
agronomy

Article

Genome-Wide Identification, Expression Profile, and
Alternative Splicing Analysis of CAMTA Family Genes in
Cucumber (Cucumis sativus L.)

Rong Gao, Yanyan Luo, Fahong Yun, Xuetong Wu, Peng Wang and Weibiao Liao *

����������
�������

Citation: Gao, R.; Luo, Y.; Yun, F.;

Wu, X.; Wang, P.; Liao, W.

Genome-Wide Identification,

Expression Profile, and Alternative

Splicing Analysis of CAMTA Family

Genes in Cucumber (Cucumis sativus

L.). Agronomy 2021, 11, 1827.

https://doi.org/10.3390/

agronomy11091827

Academic Editors: Sara Sestili,

Nadia Ficcadenti and Mehtap Yıldız

Received: 26 August 2021

Accepted: 9 September 2021

Published: 12 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District,
Lanzhou 730070, China; gaorong1005@gmail.com (R.G.); lyy50626@gmail.com (Y.L.);
y1976168201@gmail.com (F.Y.); a2209759267@gmail.com (X.W.); pengsir0828@gmail.com (P.W.)
* Correspondence: liaowb@gsau.edu.cn; Tel.: +138-9328-7942

Abstract: The calmodulin-binding transcription activator (CAMTA), as one of the most distinctive
families of transcription factors, plays an important role in plant growth and development and in the
stress response. However, it is currently unknown whether CAMTA exists in cucumbers and what
its function is. In this study, we first identified four CAMTA genes in the cucumber genome using
a genome-wide search method. Subsequently, we analyzed their physical and chemical properties,
gene structure, protein domains, and phylogenetic relationships. The results show that the structure
of CsCAMTAs is similar to that of other plants, and a phylogenetic analysis divides them into three
groups. The analysis of cis-acting elements shows that most CsCAMTAs contain a variety of hormones
and stress-related elements. The RT-PCR analysis shows that CsCAMTAs have different expression
levels in different tissues and can be induced by IAA, ABA, MeJA, NaCl, and PEG. Finally, we
analyzed the expression pattern of CsCAMTAs’ alternative spliceosomes under salt and drought
stress. The results show that the expression levels of the different spliceosomes are affected by the
type of stress and the duration of stress. These data indicate that CsCAMTAs participate in growth
and development and in the stress response in cucumbers, a finding which lays the foundation for
future CsCAMTAs’ functional research.

Keywords: cucumber; CAMTA; genome-wide characterization; function analysis

1. Introduction

As one of the most important secondary messengers in plant signal transmission [1],
Ca2+ signals play an important role in plant growth, development, and response to external
stimuli [2]. External environmental stimuli can cause spatial and temporal changes in
cytosolic-free Ca2+ concentration ((Ca2+) cyt), thereby stimulating a series of downstream
reactions. Subsequently, calmodulin (CaM), calcium-dependent protein kinase (CDPK)
and calcineurin B-like protein (CBL) that are present in the cell bind to Ca2+ and convert
extracellular signals into intracellular signals [3]. In the downstream of the CaM signaling
pathway, CaM can combine with a variety of transcription factors (TFs) to cause highly
specific responses. The calmodulin-binding transcription activator (CAMTA), as one of
them, exists widely in organisms and plays a very important role [4].

CAMTAs, also named signal responsive (SR) proteins or ethylene-induced CaM-
binding (EICBP) proteins, are the maximal and most distinctive TF family, which can be
regulated by CaM [4]. Yang and Poovaiah (2000) first reported CAMTAs as a non-specific
DNA-binding active protein. CAMTAs have several conserved functional domains, includ-
ing a unique DNA binding domain (CG-1), a transcription-associated immuno globulin-like
domain (TIG), an ankyrin repeats (ANK), an isoleucine glutamine domain (IQ), and a Ca2+

dependent CaM binding domain (CaMBD) [5,6]. So far, the existence of CAMTA has been
identified in many eukaryotes, including Arabidopsis [5], rice [7], tomatoes [8], tobacco [9],
maize [10], soybeans [11], strawberries [12], wheat [13], and flax [14].
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The important role of CAMTAs in plant growth, development, and resistance to biotic
and abiotic stresses is gradually being explored. Yuan et al. [15] found that the expres-
sion of auxin response factor 18 (ARF18) and DWARF4 (DWF4), positively correlated
with plant growth mediated by auxin and brassinosteroid (BR), was inhibited in the At-
CAMTA3/AtSR1 mutant. This indicates that AtCAMTA3/AtSR1 may participate in plant
growth and development through auxin- and BR-mediated signaling pathways. In addi-
tion, AtCAMTA3 was found to play an important role in resisting pathogen invasion [16].
Under low temperature conditions, AtCAMTA3 could also improve the freezing resistance
of Arabidopsis by binding to the conserved motif 2 (CM2) and positively regulate the expres-
sion of CBF2 (cold-induced gene) [17]. Under drought stress, GmCAMTA12 regulated the
drought tolerance mechanism of Arabidopsis and soybeans by producing an ABA response
and interacting with multiple stress response genes [18]. Aluminum (Al) treatment could
induce AtCAMTA2 to activate the expression of Al-activated malate transporter 1 (ALMT1),
thereby regulating the tolerance mechanism of Arabidopsis to toxic metal [19]. CAMTA6
could directly or indirectly regulate the expression of many salt-responsive genes in Ara-
bidopsis germinating seeds, thereby regulating the salt stress response [20]. Alternative
splicing (AS) seems to play an important role in the functioning of CAMTA family members.
The study found that PtCAMTAs have a variety of AS forms, and the expression levels of
different alternative splicing forms under cold stress are also different, which indicates that
AS may play a key role in responding to environmental stimuli [21].

Cucumber is one of the most important economic crops in the world, and it plays a
vital role in providing people with rich nutrients. As the most important transcription
factor, CAMTAs have still not been reported in cucumber. In the current study, we identi-
fied four CAMTA gene family members in the whole genome sequence of the cucumber,
and analyzed their chromosomal location, physical and chemical properties, subcellular
location, gene structure, protein structure, and phylogenetic tree. Regarding the expression
pattern of CsCAMTAs, we determined the expression level of CsCAMTAs in different tis-
sues, under different stress and different hormone treatments. We also analyzed the AS
forms of CsCAMTAs under stress. The objective of this study is to lay the foundation for
future research on the role of CAMTAs in cucumber growth, development, and resistance
to stress.

2. Materials and Methods
2.1. Identification of the CAMTA Family Members in Cucumber

First, the cucumber genome sequence and protein sequence information file were
downloaded from the National Center for Biotechnology Information (NCBI) (https://
www.ncbi.nlm.nih.gov/; accessed on 12 February 2021) database. The hidden Markov
model (HMM) of the calmodulin-binding transcription activator was downloaded from the
plant genome database (https://phytozome.jgi.doe.gov/; accessed on 20 February 2021).
Second, using the HMM model as a template, the hmmsearch function of HMMER3.0 was
used to compare all protein sequences of the cucumber to obtain the target protein. To
determine further whether the identified protein belongs to the CAMTA gene family, we
used SMART (http://smart.embl-heidelberg.de/; accessed on 20 February 2021) to analyze
the protein domain and deleted the ones that did not contain GC-1, ANK repeats, and
the IQ domains protein. Finally, we obtained the members of the cucumber CAMTA gene
family, and used Expasy (https://web.expasy.org/protparam/; accessed on 18 March 2021)
to analyze the physical and chemical properties of these genes. The subcellular localization
of CsCAMTAs’ protein is predicted using the online software PlantmPLoc (http://www.
csbio.sjtu.edu.cn/bioinf/plant-multi/; accessed on 18 March 2021) [22].

2.2. Gene Structure and Protein Conserved Domain Analysis

The exon-intron structure information of the CsCAMTA genes was extracted from
the genome gff3 annotation file through Tbtools software. This information is visualized
through the Gene Structure Display Server (GSDS v2.0; http://gsds.gao-lab.org/; accessed

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://phytozome.jgi.doe.gov/
http://smart.embl-heidelberg.de/
https://web.expasy.org/protparam/
http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
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on 2 April 2021) [23]. We used SMART (http://smart.embl-heidelberg.de/; accessed
on 15 April 2021) to analyze the protein domain and subsequently used Illustrator for
BioSequence (IBS) software to draw a schematic diagram of the protein domain.

2.3. Phylogenetic Tree and Cis-Acting Elements Analysis

The protein sequences of Arabidopsis, tomatoes, rice, and soybeans were obtained from
the Arabidopsis Information Resource (TAIR), the plant genome resources (Phytozome),
and NCBI. The multiple sequence alignment of proteins was performed by ClustalW. We
used the Neighbor-joining (NJ) method of MEGA-X, set the bootstrap replicates value
to 1000, and constructed a phylogenetic tree of 39 CAMTA protein sequences [24]. The
EvolView tool (http://www.evolgenius.info; accessed on 10 May 2021) was used to draw
the phylogenetic tree [25]. The up-stream 2000 bp DNA sequences of CsCAMTA genes were
obtained from the cucumber genome sequence, and cis-acting elements in the promoter
region were analyzed in the PlantCARE database (http://bioinformatics.psb.ugent.be/
webtools/plantcare/html/; accessed on 19 May 2021) [26].

2.4. Transcript Analysis of CsCAMTA Genes in Different Plant Tissues

The expression data of the cucumber CAMTA gene in different periods and different
organs were downloaded from the Short Read Archive (SRA) database of NCBI (accession
number: SRP071224), and RNA-Seq data of the cucumber was analyzed in reference to the
method of Wei et al. [27]. The expression data were converted with Log (RPKM + 1) to
calculate gene expression levels. The heat map of the expression profile of CsCAMTAs was
produced by using HemI [28].

2.5. Transcript Analysis of CsCAMTA Genes under Different Abiotic Stresses and Hormones
2.5.1. Plant Materials and Treatments

Cucumber seeds (‘Chinese long’ inbred line 9930) were provided by Shenzhen Ge-
nomics Institute, Chinese Academy of Agricultural Sciences. We soaked the seeds in
water at 55 ◦C for 15 min, then placed them on damp filter paper where they germinated
overnight in the incubator at 25 ◦C. After the cotyledons were fully expanded, the seedlings
were moved to the hydroponic box for cultivation. Yamazaki cucumber nutrient solu-
tion was used and replaced every three days. The environment of the growth room was
controlled to have a photoperiod of 14/10 h (light/dark), an air temperature of 28/18 ◦C
(day/night), and a light intensity of 200 µmol.m−2s−1. Stress treatments were carried out
at the two-leaf seedling stage including PEG6000 (15%), NaCl (150 mM). We collected leaf
samples for RT-PCR experiments after treating for 0, 3, 6, 12, 24, and 48 h. [18]. During
the hormone treatment, we transferred the two-leaf stage seedlings to a nutrition solution
containing IAA (10 µM), ABA (100 µmol/L), and methyl (Me)-JA (100 µmol/L), and then
collected leaves at 0, 3, 6, 12, 24, 48 h for RT-PCR experiments [21]. Collected samples were
immediately frozen in liquid nitrogen and stored at −80 ◦C for analysis.

2.5.2. RNA Extraction and Quantitative RT-PCR

Total RNA was isolated using the MiniBEST Plant RNA Extraction Kit (TaKaRa, Dalian,
China). The FastQuant First Strand cDNA Synthesis Kit (Tiangen, Beijing, China) was used
to synthesize cDNA according to the manufacturer’s protocol. RT-PCR was performed
using the SuperReal PreMix Plus kit (TIANGEN, Beijing, China) and Roche LightCycler
instrument. There were three biological replicates per treatment. The primers used for
RT-PCR were designed using prime5 software, as shown in Table S1. The cucumber ACTIN
gene was used to normalize relative expression levels. The 2−∆∆Ct method was used to
analyze the data.

http://smart.embl-heidelberg.de/
http://www.evolgenius.info
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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3. Results
3.1. Identification and Characterization of Calmodulin-Binding Transcription Activator (CAMTA)
Genes in Cucumber

Based on the completed genome sequences, using biological information technology
to analyze and identify the cucumber genome, we found that there are four CAMTA
gene family members in the cucumber. According to the degree of similarity with the
aligned sequences, they were named CsCAMTA1–4 in order (Table 1). The CsCAMTA genes
distribute on Chr-4, -6, -7, and the amino acid length varies from 916 (CsCAMTA4) to 1102
(CsCAMTA1). Then, we analyzed their physicochemical properties and found that the pI of
CsCAMTAs all concentrate between 5.59 (CsCAMTA1) and –7.59 (CsCAMTA2). CsCAMTA1
and CsCAMTA3 are slightly acidic, while CsCAMTA2 and CsCAMTA4 are weakly alkaline.
Due to their grand average of hydropathicity being less than 0 and the instability index
being greater than 75, they belong to hydrophilic labile proteins. In addition, subcellular
localization prediction results showed that all CsCAMTAs exist in the nucleus.

Table 1. Characteristics of CAMTA transcription factors in cucumber.

Gene Gene ID Chr. No. Chr. Location Length (aa) Mol. Wt.
(kDa) pI Instability

Index
Grand Average of

Hydropathicity
Subcellular
Localization

CsCAMTA1 CsaV3_7G006500 7 4030549–
4044110 1102aa 122,677.8 5.59 75.30 −0.452 Nucleus.

CsCAMTA2 CsaV3_4G025820 4 15185970–
15195755 943aa 105,027.08 7.59 81.28 −0.422 Nucleus.

CsCAMTA3 CsaV3_6G008250 6 6628761–
6640726 962aa 107,532.40 5.83 77.58 −0.491 Nucleus.

CsCAMTA4 CsaV3_6G022470 6 15401167–
15413107 916aa 104,047.12 7.41 86.12 −0.384 Nucleus.

Note: pI, isoelectric point. Mol. Wt., molecular weight.

3.2. Genomic Structure and Protein Domain Analysis of CsCAMTA Members

GSDS, a gene structure analysis software, was used to analyze the structure of
CsCAMTA members, and we found that the number of introns in CsCAMTAs is between 11
and 12 (Figure 1). Among them, the intron number of CsCAMTA1 and CsCAMTA3 is 12;
the intron number of CsCAMTA2 and CsCAMTA4 is 11. The gene structures of different
members are relatively similar.
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exons are indicated by thick orange boxes; the introns are indicated by black lines.

For a better understanding of these genes, we analyzed the structure of the proteins
encoded by these genes. The results show that the four CsCAMTA members all contain a CG-
1 DNA binding domain (Pfam03859), ankyrin repeats (Pfam12796), IQ motifs (Pfam00612),
and CAMBD (Figure 2). According to the existence of TIG (Pfam01833), CsCAMTAs can be
divided into two groups. CsCAMTA1, CsCAMTA3, and CsCAMTA4 belong to one group,
while CsCAMTA2 belongs to another group, suggesting that there are differences in the
types of functional domains of CsCAMTAs, implying that there may be differences in their
functions. The number of ANK domains and IQ motifs in CsCAMTAs varies from 1 to 3.
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CaMBD of CsCAMTAs with 6 AtCAMTAs. The full name of the abbreviation: CG-1, sequence-specific DNA-binding domain;
TIG, transcription-associated immunoglobulin-like domain; ANK, ankyrin repeat domain; IQ, isoleucine glutamine motif;
CaMBD, calmodulin-binding domain.

3.3. Phylogenetic Analysis of CAMTA Family Genes

To understand the evolutionary history or genetic relationship of CsCAMTA members
better, we used the NJ algorithm to construct a phylogenetic tree among Arabidopsis,
tomatoes, rice, soybeans, and cucumbers. As shown in Figure 3, 39 CAMTAs (6 AtCAMTAs,
7 SlSRs, 7 OsCAMTAs, 15 GmCAMTAs, 4 CsCAMTAs) are divided into three groups. Among
them, CsCAMTA1 and CsCAMTA2 belong to group A and have the highest homology with
GmCAMTA5 and GmCAMTA7. CsCAMTA4 belongs to group B and has a closer relationship
with GmCAMTA8. CsCAMTA3 is in group C and has upper homology with AtCAMTA4. It
can be seen from the entire evolutionary tree that CsCAMTAs have the highest homology
with GmCAMTAs, relatively low homology with SlSRs and AtCAMTAs, and the lowest
homology with OsCAMTAs.
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3.4. Cis-Acting Regulatory Elements in the Promoters of the CsCAMTAs

To explore the possible response mechanism of CsCAMTAs to various external stimuli,
we used the Plant CARE database to analyze the 2000 bp, cis-acting element concentrated
distribution region of four CsCAMTA genes’ promoter regions. The results show that the
predicted cis-acting elements can be divided into three categories: light signal response,
hormone signal response, and abiotic stress response (Table 2). In this region, CsCAMTA
members contain 6–12 cis-acting elements (Figure 4). Among them, anaerobic responsive
element (ARE) exists in all four CsCAMTAs. It suggests that CsCAMTAs may function when
an anaerobic reaction occurs. The abscisic acid (ABA)-response element (ABRE), auxin
response element (TGA-element), and MeJA-responsive element (CGTCA-motif) are all
present in CsCAMTA1, indicating that it may be sensitive to hormones. CsCAMTA3 has
a drought response element (MBS), low-temperature-response element (LTR), and ARE,
indicating that it plays a crucial role in the response to abiotic stress.

Table 2. Summary of cis-acting elements of CsCAMTA genes.

Element Sequence Description

G-box CACGTC cis-acting regulatory element involved in light responsiveness
W-box TTGACC cis-acting regulatory element involved in light responsiveness

Circadian CAAAGATATC cis-acting regulatory element involved in circadian control
TGA-box TGACGTAA auxin-responsive element

ABRE (C/T)ACGTG(G/T) cis-acting element involved in the abscisic acid responsiveness
TGACG-motif TGACG cis-acting regulatory element involved in the MeJA-responsiveness
CGTCA-motif CGTCA cis-acting regulatory element involved in the MeJA-responsiveness
AuxRR-core GGTCCAT cis-acting regulatory element involved in auxin responsiveness

MBS CAACTG MYB binding site involved in drought-inducibility
LTR CCGAAA cis-acting element involved in low-temperature responsiveness
ARE AAACCA cis-acting regulatory element essential for the anaerobic induction
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and numbers of the grid indicate the numbers of different Cis-acting regulatory elements in these
CsCAMTA genes.

3.5. Expression Profiles Analysis of CsCAMTA Genes
3.5.1. Tissue-Specific Expression Patterns of the CsCAMTA Genes

To determine the tissue-specific expression pattern of CsCAMTAs, we analyzed the
expression levels of CsCAMTAs in different tissues at different growth stages of the cucum-
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ber. The results show that the four CsCAMTA genes express in various tissues at different
levels (Figure 5; FPKM > 0). Among them, CsCAMTA1, CsCAMTA3, and CsCAMTA4 are
constitutive expressions (FPKM > 1 in all samples). CsCAMTA1 has the highest expres-
sion in the roots of 4-week-old seedlings; CsCAMTA2 and CsCAMTA3 have the highest
expression levels in female flowers; CsCAMTA4 has the highest expression in 12-week-old
cucumber roots. CsCAMTA1 and CsCAMTA3 have low expression levels in young leaves,
while CsCAMTA3 and CsCAMTA4 have the lowest expression levels in 1-week-old fruits.
This indicates that CsCAMTAs may mainly act in cucumber roots, stems, leaves, and female
flowers, but have weak effects on the growth and development of fruits.
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Figure 5. Tissue-specific expression analysis of CsCAMTAs. RNA-seq data were obtained from NCBI
(accession number: SRP071224). S1, roots of 4-week-old seedlings; S2, stem of 4-week-old seedlings;
S3, cotyledon of 4-week-old seedlings; S4, true leaf of 4-week-old seedlings; S5, root; S6, stem; S7,
young leaf; S8, old leaf; S9, female flower; S10, male flower; S11, flesh of 1-week-old fruit. Red
and blue indicate high and low levels of expression level, respectively. The color bar represents the
expression values.

3.5.2. Expression Patterns of CsCAMTA Genes under Hormone and Abiotic Stress

To understand the expression pattern of CsCAMTA genes under different hormones
and abiotic stresses, we treated cucumber seedlings with three hormones (IAA, ABA,
MeJA) and two stress factors (NaCl, PEG). The results are shown in Figures 6 and 7. From
Figure 6, we can see that the expression of CsCAMTA1 is significantly up-regulated after 3 h
of IAA and MeJA stimulation, while it takes 6 h to increase the expression of CsCAMTA1
during ABA treatment. The performance of CsCAMTA2 is significantly different from other
CsCAMTAs, and its expression is significantly down-regulated after 3 h of treatment with
the three hormones. The expression patterns of CsCAMTA3 and CsCAMTA4 are similar. At
6 h after IAA treatment, the expression levels of both are up-regulated, and at 48 h after
MeJA treatment, the expression levels reach their maximum. However, the difference is
that CsCAMTA4 is down-regulated after 3 h ABA treatment.

Under abiotic stress treatment, different CsCAMTA genes were up-regulated or down-
regulated to varying degrees after a certain period of stress (Figure 7). Under the salt
stress, CsCAMTA1, CsCAMTA3, and CsCAMTA4 show a trend that there is no significant
change in the short-term (0, 3, 6, 12, and 24 h) stress, but they are all up-regulated in the
long-term (48 h) stress. After 24 h of salt stress, the expression of CsCAMTA1 is significantly
up-regulated to 3.0-fold relative to the control, while CsCAMTA3 and CsCAMTA4 are
up-regulated by more than 4.0-fold and 6.0-fold, respectively. However, short-term salt
stress inhibited the expression of CsCAMTA2, and there is no significant change after
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long-term stress. Under drought stress, CsCAMTA1 and CsCAMTA3 are down-regulated
after 3 h stress, but a slow upward trend appears after long-term stress. There is no
significant change in CsCAMTA2. CsCAMTA4 is significantly up-regulated after 48 h under
both stresses.
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represents the expression values.
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3.6. Alternative Splicing Analysis for CsCAMTA Genes

To understand the expression patterns of different transcripts produced by alternative
splicing in response to stress responses of CsCAMTA genes, we designed specific primers
for different transcripts of CsCAMTA genes based on the annotation information of NCBI.

Under stress treatment, the expression pattern of each splicing isoform of CsCAMTA
genes in leaves is similar to that of normal transcripts, but some splicing isoforms show
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specific expression patterns at different periods. As shown in Figure 8, under salt stress,
most genes are down-regulated under short-term treatment and are significantly induced
after long-term treatment (48 h), such as CsCAMTA1.3, CsCAMTA2.3, CsCAMTA3.2, etc.
In contrast, CsCAMTA1.2 is induced after 6 h of NaCl treatment but is down-regulated
after 48 h. This may indicate that the sensitivity of different gene spliceosomes to stress is
various, and the period of the function is different. Compared with salt stress, CsCAMTA2.1
and CsCAMTA4.1 are induced quickly after 3 h of PEG treatment (Figure 9), suggesting
that they are more sensitive to drought stress. CsCAMTA3.1 plays a major role in salt stress,
but under drought stress, CsCAMTA3.2 has a more significant effect. These results indicate
that alternative splicing plays a crucial role in CsCAMTAs’ response to stress.
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4. Discussion

Calcium signaling is a pathway that transmits extracellular signals to an intracellular
biological response through changing the intracellular Ca2+ concentration [29]. Previous
studies have shown that a variety of stimulating factors can cause changes in intracellu-
lar Ca2+ concentration, thereby mediating important biological response processes [30],
including high temperature, low temperature, salt, pathogenic bacteria, reactive oxygen
species, and hormones. CaM is the most important multifunctional receptor protein for
Ca2+ in cells, and it has a high affinity and specificity with Ca2+ [3]. Many TFs, including
CAMTA/SR, NAC, WRKY, MYB, MADS-box, and bZIP, have been identified to interact with
CAM to regulate plant growth, development, and the biotic and abiotic stress response [1].
Members of the CAMTA gene family have been identified in many eukaryotes, and play
an important role in plant hormones and the abiotic stress response. In this report, we
screened the members of the CAMTA family in the cucumber genome and found four
in total (Table 1). The size of the CAMTA gene family in cucumbers is similar to that in
bananas and Arabidopsis with five and six members, respectively [5,31]. However, it is far
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less than that in soybeans with 15 members [11], wheat with 15 members, and Brassica
napus with 18 members [13,16]. This indicates that the evolutionary distribution of the
CAMTA gene family in the entire plant kingdom is uneven. Brassica napus and soybeans are
tetraploid, so they have undergone multiple rounds of genome-wide replication during the
evolution process, resulting in a relatively large number of CAMTA members. However,
bananas are triploid, and cucumbers and Arabidopsis are diploid; thus, they have relatively
few members of the CAMTA gene family.

We analyzed the structure of four CsCAMTA genes and found that the number of
introns in all CsCAMTAs ranges from 11 to 12. This number is almost three times the average
number of introns in cucumber genes (4.39), which may lay the structural foundation for
the occurrence of AS [32]. The number of introns of CsCAMTA1 and CsCAMTA3 is 12;
the number of introns of CsCAMTA2 and CsCAMTA4 is 11 (Figure 1). This is similar to
the results of previous identifications on other species, indicating that members of the
CAMTA gene family are conservative in gene structure [14]. Just as the CAMTA identified
in other species, the four CsCAMTAs contain all the conserved domains of the typical
CAMTA protein, including the CG-1 domain, TIG domain, ankyrin (ANK) repeat domain,
IQ domain, and CaM binding domain (CaMBD) (Figure 2). According to the existence
of TIG, CsCAMTAs are divided into two groups, which are consistent with previous
studies [13]. On the one hand, CsCAMTA without the TIG domain may affect the DNA
non-specific interaction of transcription factors and protein dimerization. On the other
hand, the absence of the TIG domain may be the structural basis for the expansion and
evolution of its family members [33,34]. According to the results of previous studies, IQ
motifs can be combined with CaM in a Ca2+-dependent or Ca2+-independent manner to
transmit signal substances, while CAMBD can transmit signals through the combination
with Ca2+/CaM complexes [4,35]. Regarding how CsCAMTAs interact with CaM, our
research found that all CsCAMTAs contain IQ motifs and CAMBD, which indicates that
CsCAMTAs can not only bind to CaM in a calcium-dependent manner but also can bind
to CaM in a calcium-independent manner. This may make the signal transmission more
stable and accurate.

To understand the relationship between cucumber CAMTA members and other species,
a phylogenetic tree of CAMTA members of cucumbers, Arabidopsis, tomatoes, rice, and
soybeans was constructed, which divides the 39 CAMTAs into three groups. The four
CsCAMTAs members fell into all three groups (Figure 3), which suggests that the structure
and function of CsCAMTAs are highly conserved during plant evolution [36]. In group
A, the number of CAMTA members of cucumbers and other species is more than the
number of members distributed in groups B and C, indicating that CAMTA is undergoing
rapid adaptive evolution in group A [37]. In addition, in the same group, the closest
members have similar gene structures and may have similar functions. Previous studies
have confirmed that AtCAMTA1, AtCAMTA2, and AtCAMTA3 play an important role in
plant defense against pathogenic bacteria and in response to low temperatures and salt
stress [38]. Thus, we speculate that CsCAMTA1 and CsCAMTA2 may have similar functions
to them. Later experiments also proved that CsCAMTA1 is indeed up-regulated under
long-term salt stress treatment (Figure 7).

The cis-elements in the promoter region, as the binding sites of transcription factors,
play a vital role in the regulation of gene expression, especially for the regulation of
gene expression in response to biotic and abiotic stress [39]. We have identified many
cis-acting elements in CsCAMTA genes, including the W-box, Circadian, TGA-box, ABRE,
TGACG-motif, CGTCA-motif, AuxRR-core, MBS, LTR, and ARE (Figure 5). An interesting
phenomenon is that CsCAMTA3 does not have MeJA response elements (TGACG-motif,
CGTCA-motif), but it has a clear response to MeJA treatment (Figure 6). CsCAMTA2
contains a drought response element (MBS), but it does not respond significantly under
drought stress (Figure 7). This phenomenon was also found in poplar and soybean CAMTA
family members [11,21], indicating that the relationship between corresponding elements
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and the occurrence of responses is not one-to-one. The specific relationship may need to be
further explored in detail.

The function of CAMTA in the process of plant growth and development has been
extensively studied. In cotton, the positive correlation between the expression of Gh-
CAMTA2A.2 and GhCAMTA7A and fiber strength proved their important role in the devel-
opment of cotton fiber [40]. Yang et al. [8] found that SlSRs act as candidate signal junctions
for connection development and ethylene- and calcium-mediated signals during tomato
fruit development and maturation. In Arabidopsis, CAMTA1 and CAMTA5 regulate the
expression of the organ development gene AVP1, thereby controlling auxin fluxes and then
regulating the occurrence of organs [41,42]. In our study, CsCAMTAs have different expres-
sion intensities and spatially differentiated expressions in different tissues. Compared with
CsCAMTA1, CsCAMTA3, and CsCAMTA4, CsCAMTA2 is expressed very low in almost all
tissues. This phenomenon also occurs in rape. BnCAMTA3A2 and BnCAMTA3C2 have
low expression levels in almost all tissues [16], which may be due to redundant functions
of these genes or transcriptional silencing/post-transcriptional silencing effects [43]. The
expression levels of CsCAMTA3 and CsCAMTA4 in female flowers and roots are signifi-
cantly higher than their expression levels in fruits. This is similar to the high expression
levels of wheat TaCAMTA1-D and TaCAMTA3-D in reproductive ears and seedling buds,
respectively [13]. Such expression patterns exist in almost all CAMTA families that have
been identified, indicating that CsCAMTAs are involved in the growth and development
of cucumbers at various growth stages, but the period and intensity of action between
members are different, and the specific functions need to be further verified.

The response of CAMTA gene family members to hormonal and abiotic stresses has
been reported in many species. In Arabidopsis, CAMTA1 takes part in auxin signaling and
responds to salt stress [44]. A previous study also found that the expression of maize
ZmCAMTAs is regulated by stress-related hormone signaling molecules (IAA, SA, ABA,
and JA), which suggests that ZmCAMTAs may respond to stress through hormone signaling
pathways [10]. In our experiments, CsCAMTA1 and CsCAMTA3 are significantly increased
after 48 h of salt stress treatment. Meanwhile, ABA and MeJA significantly increase the
expression of CsCAMTA1 and CsCAMTA3, which indicates that CsCAMTA1 and CsCAMTA3
might increase the salt tolerance of cucumber seedlings through ABA and MeJA signal
transduction pathways. AtCAMTA1 induces the expression of photosynthesis-related
genes and changes membrane integrity by generating ABA under drought stress [45].
Interestingly, the expression of CsCAMTA4 is up-regulated under 48 h salt and drought
stresses, but it has no obvious response to ABA treatment, indicating that CsCAMTA4
may improve the drought tolerance of cucumber seedlings through an ABA-independent
pathway. The detailed signal process of CsCAMTA genes under various environmental
stimuli requires further study.

As a post-transcriptional modification mechanism, alternative splicing increases the
complexity of gene expression and the diversity of protein expression to a certain extent.
In the analysis of gene families, the phenomenon that a gene generates multiple transcripts
through alternative splicing often occurs, including in the pepper WRKY family, Arabidopsis
PPR family, and human KIR family [46–48]. The CAMTA gene family is no exception.
In previous studies, Wei et al. [21] found that under cold stimulation, the expression
patterns of alternative spliceosomes of poplar PtCAMTAs differ between different tissues
and different varieties, which indicates that alternative splicing may play a key regulatory
role in plant development and the response to environmental stimuli. Previous studies
have shown that CAMTA plays an important role in the regulation of salt and drought
stresses [18,20]. Therefore, we analyzed the expression patterns of CsCAMTAs’ alternative
spliceosomes under salt and drought stresses. According to its expression results, we
found that the expression level of CsCAMTAs’ spliceosome at different time points under
stress is various. Most of the spliceosome tends to be inhibited by short-term stress
and induced by long-term stress, such as CsCAMTA1.4, CsCAMTA2.3, and CsCAMTA3.2,
etc. This is contrary to the tendency that PtCAMTA1.2, 2.3, and 6.2 in poplar leaves are
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induced by short-term stress treatment [21]. This difference may be because the poplar and
cucumber respond differently to stress: under short-term stress, plants may down-regulate
CsCAMTAs to maintain the balance of plant growth and metabolism, while under long-
term stress, CsCAMTAs are up-regulated to participate in a series of metabolic pathways to
maintain plant growth and development. However, the response mode of PtCAMTAs may
be the opposite. Some spliceosomes have different major genes under different stresses.
CsCAMTA3.1 is the major gene under salt stress, while under PEG treatment, the effect
of CsCAMTA3.2 is more significant (Figures 8 and 9). This phenomenon also occurs in
Brassica rapa BrRS2Z5 [49], probably because different stresses may induce the expression
of the different spliceosomes to respond to the corresponding stress more efficiently [50].
However, the specific model needs further experimental verification.

5. Conclusions

In general, in this study, we identified four cucumber CAMTA gene family members
and analyzed their gene structure, conserved domains, and phylogenetic relationships.
The results show that the CsCAMTA gene family is highly conserved in the evolutionary
process. The analysis of the cis-acting shows that the cucumber CAMTA genes have a
genetic basis for responding to multiple hormones and stress. Tissue-specific analysis
indicates that CsCAMTAs are expressed in multiple tissues, but the expression levels
are different, indicating that different CsCAMTAs may be involved in the growth and
development of cucumbers in different periods. The expression patterns under hormonal
and abiotic stresses indicate that the participation of CsCAMTAs in the plant response to
stress may be through stress-related hormonal signal pathways, and alternative splicing
may also be involved. Our research provides evidence for the involvement of the CAMTA
gene family in cucumbers’ growth and development and response to stress, and lays a
theoretical foundation for further exploration of the functions of CsCAMTAs.
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