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Abstract: Vegetable greenhouse operations are labour intensive. Automating some of these oper-
ations can save growers significant costs in an industry with low-profit margins. One of the most
demanding operations is harvesting. Harvesting a tomato is a complex operation due to the signifi-
cant clutter inherent to a greenhouse and the fragility of the object being grasped. Improving grasp
and motion planning requires setting up a realistic testbed or testing on-site, which is expensive and
time-limited to the growing season and specific environment. As such, it is important to develop a
simulation environment to model this operation to help test various strategies before field testing can
be conducted. Using the method presented in this work, 3D images are taken from a commercial
greenhouse and used to develop a physics-based realistic simulation environment. The environment
is then used to simulate a picking operation using various path planning algorithms to investigate
the best algorithm to use in this case. The results show that this environment can be used to explore
the best approaches to automate harvesting solutions in a vegetable greenhouse environment.

Keywords: greenhouse; simulation; trajectory; path; plan; tomato; automation; harvesting

1. Introduction

Greenhouses are responsible for a significant amount of modern crop production
worldwide. In Canada, the vegetable greenhouse industry was responsible for almost five
hundred million kilograms of tomato harvest in 2020 alone [1], resulting in a farm gate
value of $116 million. Historically in Canada, there has been a greenhouse labour shortage,
as there were 2800 unfilled jobs in 2014, costing the horticultural industry approximately
$100 million [2]. Automating the harvesting process can reduce labour cost and eliminate
shortages. However, despite significant interest in the research community and funding
agencies, a commercially viable harvesting robot for tomato greenhouses is not available.
The problem has both technical and cost challenges making it difficult to have one system
that can be deployed in different countries. Developing such a system is also expensive
since testing various design iterations requires access to purposely built field facilities or
commercial greenhouses during the growing season. We present one scenario where a
robot is attempting to pick a tomato on a vine. Various path planning approaches can
be tested and optimized before real-world testing. Within the Open Motion Planning
Library (OMPL), there are many types of path planners available for testing. Some of the
planners include randomized planners [3], potential-field planners [4], and search-based
planners [5]. Some algorithms offer the ability to optimize trajectories with respect to
smoothness [6], which is not offered with classical sampling-based approaches. Many of
these planners are deviations from two very old planners, PRM [7], and RRT [8]. Many
others, however, are standalone algorithms, such as KPIECE1 [9], PDST [10], and SBL [11].
Motion planning today is quite robust compared to what it was in the 1980s and 1990s,
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when planners were barely able to compute collision-free paths for objects translating and
rotating in 2D workspaces [12].

To address this challenge, there have been several attempts to develop a robotics
simulation environment for various agriculture projects, including greenhouses. The
CROPS (Clever Robots for Crops) project [13] used a simulation in Gazebo to evaluate
the robot without the requirement of taking the actual robot into the field. Nguyen et al.
developed a framework of the motion planning task for the CROPS robot [14]. He used an
apple tree simulation environment with only the tree trunk and branches considered as
obstacles. Shamshiri et al. [15] provide a review of various simulation software that can be
used for developing simulation environments for agriculture applications. Shamshiri et
al. [16] created a simulated environment that could be used for the harvesting of vegetables.
A replica of the different manipulators, sensors, and a sweet pepper plant was included
in this simulation. In all of the previous efforts, artificial models of plants were used in
the simulation.

While these models can be adequate for some operations, in this paper, we attempt to
bridge the gap between the real-world environment and the simulation environment by
including data obtained from 3D images of a commercial greenhouse. This approach has
been proposed for mobile robotics applications [17] but not for greenhouse environments.
Data acquired from an operational greenhouse environment will be processed and imported
into a robotics simulator and tuned to enable testing of various harvesting operations. We
present one scenario where a robot is attempting to pick a tomato on a vine. Various path
planning approaches can be tested and optimized before real-world testing. Furthermore,
this integration between the physical and simulation environment can be continuous,
enabling testing of the harvesting operation during the entire growth season with various
levels of clutter and occlusion. The data can also be used for the prediction of yield and
optimizing greenhouse operations. The contributions of this paper are:

• Present a method to create a realistic simulation of vegetable greenhouse environments
that include various obstacles and clutter. The method integrates real-world data into
a physics-based robotics simulation software.

• Demonstrate how to use this environment to test robotics harvesting operations.

2. Materials and Methods
2.1. Robotics Simulation Platform

There are multiple different simulators and virtual environments that can be used for
testing designs. Each simulator has its own set of merits and limitations, which may cause
one type of simulator to be more suited to a specific task than the others. A comparative
paper that addresses this issue can be seen in [15], where simulators VREP, Gazebo, and
ARGoS are compared against each other based on their respective performances within
similar scenes. Small and large scenes were compared with a changing number of robots.
Of the three simulations, VREP achieved the slowest simulation speed and the highest
memory usage. ARGoS had the fastest simulation speed for small scenes, but was taken
over by Gazebo as the scene size increased. However, despite V-REP’s lacking simulation
speed, carefully setting simulation parameters and optimizing 3D models can drastically
increase its performance. This is also shown in [18], where a feature comparison is done
between the V-REP, Gazebo, and ARGoS simulators. With respect to the features available
in the simulators, V-REP has the largest collection of features such as a scene editor, 3D
model importing, and mesh manipulation. A significant disadvantage of V-REP is its
inability to define a scene in an XML file. This would allow multiple experiments with
varying parameter values to be run automatically. While V-REP is the most complex of the
three simulators, it offers many features which are not available otherwise.

2.2. Three-Dimensional Mapping of a Vegetable Greenhouse

Figure 1 provides a brief overview of the methodology discussed in this section, as
well as the Simulation Environment section.
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Figure 1. Environment development pipeline.

In order to adequately create a simulation that mimics a greenhouse environment, the
environment should reflect actual data from a greenhouse. Figure 2 shows an image taken
from a commercial tomato greenhouse in Ontario, Canada. This represents a sample of the
environment we wish to mimic in the simulation environment.

Figure 2. An image from a commercial tomato greenhouse.

To enable simulation of a robotic picking operations, it is important to have a 3D map
of the environment. To accomplish this task, images were collected using a three-camera
system mounted on a tripod placed approximately 50 cm along the normal to each plant.
Images were taken of the plant side along each row. The tripod was manually moved along
the greenhouse rows, and images were collected approximately every 10 cm. An example
of the collected images is seen in Figure 2. This process was repeated for two greenhouse
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rows. For each row, 150 images were captured for a total of 300 images. These images
represent part of each row covering only the first 60 plants/row.

2.2.1. RGB-D Image Capture System

The RGB-D image capture system included three Intel® RealSense™ D435 cameras
(Intel, Santa Clara, CA, USA) mounted on a tripod along with a laptop for collecting and
storing the images. This camera has a colour camera sensor and two infrared sensors. The
latter was used to detect the depth using stereo vision. The cameras were placed on a metal
beam 25 cm apart, as shown in Figure 3. The outer two cameras were angled 25◦ toward
the centre in order to obtain a more complete 3D view of the plants.

Figure 3. Setup.

2.2.2. RGB-D Image Processing

The image processing algorithm was developed using Python and the open source
OpenCV [19] and Open3D [20] libraries. The purpose of the algorithm is to combine the
3D data from the Realsense cameras to generate individual point clouds. Then all the point
clouds from successive images are combined in order to generate a combined 3D point
cloud of the entire row of plants.

The first step is to combine the 3D data from the different cameras into a single
coordinate frame. Due to technical issues, we were not able to utilize the data from the
camera on the right, and therefore only combined the data from the centre and left cameras.
We chose the centre camera as the origin, and transformed the data from the left camera
into this coordinate frame. As the cameras are at a fixed angle and distance relative to one
another, this was possible using a constant transformation matrix.

Once the data from multiple cameras were combined, the next step was to stitch
the successive images obtained as the cameras were moving along the row to create a
continuous image of the greenhouse row. The RGB processing was performed using the
images from the centre camera as it stays parallel to the row as the tripod moves. The
process starts with removing the background plants by identifying regions in the depth
image that are more than 60 cm from the camera. This background removal allows us
to focus on the nearest vines and tomatoes. A sample of two successive images with the
background removed is shown in Figure 4.
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(a)

(b)

Figure 4. Two images of the row taken approximately 10 cm apart with backgrounds removed on the right. (a) First image.
(b) Second image.

Next, we shift one of the images to attempt to match the foreground with the other
image. The match is based only on the general shape of the foreground by setting the
entire foreground white and the background black. Next, we gradually shift the first
image up a few pixels at a time and subtract the images from one another until we find
the pixel difference that produces the least difference between the images. An example of
the comparison after shifting the first image is shown in Figure 5, where the blue and red
images combine to show the shared purple regions between the images. This is the point
at which the minimum pixel difference is achieved.

(a) (b)

Figure 5. Cont.
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(c)

Figure 5. Two images from different locations shifted to maximize overlapping areas. The purple
regions represent the overlap. (a) First image. (b) Second image. (c) Both images overlaid.

Once the shared regions in the successive images have been identified, we further
refine the process using additional 3D data. For each image, we examine all of the shared
pixels we identified from the RGB and determine their depth values using the aligned
depth image. Using the depth value and the camera intrinsics, we can determine the XYZ
position of each pixel relative to the camera coordinate frame. Using the shared pixels in
successive images, we can determine the XYZ distance each pixel has moved since the
last image and, therefore, determine the distance the camera has moved. While we know
the tripod was manually moved approximately 10 cm along the row for each image, this
provides us with a more accurate distance of the camera movement.

Once the camera movement is known, we can shift the 3D point clouds so that they
are roughly aligned. As there may have also been some small changes in the angle of the
cameras or distance from the plants, we can further refine the registration of the successive
point clouds using iterative closest point (ICP). ICP is used here to minimize the distance
between points in two point clouds. More information regarding ICP can be found in [21].
We use ICP implemented in the Python Open3D library to do so. An image of the two
point clouds before and after using ICP is shown in Figure 6.

(a) (b)

Figure 6. Images of the two point clouds before applying ICP and after applying ICP. (a) Before ICP.
(b) After ICP.

The RGB and 3D processing stages are repeated for all the available images to create a
complete 3D point cloud of the row. In some cases, the RGB or 3D processing may fail to
properly register two successive images together. In this case, the second image is skipped
over, and we attempt to register the third image with the first image in the succession.

Once all of the successive images of the greenhouse row have been combined, some
postprocessing is performed to simplify the point cloud. We use the radius outlier removal
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function in Open3D [20] to remove points that have less than 200 neighbours in a 5 cm
radius. This removes any points that do not have a high degree of overlap as they may
have failed to properly register in the RGB processing and ICP stages. A sample point
cloud using 50 successive images before and after the outlier removal is shown in Figure 7.

(a)

(b)

Figure 7. Images of a point cloud using 50 successive images of the greenhouse row before and after
applying outlier removal. (a) Point cloud created using 50 successive images. The points from each
image are displayed in a random colour. (b) Point cloud after outlier removal. Points are colourized
based on distance from the camera, where blue-green points are closest to the camera (approximately
0.3 m), while dark blue points are farthest away (approximately 0.7 m).

2.3. Simulation Environment

To import the point cloud into the robotics simulation environment, they are first
converted into a triangular mesh. The mesh is then imported into CoppeliaSim [22] where
it was then decomposed into cylinders and spheres, representing branches and tomatoes.
The positions of the branches and tomatoes were determined using the remainder of the
pointcloud image shown in Figure 7.

The point cloud was originally composed of 295,490 points by default; at this density it
was computationally taxing to convert the point cloud into a triangular mesh. Meshlab [23]
was used to complete the transition from point cloud to triangular mesh. It takes over
an hour to convert the point cloud into a mesh. Beyond the processing time, it was
effectively impossible to use within CoppeliaSim due to the complexity of the mesh,
having 398,571 faces. Simplifying the mesh to approximately 10,000 points allowed for the
physical features to be retained while simultaneously removing the issue of computational
complexity. Using 10,000 points, the point cloud was converted into a triangular mesh
that had 17,967 faces. It was then imported into CoppeliaSim to be converted into simple
shapes that would represent the branches and tomatoes present on the vine. Cylinders
were extracted from the mesh to represent branches and spheres were extracted to represent
tomatoes. The provided greenhouse photos were used as reference to ensure the amount
of tomatoes per bunch was accurate to reality. Using these images, the proportional sizes
of the tomatoes were maintained. The branches were also sized using the provided set
of images. Once all the tomatoes and environment obstacles had been created as simple
shapes, the mesh was then able to be used with a simulated robotic arm. Figure 8 shows
the entirety of the simulated environment.
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Figure 8. Simulation environment.

3. Results

To provide an example of how the simulation environment can be used in developing
robotics harvesting systems, a robotics picking operation is simulated. The goal of the
operation is to move the robot’s end effector from its initial position to the position of the
grasping target without making contact with any obstacles on the way. The grasping target
can be changed by simply moving the position of the target in the simulation. Before the
simulation begins working, two things have to be set for the simulator to continue. The
first step is to create handles for every object within the simulation. A handle is a string
that will refer to a respective object within the simulation. A handle must be obtained for
every part of the robot and anything else that is manipulated in the simulation. After this,
the robot is set to its initial position before each trial. This initial position can be easily
changed if required, but currently the joint values are all set to 0, which corresponds to an
initial configuration as seen in Figure 9. The red line is a straight line from the tip to the
grasping target.

Figure 9. Robot initial position.

At this point, information regarding the target’s position is retrieved. A randomized
forward kinematics search for manipulator configurations which fall within a specified
threshold of the end effector’s position is conducted. If any configurations found are
very similar to previously found configurations, the solution is discarded. Similarity is
determined by whether or not each joint value is within 0.01 radians of the respective joint
value in previously found solutions. From the randomized search, many configurations
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will be too far from the target to successfully compute the inverse kinematics, which is why
a threshold is needed. This threshold is the maximum distance between the tip and target,
indicating when inverse kinematics should attempt to bring the tip to the target. The larger
the threshold, the longer the computation time. Conversely, if the threshold is too small,
the subset of solutions will also be very small. The program recommends a value of 0.65,
but the optimal value is going to be influenced by the robot and the environment.

With an appropriate value selected for the threshold, the simulation is able to de-
termine a set of acceptable final configurations. The planner will have 60 different final
configurations from this step to choose from. This step is where the path planning algo-
rithms are used and where the majority of the computation time is consumed. The planner
used at this step is user-defined; there are 25 different planners available in the OMPL
library. At this point, the planner is told what the initial and final configurations are, and
collision pairs are defined within the simulation, which defines obstacles and tells the
planner what needs to be avoided in the simulation. It is at this point the path planning
algorithm computes the path to move the robot’s end effector from the initial position to
the target position. Figure 10 below shows the robot after the path planning is completed
and the robot is at its target configuration. The pink line represents the path the end effector
took to reach the final configuration.

Figure 10. Robot final position.

From the method shown in this paper, we can create a realistic greenhouse environ-
ment that captures some of the real world greenhouse complexity. Regions in the image
set that are greater than 60 centimeters from the camera are discarded, removing back-
ground noise and allowing path planning algorithms to focus on avoiding obstacles that
are actually problematic for the grasp plan. Grasp planning and obstacle avoidance can be
studied and improved through the use of real greenhouse data. The environment created
from the greenhouse data naturally contains tomatoes that are easy to grasp, some that are
hard, and some that are impossible without manipulating the surrounding clutter. This has
resulted in a much more realistic complexity distribution than manually placed tomatoes
and obstacles. Figure 11 shows an example of a simple grasping scenario. No obstacles
exist between the robot and the grasping target.
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Figure 11. Realistic simulated environment.

We conducted 100 harvesting experiments for three different path planning algo-
rithms. In these experiments, the average path length, motion time, computation time, and
frequency of failed trials were tracked. These results are displayed in Table 1.

Table 1. Simple grasping target.

Planner Avg. Path
Length (m) Avg. Move Time (s) Avg. Comp.

Time (s) Failed Trials

BiTRRT [24] 1.34 4.48 4.57 0
EST [25] 0.97 4.08 2.16 1

LazyRRT [8,26] 1.02 4.29 0.65 0

An example solution for this path planning task can be seen in Figure 10. Work such
as this makes it easier to see which of the path planners are best inside a greenhouse
environment. The highest performing planner may change depending on the level of
clutter surrounding a grasping target, so the environment can be used to test more difficult
harvesting scenarios to see how clutter affects the results.

4. Discussion

While the results show how this realistic simulated environment can be used to exper-
iment with picking operation in a greenhouse, the accuracy of the simulation environment
can be further improved. The image capturing system should be automated to ensure that
coordinate frames of all cameras are calibrated relative to a base coordinate frame. That will
enhance accuracy of stitching of various images. This could also allow true 3D mapping of
the plants by taking images from different sides. A second improvement is to automate the
object recognition system to enable recognition of various plant structures such as leaves,
tomatoes, and stems. There has been significant work undertaken in this area using deep
learning techniques [27]. These two improvements will enable automated capturing and
converting of greenhouse environments using the pipeline demonstrated in this paper. The
entire system can then be moved to enable harvesting operation in a real greenhouse by
deploying the same 3D mapping technology for real-time harvesting operation.

A realistic simulation environment can also be very effective when used to develop
various path planning algorithms. This paper provided examples of three different types
of path planning. Additional testing can be conducted for other path planning such as the
ones presented by Brent et al. [28]. Without a simulation, gathering results such as those
shown in Table 1 would require a visit to a greenhouse with a robotics arm equipped with a
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suitable gripper and setting up the entire platform in the greenhouse. This is an expensive
and time-consuming process, which can be avoided by simulating the environments that
are found at the greenhouse.

Aside from the significant monetary value of developing robotic harvesting solutions,
using this simulation environment can have a significant safety benefit for greenhouse
employees. The workers can be added to the simulation and various scenarios can be
simulated to test how to avoid safety problems with robots and workers that are sharing
the same workspace. For example, collaborative robots arms, which include built-in
safety sensors, can be used to enhance safety. However, these robots operate at a different
speed than traditional robotic arms. This would change the role of many greenhouse
workers, as many would have to work alongside the robots. Human–robot interaction is
currently being studied and rapidly improved; sufficient advancement in this field would
allow humans and robots to safely work together, resulting in improved productivity
and cost [29]. Additional sensors can also be added to the simulation environment to
investigate best practices for a safe workplace. Finally, automation of various tasks will
require different roles for workers. One can use the simulation environment to investigate
how to optimize operations leading to less waste and higher profits.

5. Conclusions

This paper has presented a method for creating realistic simulations of real vegetable
greenhouse environments and demonstrated how to use this environment to simulate
a robotics picking operation. This work can be used as an experimentation platform
to test path planning algorithms. Any other considerations the user may have before
implementation into a greenhouse may also be tested using this environment. We plan to
extend this work by including automated tools for recognition of various plant features,
such as fruits and leaves, so that they can be automatically imported into the simulation
environment. This will enable testing of robotics systems throughout the growing season.
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