer application
during unfavorable periods was calculated, taking into account the crop, month of
application, and the potential rooting depth.

• Nitrogenous emissions on pasture during grazing (NH3, N2O, NO3) were calculated
according to Nemecek and Ledgard [33].

• Methane (CH4) emissions from enteric fermentation and manure management were
calculated by using emission factors from IPCC [36] and considering the amount and
quality of the feed and the manure management system. Methane emissions from
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dairy cows can be calculated by the model of Kirchgessner, et al. [38] (see Bystricky,
Nemecek, Baumgartner and Gaillard [32]).

• Direct (fossil) CO2 emissions emerge as a consequence of the application of urea, lime,
and dolomite. For their calculation, the emission factors of IPCC [36] were used.

• Three paths of phosphorus emissions to water were included, namely run-off as
phosphate and erosion as phosphorus to rivers as well as leaching to ground water as
phosphate [39]. Furthermore, the land-use category, the type of fertilizer, the quantity
of P spread, characteristics, and duration of soil cover (for erosion) were considered.

• Heavy metal emissions (Cd, Cr, Cu, Hg, Ni, Pb, Zn) were assessed by an input-output
balance [40]. The following inputs were considered: seed, fertilizers, and pesticides.
Outputs by harvested products, erosion, and leaching were included. Only part of
the quantities lost to the aquatic environment by erosion or leaching was considered,
since the farmer controls these processes to some extent only due to the deposition of
heavy metals. The allocation factor was derived from the share of agricultural inputs
in the total inputs (including deposition).

2.5. Impact Assessment

The impact assessment for the on-farm emissions was conducted using the Swiss
Agricultural LCA tool SALCA [41]. The resulting (midpoint) indicators were assessed for
correlation and relevance. The relevance criteria were introduced because the environ-
mental impact data showed high covariance, and we wanted to include at least one value
for human toxicity, ecotoxicity, water usage, and eutrophication each. A principal compo-
nent analysis found two components that explained >70% of the variance (Appendix A,
Figure A1). Nonetheless, the decision was made to use nine impact indicators (despite their
high correlation (Appendix A, Figure A2)), mostly for their relevance and importance for
the domains air, water, soil, and (human) health. Therefore, the final set of environmental
impacts (see Table 1) still showed some correlation, especially between “nonrenewable en-
ergy usage”, “global warming potential 100a” and “eutrophication potential” (Appendix A,
Figure A2). The decision to keep impacts considered as important even if they show high
covariance is in accordance with the suggested protocol for DEA in cases of correlated
factors [42,43]. The life cycle impact calculation was conducted using SimaPro [44].

Table 1. Used mid-point indicators in the impact assessment.

Description Unit Method

Non-renewable fossil and nuclear energy MJ eq ecoinvent
Land competition m2 year CML 2001

Deforestation m2 SALCA (LCI calculation)
Total water use m3 SALCA (LCI calculation)

Global warming potential 100a kg CO2 eq IPCC
Acidification cmol H+ eq GLO

Eutrophication Person year GLO
Freshwater ecotoxicity organic + inorganic PAF m3 day USEtox V2.11

Human toxicity cancer + non-cancer cases USEtox V2.11, combined with Fantke and Jolliet [45]

The nine environmental impacts (midpoint indicators) were chosen in order to re-
flect as many domains (land, water, air, health) as possible while reducing unwanted
redundancy. “Non-renewable fossil and nuclear energy” refers to fossil fuels and uranium
resources for nuclear power generation [46]. “Global warming potential 100a” [47] also
reflects the usage of fossil fuels, but the former reflects the depletion of finite resources and
the latter reflects the environmental impact of the related greenhouse gas emissions. “Land
competition” indicates the occupation of land for agricultural production and all upstream
processes. It covers the sum of all land occupation flows (agricultural and non-agricultural
uses). The “Deforestation” (SALCA) indicator reflects the change from forests to farmland
(minus farmland to forest area) due to on-farm measures or more often due to imported
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feed. Positive values for deforestation signal a loss of forest area, negative values reflect
an increase. The method is similar to the ReCiPe 2008 method [48] but also includes
scrubland. “Total water use” reflects the elementary flows of water from water bodies for
on-farm activities. Since most water usage occurs on farms, we can use this simplified
measure. “Freshwater toxicity” and “Human toxicity” use the USEtox methodology to
quantify the toxicity of organic and inorganic compounds and their effect on human health
(cancer and non-cancer) [49,50]. The method was adjusted in order to reflect the latest
developments on the toxicity assessment of pesticides [51]: the characterization factors
for aquatic ecotoxicity for pesticides were adapted in order to include the distribution to
the different environmental compartments, as described by Bystricky, Nemecek, Krause
and Gaillard [37]. For human toxicity, the characterization factors for pesticides provided
by Fantke and Jolliet [45] were used. “Acidification” reflects the change in the acidity of
soils and water. The method for the acidification potential follows the recommendation of
ILCD 2011 [52] and uses the method Accumulative Exceedance [53,54]. The default method
is denoted as “Acidification, GLO”, which uses a European reference. “Eutrophication”
reflects the eutrophication potential (impact of the losses of N and P to aquatic and terres-
trial ecosystems) and is calculated according to the EDIP2003 method [55]. The method
provides indicators for terrestrial eutrophication (dominated by NH3, with a contribution
of NOx), aquatic eutrophication N (dominated by NO3, followed by NH3 and NOx), and
aquatic eutrophication P (all emissions of P to water). For easier interpretation, these three
categories were aggregated by normalization. Human and aquatic toxicity, as well as
eutrophication, also cover negative impacts from erosion.

2.6. Functional Unit

For most analyses, the amount of produced agricultural products in kg dry matter
(kg DM) for crop products and kg live weight(kg LW) for Cattle and Pig fattening and kg
(kg) for Milk was used. In order to facilitate product group comparisons, we additionally
used the amount of human digestible energy (MJ). The conversion of (kg) to (MJ) was done
using the values shown in Appendix A, Table A4.

2.7. Interpretation

For the environmental efficiency score calculation, the environmental impacts were
aggregated using data envelopment analysis (DEA). DEA was used in order to relate
the impacts to the amount of agricultural products and to aggregate the impacts using
non-normative weightings.

2.8. Data Envelopment Analysis

Data envelopment analysis (DEA) was originally developed in the 1970s for operation
research and economics [56]. The method allows the objective estimation of weights for a
set of inputs and outputs, which describe an enterprise. The resulting linear maximization
problems find for each observed enterprise (Decision Making Unit (DMU)) the best (i.e.,
maximal) weighting for each of its inputs and outputs under the constraint that, using the
same weights, no other DMU would achieve a better ratio of outputs /inputs. The resulting
efficiency scores (values between 0 and 1) quantify the relative efficiency, compared to the
observed best practice. Recently, the method has seen increasing usage in combination with
LCA data for eco-efficiency [57]. Using DEA for eco-efficiency or environmental efficiency
solves the problem of having to aggregate multiple outputs (i.e., kg agricultural produce,
monetary receipts) and/or multiple inputs (i.e., environmental impacts) where we cannot
define a common unit. The R package “deaR” [58] was used to calculate the efficiency
scores using “input oriented DEA”. In this study, we used input-oriented DEA with a
constant return to scale assumption to aggregate the environmental impacts to a single
environmental efficiency score. The input orientation results in the linear programming
problem to minimize inputs while fixing the output. The assumption of constant return to
scale (CRS) prevents the DEA from correcting for different farm sizes. We used the CRS
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assumption because we are also interested in inefficiency due to non-optimal product group
size. The resulting scores were assessed for sensitivity to included impacts (Appendix A,
Figures A7 and A8).

2.9. Environmental Efficiency

Our definition of environmental efficiency is inspired by the eco-efficiency framework.
Eco-efficiency relates the added value of production or service to its environmental impact.
This falls in line with Huppes and Ishikawa’s [1] definition of environmental productivity,
which is “Economy divided by Environment”. Since we want to reflect society’s view
on agriculture, we chose to use the mass of produced agricultural goods instead of their
monetary value. We named this new measure environmental efficiency. This also avoids
the problem of varying prices and is more suitable to assess the “public function” of
agriculture, which is to produce agricultural products with as little environmental impact
as possible.

2.10. Farm Data Description

The data set consists of 239 farm-year observations of 113 unique farms. The farms
produce multiple agricultural products with on average three product groups per farm.
Table 2 shows the number of observations for each product group–production region
combination. The data were collected during 2006–2008. It covers the three production re-
gions in Switzerland: plain region, pre-alpine hills, and mountains region. The production
region was used as a measure for biotic and abiotic factors related to region and altitude
(i.e., climate, vegetation period, etc.). Twenty percent of the farms are certified organic
farms and the remaining farms operate under the “Proof of Ecological Performance” (PEP)
guidelines, which corresponds to an implementation of integrated production principles.
Both farming systems implement guidelines regarding crop rotation, usage of auxiliary
substances, and preservation of biodiversity.

Table 2. Number of observations for product groups and production regions. Counts in parenthesis
mark subgroups with not enough observations for the analysis.

Product Group Total Valley Hill Mountain

Milk 153 78 42 33
Cattle 143 64 40 39

Pig fattening 31 20 11
Cereals 97 76 21
Beets 19 19

Potatoes 29 14 15
Vegetables 27 24 (3)

Fruits 36 22 12 (2)

Very small product groups that amounted to less than 3% of the farms’ total working
hours were excluded from the analysis. For example, almost all farms have some fruit
trees. However, in order to assess the product group Fruits, we would like to only include
observations where a substantial amount of attention was spent on the product group.
Furthermore, the data for very small product groups tend to have higher uncertainty
(Appendix A, Figures A3 and A4). We decided to quantify this with the work hours per
product group. The data for this filtering was obtained from the Swiss Farm Accountancy
Network. Since the data are relatively sparse, some combination of factors at the higher
level of detail (i.e., farming system vs. production region) lead to groups with too few
observations for analysis. We dropped combinations with less than 5 observations per
subgroup from the analysis.

To address research question 1, an analysis was done to assess each of the nine envi-
ronmental impacts (with fresh water ecotoxicity differentiated for organic and inorganic
compounds) individually. We assessed the environmental impacts per functional unit
“produced amount” (kg) and “produced amount human digestible energy” (MJ). Then, the
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environmental impacts were used to calculate the within-product group environmental
efficiency (research question 2). The resulting scores reflect the differences in environmental
efficiencies between observations that produce the same product group. Additionally, we
calculated the environmental efficiency over all product groups, using nutritional func-
tional units (the produced amount of human digestible energy (MJ)), in order to allow for
between-product group comparisons.

The differences in environmental efficiency score variance were assessed with regard
to the farming system, the production region, the product group size, and the number of
other product groups on the same farm (research questions 3 and 4). Finally, we calculated
the potential for improvement, by assessing the differences in environmental efficiencies
for the below and above median environmental efficiency groups for each product group
(research question 5). In order to do so, we grouped all observations per product group
into two classes: below and above median environmental efficiency. Then, we calculated
the mean for these two groups. The difference between these two values is then used as
the potential for improvement if the below-median producers achieved above-median
environmental efficiency.

3. Results
3.1. Environmental Impacts

In general, we found large differences for the environmental impacts per functional
unit (kg (Milk), kg live weight (Cattle, Pig fattening), kg dry matter (Cereals, Beets, Potatoes,
Vegetables, Fruits)) between the product groups (Figures 1 and 2; see also Appendix A,
Figure A5 for mean values). Cattle, Milk, and Pig fattening were associated with the highest
environmental impacts per functional unit, followed by Potatoes, Vegetables, and Fruits.
The impact of organic farms was smaller than the impact of PEP farms for most product
groups, with the exceptions discussed above.

Figure 1. Relative average impact per produced amount (kg dry matter or live weight for each product group. All values are
averaged over all observations and normalized by the largest observed averaged value per impact (largest value = 100%).
In order to better illustrate the differences between the two farming systems, the impact “Freshwater ecotoxicity USEtox
potentially affected fraction of species (PAF) integrated over time and volume (PAF m3 day)” is split into ecotoxicity of
organic and inorganic compounds. (GLO = Global, FWater = Freshwater, eq = equivalent).

We found—for eight out of the nine impacts—the highest values in integrated farming
systems (PEP). The only exception is Cattle; for Cattle we found the largest environmental
impact regarding human toxicity on organic farms. Reasons for this result are the lower
productivity of organic husbandry (the observed Cattle productivity per animal is 9% lower
for organic farms than for PEP farms, additionally the variance is 50% larger for organic
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farms) and the large base emissions from manure, infrastructure, and feed production that
are relatively independent of the productivity. The environmental impacts for the other
product groups do not show large differences between organic and PEP, except for the
product group Fruits where we find a much larger impact for PEP farms. This is related
to the relatively large-scale application of plant protection products (especially inorganic
compounds). The high impact on “deforestation” in the product group Pig fattening stems
from the imported feedstuff. For Cattle and Milk, where we find a base feed (i.e., roughage)
ratio of 0.8–0.9 [59] the effect on deforestation is much smaller. This also highlights the
differences between roughage eaters and other animals like pigs or poultry. The large
difference between “Total Water Use” for vegetable production on PEP farms vs. organic
farms can be explained by the differences in produced crops (mostly vegetables with
high water demand like salad, fennel, and leek for PEP farms and more robust crops like
beans, peas and sweet corn for organic farms). The relatively high freshwater ecotoxicity
for potatoes stems from plant protection products against potato blight, with different
substances used for the two farming systems. There were, however, no observations for
organically produced beets in the sample.

Figure 2. Relative average impact per produced amount of human digestible energy (MJ) for each product group. All values
are averaged over all observations and normalized by the largest observed averaged value per impact (largest value = 100%).
In order to better illustrate the differences between the two farming systems, the impact “Fresh Water Eco-Toxicity USEtox
(PAF m3 day)” is split into ecotoxicity of organic and inorganic compounds. (PAF m3 day = potentially affected fraction of
species integrated over time and volume, GLO = Global, FWater = Freshwater, eq = equivalent).

3.2. Analysis of Environmental Efficiency
3.2.1. Within Product Group Variance of Environmental Efficiency

As shown in Figure 3, the eight product groups showed different distributions of
environmental efficiency. The distribution of environmental efficiency for animal products
was less skewed than for crop products (mean skewness of animal product groups is
−0.4 versus 0.4 of crop product groups). The product group Milk and Pig fattening
showed the highest average environmental efficiency (average Milk = 0.65, average Pig
fattening = 0.73) (Appendix A, Table A5). This means that these two product groups have
more often (relative) high environmental efficiency than the other product groups, although
the actual impact for these two product groups was larger than for crop product groups.
The product group Cattle is very heterogeneous, including dairy animals, animals from
extensive suckler cow systems, and intensive beef fattening; therefore, the environmental
efficiency of this group varies widely (standard deviation = 0.2).
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Figure 3. Distribution of environmental efficiency for product groups. The dotted line marks the average environmental
efficiency for each product group. The tick marks below the x-axis denote actual observations. The density is retrieved by
calculating the kernel density estimate, i.e., by weighting the distances of all the data points at each value. The more points
nearby, the higher the estimate. The probability of finding a value between a given interval is the area below the curve,
confined by this interval.

An analysis of variance (ANOVA) showed that there were no significant differences
between the product groups for the within product group environmental efficiency distri-
butions. We found the largest proportion of observations with low environmental efficiency
for Fruits, Cattle, and Vegetables (Appendix A, Figure A10).

Analyzing the variance of the environmental efficiency score using the coefficient of
variance (CV) analysis (Table 3), we found the larges CV for the product groups Fruits and
Vegetables, where we also find the largest heterogeneity with regard to produced crops and
weight per yield. The smallest coefficient was found for pig fattening followed by Beets.
While there are some differences in CV between the farming systems for each product
group, we could not find significant differences in mean values (Appendix A, Table A9).

Table 3. Coefficient of variance of environmental efficiency for the product groups.

Product Group Over all Organic PEP

Milk 0.24 0.22 0.24
Cattle 0.37 0.35 0.38

Pig fattening 0.13 0.11 0.13
Cereals 0.34 0.41 0.33
Beets 0.12 0.12

Potatoes 0.28 0.21 0.29
Vegetables 0.60 0.71 0.58

Fruits 0.66 0.22 0.7

3.2.2. Explanations for Variance in Environmental Efficiency

In order to find explanatory variables for the within product group variance in envi-
ronmental efficiency, the differences between organic farms and PEP farms and production-
region as well as the effect of product group size were assessed.

There was only a small difference between the two farming systems regarding en-
vironmental efficiency (Figure 4). All considered product groups showed no significant
difference at the 5% level between organic and PEP farming systems, but a large variability
within each farming system.
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Figure 4. Distribution of environmental efficiency for product groups: Comparison of PEP (proof of ecological performance)
and organic farming systems. The dotted line marks the average environmental efficiency for the product group. The tick
marks below the x-axis denote actual observations.

For the product group Milk, the difference between valley and hill was negligible,
but mountain farms had the lowest averaged environmental efficiency (Figure 5). The
product group Cattle showed a similar distribution, with valley farms having the highest
averaged environmental efficiency. For Cereals, the distribution of values and the averages
were similar although with slightly higher environmental efficiency for the production
region hill. For the product group Potatoes, we found a large variance for environmental
efficiency for the production region hill, and higher, less variable efficiency for the region
valley; however, we did not have enough observations for production region mountain for
the two crop product groups (Appendix A, Table A7).

Figure 5. Differences in effects of production region on environmental efficiency. The dotted line marks the average
environmental efficiency for the product group–production region combination. The tick marks below the x-axis denote
actual observations.

When calculating environmental efficiency, we can allow the model to compensate
for non-optimal product group size by specifying a “variable return to scale” assumption.
When comparing these environmental efficiency scores to the scores used in the analysis
above (“constant return to scale” assumption) we can use the difference in environmental
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efficiency scores as a measure for inefficiency due to size, where higher values indicate
higher in-efficiency. For Milk, Cattle, and Cereals, we found the largest (positive) differences
for the smallest product group sizes (Figure 6), indicating inefficiency due to too small
product groups. For Pig fattening, we found the largest differences for the largest product
group sizes. This difference indicates inefficiency due to the large product group size. For
the product groups Beets and Potatoes, we found no clear relationship between product
group size and inefficiency due to scale. Since the product groups Vegetables and Fruits
consists of multiple smaller product groups, these observations were omitted from this analysis.

Figure 6. Comparison of environmental efficiency under constant return to scale assumption vs. variable return to scale
assumption. The environmental efficiency was calculated twice, with both, constant and variable return to scale assumption.
The ratio of the environmental efficiency scores indicates in-efficiency due to too small or too large product group size.
(Omitted values for Vegetables and Fruits and subgroups with less than five observations.)

3.3. Product Group Environmental Efficiency of Farms with Multiple Product Groups
3.3.1. Effect of Number of Simultaneous Product Groups

In order to assess the effect of multiple simultaneous product groups over all farms, the
number of product groups was compared to the product group’s environmental efficiency.
Figure 7 shows all farm-year observations with their number of product groups (regardless
of the actual size of the product groups) and the environmental efficiencies. While there are
some small significant positive effects of multiple simultaneous product groups for Milk,
we could not find negative effects of higher diversity.

3.3.2. Effect of Product Group Size on Environmental Efficiency for Mixed and
Specialized Farms

The observations were analyzed for the difference in environmental efficiency between
specialized and mixed farms. In this context, a mixed farm is a farm with more than one
large (=over 33% of average product group size) product group. A specialized farm, on
the other hand, has only one (large) product group. When analyzing the environmental
efficiencies for the three product groups that appeared the most often together on farms,
the farms did not have similar high (or low) environmental efficiencies for all products they
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produce (Figure 8). Instead, there was no significant correlation between the environmental
efficiencies of Cattle, Milk, and Cereals.

Figure 7. Comparison of the number of product groups and environmental efficiency. Shown are mean values (bar height)
and standard errors. Mean values with different letters (a, b) differ significantly.

Figure 8. Environmental efficiency for farms with multiple product groups. Only farms, which have
the three product groups “Milk”, “Cattle”, “Cereals” simultaneously (N = 20) were considered as
Mixed farms. The figure shows the relationship between environmental efficiencies for the three
product groups if they appear simultaneously on the same farm. The x-axis shows the environmental
efficiency values for Milk, the y-axis the values for Cattle, and the size the values for Cereals respec-
tively. The environmental efficiency for the three product groups shows no significant correlation
(see Appendix A, Table A10).

We also found no effect of the product group’s size on environmental efficiency for
mixed and non-mixed farms. The three product groups that were most often simultane-
ously produced on farms were analyzed with regard to the product group size (measured
in hectares for crop products and livestock units for animal products). Appendix A,
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Figure A11 shows that for mixed farms, only the product group Cereals showed a signif-
icant effect of product group size on environmental efficiency (R = 0.26, p-value < 0.05).
Similarly, product-group environmental efficiency for products from farms with only one
(large) product group also showed no significant correlation (Appendix A, Figure A12).

In order to assess the potential for improvement we calculated the difference in
average environmental efficiency for the two groups “below median” and “above median”
environmental efficiency (Table 4).

Table 4. Potential for improvement if below average environmental efficient farms achieve average
environmental efficiency of above-average farms.

Product Group
Mean Environmental

Efficiency above
Average Farms

Mean Environmental
Efficiency below
Average Farms

Difference

Milk 0.77 0.53 0.24
Cattle 0.72 0.38 0.34

Pig fattening 0.81 0.65 0.16
Cereals 0.59 0.34 0.25
Beets 0.89 0.72 0.16

Potatoes 0.86 0.53 0.32
Vegetables 0.38 0.14 0.24

Fruits 0.59 0.16 0.43

4. Discussion

With regard to research question 1 (environmental impacts of product groups), we
found large differences between the product groups, with animal products having the
largest impacts per produced amount (measured in kg or in human digestible energy).
Environmental impacts differed between animal products and crop products when using
a functional unit reflecting digestible energy (Figure 2), confirming results found by e.g.,
Poore and Nemecek [10]. The high variance in impacts for Fruits and Vegetables is notable
and is mostly related to the heterogeneity of the product groups.

Regarding the differences between farming systems, we found that, while the overall
impact of organic farming is smaller, there were large differences for the impact categories.
For organic farms, the freshwater ecotoxicity stems from inorganic compounds (e.g., metals,
mostly plant protection products like copper) while for PEP farms, the largest impact on
freshwater ecotoxicity stems from synthetic plant protection products, which belong to
organic chemicals.

We found only a weak link between the farming system and global warming potential,
with large differences only for heterogeneous product groups (i.e., Vegetables and Fruits),
where we have also the smallest number of observations. This result is similar to the
findings of Lynch, et al. [60] with regard to GHG emissions per produced unit. For their
study, they conducted a meta-analysis of 130 studies analyzing the effect of farming systems
on GHG emissions and global warming potential. They concluded that organic farming
has lower GHG emissions per unit of product, with the largest differences (but also largest
variances) for Vegetables. However, on average, we found smaller environmental impacts
associated with organic farming systems for most product groups. The mostly small effects
on global warming potential and energy use fall in line with the findings of a meta-analysis
on the effects of organic production vs. conventional production by Lee, et al. [61]. They
conclude that the differences in GWP between organic and conventional farming are small
when calculating emissions per produced unit, with a tendency favoring organic farming.
They found, however, a large impact on cropping systems (mono-cropping vs. multi-
cropping). Considering that in our sample we do not have mono-cropping (PEP requires
some crop rotation), the small differences between the farming systems are not necessarily
so surprising.

Regarding research questions 2 and 3 (between and within product group environmen-
tal efficiency variance), we found the largest differences between animal product groups
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and crop product groups when using human digestible energy as output (Figure 2). Addi-
tionally, we found a large overlap of environmental efficiencies between farming systems
for all product groups. While there are differences in average environmental efficiencies,
the variance within the product group and within the farming system is large. This general
finding of high within as well as the between-group variance is similar to the findings from
Poore and Nemecek [10] In their meta-analysis, they found up to five times larger impacts
on climate change for wheat, maize, and rice production for the 90th percentile than for the
10th percentile (i.e., 10% most efficient producers vs. rest). For beef production, they found
that 25% of producers with the highest emissions are responsible for 56% of the beef herd’s
emissions. They conclude, that across all products, 25% of producers contribute on average
53% to the total impacts, therefore identifying a large potential for improvement. With
regard to between-product group variance, they found large differences between product
groups, with animal products exceeding the environmental impact of vegetable substitutes,
producing 56 to 58% of the total food emissions while producing only 37% of protein and
18% of human digestible energy.

With regard to research question 4 (effects of farming-system, production-region,
number of simultaneously produced products, and product group size), we found, that
while individual variables explain some variance, there is no single factor that predicts
environmental efficiency, and a large share of variability remains unexplained. We found
for all product groups, but Cereals, the highest environmental efficiency for organic farming
systems. However, none of the differences in variances were significant at the 5% percent
level (Figure 4 and Appendix A, Table A9). This relatively small overall effect of a farming
system when only considering organic and integrated farming is similar to the results
from Tuomisto, et al. [62] who also found that integrated farming (PEP) can lead to a more
favorable trade-off between reduced inputs and high yields than organic farming. A study
on the environmental impacts of Swiss integrated and organic farming systems [63] also
found that the better environmental performance could not compensate for the decreased
yield in organic farming. Overall, the study found similar or better performances for
organic farming systems. However, there were differences between the considered product
groups, with notably beets and potatoes performing worse in the organic case with regard
to global warming potential and organic cereals (barley) having higher eutrophication
potential per produced amount.

The comparison of farms with multiple large product groups (mixed farms) versus
specialized farms did not result in a conclusive answer to the question of whether multiple
product groups are beneficial for environmental efficiency or not. However, if we include
also observations where the product group in question is very small (less than 3% of
workload), we find that these product groups display a larger variability with regard
to environmental efficiency than larger enterprises of the same product group. Further
analysis with a larger sample size that would allow comparisons with more specialized
farms (i.e., farms that produce mostly/only Vegetables, Milk, Beef, etc.) are necessary to
elaborate on this result.

With regard to research question 5, we found a substantial potential for the improve-
ment of environmental efficiency. If we assume an increase in the environmental efficiency
of the below-average group to the mean environmental efficiency of the “above average”
group, we calculate the potential for improvement between ca. 15% and 25% for Milk, Pig
fattening, Cereals, and Vegetables, and 30 to 40% for Cattle, Beets, Potatoes, and Fruits.
A study by Cassman, et al. [64] analyzed the potential for improvement in cereal produc-
tion by assessing crop yields, land and nitrogen fertilizer use, carbon sequestration, and
greenhouse gas emissions. They found a substantial potential for increasing yields (up to
30%) and reducing N losses and improving soil C content (ca. 20%) with regard to GHG
emissions per unit of grain yield. However, they also noted the need for further research
in order to close the exploitable yield gap. A study assessing the potential improvement
of water use efficiency in agriculture [65] looked at potential efficiency gains at each step
of the food value chain and identified a large potential for improvement with 50 to 100%
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potential efficiency gain. It should be noted, however, that the sample used in their study
was much more diverse than the one used here, including vastly different farming and
irrigation techniques.

Our analysis at the product group level leads to a diverse picture of the effects of
farming-system, production-region, and multifunctionality. We also found no significant
negative effect of less favorable production regions on Milk or Cattle, but a large, albeit not
significant difference for Cereals and Potatoes. These results are similar to the findings by
Herserner, et al. [23] and Nemecek, et al. [66]. Both studies found increasing environmental
impacts for the production region “mountains” with less favorable conditions such as
shorter vegetation period with longer barn feeding, lower yields, higher slopes (increasing
erosion risks and requiring more fuel), etc.). By assessing each product group individually,
we gained insight into how the impacts related to the farms’ output. Additionally, product
groups are clearly better approximations of the goods that consumers purchase. Similarly,
product groups reflect the level at which farm managers make a decision. Therefore, in
order to develop better and more granular policies and guidelines, we suggest that policies
should focus on individual product groups.

With this study, we also show that the analysis of agricultural production at the
product group level with LCA and DEA is useful in order to aggregate environmental
impacts for environmental efficiency. Our resulting environmental efficiency scores are
representative of the assessed farms’ environmental productivity and are as objective as
possible, given the data. This conclusion on the usage of LCA + DEA methodology falls in
line with the findings of the systematic literature review by Vásquez-Ibarra, et al. [57]. They
also emphasize the complementary characteristics of LCA and DEA. However, our study
does not account for all products and services rendered by the farms. For example, non-
market goods are not included as outputs. In general, impacts that are hard or impossible to
quantify are not included in the life cycle impacts (for example animal welfare, biodiversity,
long-term–low exposure effects, etc.) or in the considered functional units. In addition,
our sample is not fully representative of the whole Swiss agriculture, so we should avoid
extrapolating from our results to the actual population of Swiss farming systems.

An advantage of the here defined environmental efficiency as normalized values
(normalized to the ‘best-observed practice’), is that the resulting environmental efficiency
scores for different product groups can be compared. Furthermore, the observed variability
in environmental efficiency distribution for the assessed product groups is an indicator of
different underlying mechanisms that limit environmental efficiency. Interactions between
product group, production-region, farming-system, and farm manager’s priorities and
capabilities result in a complex typology of production systems. The relatively low average
environmental efficiency for many of the assessed product groups suggests a large potential
for improvement. This is especially true for Cattle, Pig fattening, and Vegetables since
these product groups also show the highest absolute impacts. This result is similar to the
findings for global warming potential of agricultural products by [3].

The data that was used in this study is, while unique in its completeness, relatively
small, which limits the explanatory power of this analysis. The need to distinguish effects of
multiple discrete categories (farming-system, production-region) leads to many groupings
with only a few (less than 20) observations. Accordingly, we found mostly insignificant
effects of the assessed variables on environmental efficiency. With a larger dataset, possibly
more significant relationships could have been detected.

There are future developments such as effects of climate change or changes in the
socio-economic context that could affect the relationships found in this study (e.g., climate
conditions, environmental and trade policies, consumer behavior, and others). Therefore,
the findings of this study are only valid for the considered sample and the related context.

Even though the data used in this study were collected in the years 2006–2008, we
could not find any indication that the used sample, results, and conclusions are not valid
for the current situation. While there are some changes regarding the direct payment
regime and consumer behavior (mainly regarding production and consumption of animal
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products), their effect on the environmental efficiency relationships in production systems
seems to be inconclusive.

The data envelopment analysis was implemented using a bootstrapped method. This
led to a robust result that accounts for sensitivity to the sample. The reported environmental
efficiency scores were corrected for bias and showed no super efficiency problem. In
the context of DEA, super efficiency describes the situation where due to not enough
observations in relation to the number of considered inputs and outputs, many observations
are characterized as efficient [67]. Additionally, we assessed the sensitivity to the included
impacts (Appendix A, Figure A7) and found that all impacts affect the environmental
efficiency scores, albeit some for only a few product groups (i.e., “IPCC GWP 100a” has
only an effect on the environmental efficiency score of Milk). Furthermore, we found
that the DEA environmental efficiency scores were robust with regard to the sample of
decision-making units as well as with regard to the included environmental impacts.

5. Conclusions

The assessment of environmental efficiency of agricultural product groups is, while
labor and data-intensive, a promising approach to gain detailed insights into the origin
and cause of undesirable environmental impacts of agricultural production.

We found that the inputs vary for the two assessed farming systems, with organic
farming having a higher environmental impact on freshwater ecotoxicity from inorganic
pollutants, while integrated farming had higher impacts from synthetic pesticides with
organic compounds. Moreover, there were higher impacts on deforestation for integrated
than for organic farming for Pig fattening, which are related to imported soy in concentrated
feed. For Cattle, we found a larger impact from acidification for integrated than for organic
farming systems.

We conclude that, while there are differences between farming systems and ‘number
of simultaneously produced product groups’, we could not identify one of the assessed
variables as a single driver for environmental efficiency for all product groups. Accordingly,
we could not find a significant effect of the production-region and product group size.

Additionally, we could not find a negative impact of the relatively high multifunc-
tionality of Swiss agriculture on environmental efficiency. The hypothesis that multiple
simultaneous product groups lead to a lower overall environmental efficiency could not be
supported. However, the large within-product group variation of environmental efficiency
indicates a large potential for improvement. If farmers with less than average environ-
mental efficiency were to improve their production, we could reduce the overall impact of
agriculture without a reduction in output.
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Appendix A

Table A1. Updated fields in production inventories.

Field Task Auxiliary Information

feed estimate missing information average Milk production, feedbase, SALCA
model farms

climate data estimate missing information Swiss Meteo monthly averages
fertilizer application date estimate missing information “Feldkalender AUI”

plant protection correction Swiss Register of plant protection products

Nitrogen in farmyard manure estimate missing information GRUD “Grundlagen für die Düngung
landwirtschaftlicher Kulturen in der Schweiz”

straw application estimate missing information SALCA model farms

GVE coefficients estimate missing information “Faktoren für die Umrechnung des
Tierbestandes in Grossvieheinheiten”

fresh substance to dry matter coefficients estimate missing information SALCA internal data
farmyard manure systems estimate missing information SALCA model farms

period on pasture estimate missing information SALCA model farms
occupation estimate missing information SALCA internal data

time spent in yard estimate missing information SALCA model farms
time spent on pasture estimate missing information SALCA model farms
fertilizer composition estimate missing information SALCA internal data

crop codes estimate missing information SALCA internal data

Table A2. Overview of all defined product groups. The column “Included in study” indicates if
the product group was considered important and homogenous enough to be included in this study.
N denotes the total available observations.

Field Task Auxiliary Information

Cattle 240 TRUE
Milk 180 TRUE

Cereals 173 TRUE
Remaining feed/arable crops 139 FALSE

Remaining animals 107 FALSE
Fruits 55 TRUE

Pig fattening 47 TRUE
Potatoes 44 TRUE

Beets 40 TRUE
Vegetables 38 TRUE

Corn 19 FALSE
Non-food 15 FALSE
Viticulture 15 FALSE

Pig breeding 10 FALSE
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Figure A1. Principal component analysis of environmental impacts: Two main components explain 77.4% of the total
variance. 1 = Non renewable fossil and nuclear (MJ eq), 2 = Non renewable fossil (MJ eq), 3 = Non renewable nuclear
(MJ eq), 4 = Resources abiotic (kg of Antimony eq), 5 = Resources potassium K (kg), 6 = Resources phosphorus P (kg),
7 = Land competition (m2a), 8 = Human digestible protein production potential (kg), 9 = Deforestation (m2), 10 = Total water
use blue water (m3), 11 = Water Stress Index (m3), 12 = Exergy non renewable fossil (MJ), 13 = Exergy non renewable nuclear
(MJ), 14 = Exergy renewable wind (MJ), 15 = Exergy renewable solar (MJ), 16 = Exergy renewable hydro (MJ), 17 = Exergy non
renewable primary forest (MJ), 18 = Exergy renewable water (MJ), 19 = Exergy non renewable metals (MJ), 20 = Exergy non
renewable minerals (MJ), 21 = Exergy land resources (MJ), 22 = Exergy total (MJ), 23 = IPCC GWP 100a 2013 (kg CO2 eq),
24 = IPCC GWP 20a 2013 (kg CO2 eq), 25 = Ozone depletion (kg Trichlorfluormethan eq), 26 = Photochemical ozone
formation (kg Non Methane Volatile Organic Compounds eq), 27 = Acidification GLO (molc H+ eq), 28 = Eutrophication terr.
GLO (m2), 29 = Eutrophication aq. N GLO (kg N), 30 = Eutrophication aq. P GLO (kg P), 31 = Eutrophication norm. GLO
(person year), 32 = Acidification CH (molc H+ eq), 33 = Eutrophication terrestrial CH (m2), 34 = Eutrophication aq. N CH
(kg N), 35 = Eutrophication aq. P CH (kg P), 36 = Eutrophication normalized CH (person year), 37 = Freshwater ecotoxicity
USEtox org (PAF m3 day), 38 = Freshwater ecotoxicity USEtox inorg (PAF m3 day), 39 = Freshwater ecotoxicity USEtox (PAF
m3 day), 40 = Human toxicity USEtox cancer (cases), 41 = Human toxicity USEtox noncancer (cases), 42 = Human toxicity
USEtox (cases). (MJ = megajoule, eq = equivalent, GWP = Global warming potential, GLO = Global, CH = Switzerland,
aq = aquatic, FWater = Freshwater, PAF m3 day = potentially affected fraction of species integrated over time and volume).

Figure A2. Correlation coefficients environmental impact indicators (all shown coefficients have
p-values < 0.05).
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Figure A3. Variance in environmental efficiency estimate vs. product group size (measured as output). Smaller product groups show larger variance in estimates. (PAF m3 day = potentially
affected fraction of species integrated over time and volume, eq = equivalent, MJ = megajoule).
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Figure A4. Variance in environmental efficiency estimate vs. product group size (measured as working hours). Smaller product groups show larger variance in estimates.
(PAF m3 day = potentially affected fraction of species integrated over time and volume, eq = equivalent, MJ = megajoul.
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Table A3. Amount of product groups by farming system (LW = live weight, DM = dry matter, PEP = Proof of Ecological
Performance). Groups with N in parenthesis were not used in the analysis.

Organic PEP

Product
Group Unit N Total Mean Median SD N Total Mean Median SD

Milk Kg 34 3,670,000 108,000 99,100 39,700 119 15,000,000 126,000 111,000 72,900
Cattle Kg LW 31 175,000 5650 5240 1960 112 1,500,000 13,400 7110 21,600

Pig fattening Kg LW 4 78,100 19,500 23,500 11,700 27 893,000 33,100 20,200 36,200
Cereals Kg DM 12 225,000 18,800 15,200 11,500 85 3,170,000 37,300 31,600 22,600
Beets Kg DM 19 826,000 43,500 45,400 20,000

Potatoes Kg DM 4 18,900 4720 1170 7390 25 419,000 16,700 8340 18,500
Vegetables Kg DM 6 59,800 9960 9010 7440 21 295,000 14,000 9700 15,800

Fruits Kg DM 4 5530 1380 1370 358 32 111,000 3470 1570 4840

In order to compare the environmental efficiency of different product groups, we
have to define a common functional unit that allows for the comparison of the different
products. Here we used the nutritional criteria “human digestible energy content in mega
joules [MJ]” (Appendix A, Table A4 for conversion factors) as outputs. Accordingly, the
resulting environmental efficiency relates the amount of human digestible energy to the
environmental impacts. As shown in Appendix A, Figure A6, the different product groups
differed up to an order of magnitude in their environmental efficiency. We found the lowest
average environmental efficiency for the animal product groups, followed by Vegetables
and Fruits, Potatoes, Beets, and Cereals. With regard to the low environmental efficiency of
the product group Vegetables and Fruits, we have to consider that the chosen functional
unit of energy does probably not reflect the main function of these product groups.

Table A4. Human digestible energy content of product groups. DM = Dry Matter, LW = Live Weight.

Product Group Units Energy Content

Milk (MJ/kg) 2.8
Fruits (MJ/kg DM) 13.4

Cereals (MJ/kg DM) 7.3
Cattle (MJ/kg LW) 6.1

Pig fattening (MJ/kg LW) 14.7
Vegetables (MJ/kg DM) 16.5

Beets (MJ/kg DM) 12.5
Potatoes (MJ/kg DM) 10.5

Table A5. Summary environmental efficiency scores (−).

Product
Group N Mean Median SD Skew

Milk 153 0.653 0.654 0.154 −0.623
Cattle 143 0.553 0.551 0.207 −0.134

Pig fattening 31 0.732 0.753 0.096 −0.437
Cereals 97 0.466 0.461 0.16 0.487
Beets 19 0.807 0.815 0.098 −0.388

Potatoes 29 0.701 0.767 0.195 −0.655
Vegetables 27 0.265 0.238 0.158 1.1

Fruits 36 0.372 0.354 0.245 0.0738

As shown in Appendix A, Figure A7, all impacts contribute to the environmental
efficiency score, albeit not all with the same strength. Notably “IPCC GWP 100a” has only
an effect on the environmental efficiency score of Milk. In order to qualify the effect of a
single (omitted) impact on the environmental efficiency scores, a “leave one out” analysis
was conducted. The environmental efficiency was calculated with N = one, two, three,
etc. impacts omitted. Each time all possible combinations of (9–N) impacts were used to
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calculate the environmental efficiency and a mean was recorded. As shown in Appendix A,
Figure A8, the number of used impacts has an effect on the environmental efficiency score.

Figure A5. Environmental impacts per produced amount (kg) for the different product groups and farming systems. Shown
are mean values and 95% confidence interval.

Figure A6. “Environmental efficiency”: Observations, product group means and standard errors and ANOVA results.
Significant differences in mean values between product groups are marked with distinct letters.
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Figure A7. For each subplot, the impact described in the column title was omitted. The values on the x-axis are the original
environmental efficiency scores, the value on the y-axis are the scores without the impact.

Figure A8. Environmental efficiency without N impacts. For each subplot, only N impacts were used. The values on the
x-axis are the original environmental efficiency scores, the value on the y-axis are the scores calculated using only a subset
of N impacts.
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Figure A9. Post-hoc test variance analysis: Product groups vs. environmental efficiency. Shown are the 95% confidence levels
for between product group differences in mean environmental efficiency scores. The abbreviations indicate contrasting
product groups: Ve = Vegetables, Pi = Pig Fattening, Mi = Milk, Fr = Fruits, Ce = Cereals, Be = Beets, Po = Potatoes,
Ca = Cattle.

Table A6. Summary one-way ANOVA environmental efficiency. The group column indicates
significant differences. (i.e., the same letter indicates non–significant differences in variance, see also
Appendix A, Figure A10).

Product Group Mean Environmental Efficiency Group

Milk 0.653 b
Cattle 0.553 c

Pig fattening 0.732 ab
Cereals 0.466 d
Beets 0.807 a

Potatoes 0.701 ab
Vegetables 0.265 e

Fruits 0.372 de

Figure A10. ANOVA Product Groups vs. environmental efficiency. The grey dots mark observations.
Black dots mark mean value, error bars mark standard error. Different letters indicate a difference of
means is significant at the 5% level.
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Table A7. Summary environmental efficiency scores grouped by production-region.

Production
Region

Product
Group N Mean Median SD

Valley Milk 78 0.694 0.693 0.122
Hill Milk 42 0.682 0.676 0.118

Mountain Milk 33 0.522 0.51 0.191
Valley Cattle 64 0.62 0.63 0.194

Hill Cattle 40 0.575 0.59 0.213
Mountain Cattle 39 0.418 0.414 0.155

Valley Pig fattening 20 0.744 0.763 0.0842
Hill Pig fattening 11 0.711 0.676 0.116

Valley Cereals 76 0.447 0.434 0.146
Hill Cereals 21 0.538 0.5 0.19

Valley Beets 19 0.807 0.815 0.098
Valley Potatoes 14 0.725 0.823 0.189

Hill Potatoes 15 0.678 0.728 0.204
Valley Vegetables 24 0.226 0.205 0.11

Hill Vegetables 3 0.578 0.615 0.151
Valley Fruits 22 0.404 0.404 0.247

Hill Fruits 12 0.35 0.357 0.249
Mountain Fruits 2 0.139 0.139 0.0135

Table A8. Summary two-way ANOVA environmental efficiency. The group column indicates significant differences (i.e.,
the same letter indicates non–significant differences in variance).

Contrast N Score SD Min Max Q25 Q50 Q75 Group

Milk:Valley 78 0.694 0.122 0.359 0.913 0.6 0.693 0.801 abcd
Milk:Hill 42 0.682 0.118 0.433 0.895 0.617 0.676 0.761 abcd

Milk:Mountain 33 0.522 0.191 0.21 0.88 0.401 0.51 0.622 de
Cattle:Valley 64 0.62 0.194 0.153 0.91 0.52 0.63 0.776 bcd

Cattle:Hill 40 0.575 0.213 0.0767 0.885 0.442 0.59 0.752 cde
Cattle:Mountain 39 0.418 0.155 0.159 0.841 0.309 0.414 0.543 e

Pig fattening:Valley 20 0.744 0.0842 0.595 0.876 0.724 0.763 0.803 ab
Pig fattening:Hill 11 0.711 0.116 0.575 0.839 0.607 0.676 0.828 abcd

Cereals:Valley 76 0.447 0.146 0.205 0.824 0.324 0.434 0.533 e
Cereals:Hill 21 0.538 0.19 0.169 0.85 0.454 0.5 0.655 cde
Beets:Valley 19 0.807 0.098 0.598 0.947 0.723 0.815 0.893 a

Potatoes:Valley 14 0.725 0.189 0.363 0.918 0.695 0.823 0.838 abc
Potatoes:Hill 15 0.678 0.204 0.336 0.955 0.514 0.728 0.854 abcd

Vegetables:Valley 24 0.226 0.11 0.0527 0.458 0.144 0.205 0.321 e
Vegetables:Hill 3 0.578 0.151 0.412 0.707 0.514 0.615 0.661 bcde

Fruits:Valley 22 0.404 0.247 0.0107 0.759 0.239 0.404 0.587 e
Fruits:Hill 12 0.35 0.249 0.0428 0.697 0.143 0.357 0.556 e

Fruits:Mountain 2 0.139 0.0135 0.129 0.148 0.134 0.139 0.144 e

Table A9. Summary environmental efficiency scores proof of ecological performance (PEP) and
Organic farming. The column “p.val” shows the p-value from an ANOVA.

Product
Group

Farming
System N Mean Median Sd p.Val

Milk Organic 34 0.686 0.725 0.149 0.159
Milk PEP 119 0.644 0.651 0.155 0.159

Cattle Organic 31 0.571 0.551 0.2 0.578
Cattle PEP 112 0.547 0.552 0.209 0.578

Cereals Organic 12 0.395 0.37 0.164 0.825
Cereals PEP 85 0.476 0.466 0.158 0.825
Potatoes Organic 4 0.721 0.759 0.151 0.102
Potatoes PEP 25 0.698 0.767 0.203 0.102

Vegetables Organic 6 0.281 0.259 0.2 0.787
Vegetables PEP 21 0.261 0.238 0.15 0.787
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Figure A11. Environmental efficiency for farms with multiple product groups (mixed farms). Farms, where multiple
product groups are larger than 33% of the average product group size (see Appendix A), were considered as ‘mixed’ or
‘specialized’ farms. Shown are only farms, which have the three product groups “Milk”, “Cattle breeding”, “Cereals”
simultaneously (N = 20). The x-axis shows the size of the product group in Livestock units for animal product groups and
hectares for crops. The grey area around the regression line marks the 95% confidence interval. Additionally, the regression
coefficient (R) and its p-value (p) are shown.

Figure A12. Environmental efficiency for farms with only one (dominant) product group. Farms with all other product
groups smaller than 33% of the average product group size (see Appendix A) were considered as ‘non-mixed’ or ‘specialized’
farms. The x-axis shows the size of the product group in Livestock units for animal product groups and hectares for crops.
The grey area around the regression line marks the 95% confidence interval. Additionally, the regression coefficient (R) and
its p-value (p) are shown.
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Table A10. Correlation coefficients (p-value) for mixed farms product group environmental efficiency.

Cattle Milk Cereals

Cattle 1 (0) 0.545 (0.013) 0.124 (0.601)
Milk 0.545 (0.013) 1 (0) −0.247 (0.295)

Cereals 0.124 (0.601) −0.247 (0.295) 1 (0)
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