
agronomy

Communication

Salix alba Clone Wilting Response to Heat Stress

Santa Celma * , Viktorija Vendina and Dagnija Lazdina

����������
�������

Citation: Celma, S.; Vendina, V.;

Lazdina, D. Salix alba Clone Wilting

Response to Heat Stress. Agronomy

2021, 11, 1821. https://doi.org/

10.3390/agronomy11091821

Academic Editor: Arnd Jürgen Kuhn

Received: 13 August 2021

Accepted: 8 September 2021

Published: 10 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Latvian State Forest Research Institute SILAVA, Riga Street 111, 2169 Salaspils, Latvia;
viktorija.vendina@silava.lv (V.V.); dagnija.lazdina@silava.lv (D.L.)
* Correspondence: santa.celma@silava.lv; Tel.: +371-2067-5715

Abstract: The selection of most suitable propagation material, as well as the adjustment of existing
seedling management practices, are gaining increasing importance to ensure the best outcomes under
the long-term setting of climate change. One of the factors to consider is a predicted increase in the
frequency and duration of high-temperature periods. Since heat often coincides with drought, these
factors are typically assessed together, yet heat stress on its own has received less attention. In this
study, we examined the effect of supra-optimal ambient temperature on nine Salix alba clone cuttings
wilting under greenhouse conditions and sufficient moisture levels. Most plants are especially
vulnerable to extreme conditions in early stages of development. Response to heat varied between
clones but, overall, shoots that were taller than 350 mm were more sensitive to heat stress. The
pruning of excess lateral shoots did not show significant improvement in heat tolerance. In total, 96%
of the wilted cuttings proceeded to produce lateral shoots after the cessation of heat stress. It should
be studied further if similar patterns are evident in field conditions and if earlier outplanting has a
positive effect on cutting vitality.
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1. Introduction

It is predicted that, due to climate change, the overall occurrence and frequency
of extreme temperature events will increase [1]. Climate change-driven constrains that
are expected to arise in the future are especially important to consider when selecting
stock for the propagation of perennial plants. In addition to selecting planting material
that is site appropriate, long-lived plants must be resilient and withstand both current
and future environmental conditions. Under extreme conditions, mature plants exhibit
reduced biomass accumulation, growth inhibition, disturbed biochemical processes and
cell death. During spring and summer, when shoot growth is at its peak, cold and drought
hardiness is expected to be the lowest [2]. Most studies regarding heat stress have focused
on food crops, since reproductive parts of the plant are typically most affected by thermal
stress, and, thus, the yield depends on plants’ ability to withstand these unfavourable
conditions [3–11]. At a whole plant level, plants during the juvenile stage are especially
sensitive to stressors and their very survival becomes compromised in supra-optimal
temperatures [12]. Drought has typically received more attention than heat. Since heat
typically accompanies and exacerbates drought stress under field conditions, drought and
heat are often assessed together [3]. However, plants respond differently to each of these
stressors [8]. For seedlings, it is known that the temperature of the soil is the main concern,
and the shading of the potting soil can be helpful in preventing heat-induced damage [13].
Trees propagated by cuttings, such as Salix alba, intended for agroforestry systems, can
be expected to act differently to seedlings, and have more resilience potential, as well as
greater potential to recover from heat stress. The level of tolerance varies between different
cultivars of the same species [14,15]. In several Salicaceae species, drought tolerance has
been shown to be sexually dependent as well [16]. Some morphological and physiological
features, such as leaf area and thickness of the plant, have shown the potential to serve as
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indicators of heat stress tolerance and thus better suitability for future plantations [17,18].
Recognition of the traits that suggest better tolerance to environmental stressors and
are easy to identify can support better planting material selection and, thus, better tree
plantation establishment results.

In this study, we evaluate the wilting of nine different Salix alba clones under extreme
heat conditions.

2. Materials and Methods
2.1. Planting Material

Nine Salix alba clones were selected for this study. Seven clones originated from
Germany, supplied by Northwest German Forest Research Institute, and two clones were
of local, Latvian, origin (Table 1). Depending on available material, 20 cm long cuttings
were prepared for propagation.

Table 1. Salix alba clone origin and number of cuttings.

Clone Number of Cuttings Country of Origin Name/Place of Origin

0205K 33 Germany Pyramidalis
0206L 72 Germany Steinach XI
0207M 80 Germany Rockanje
0208N 72 Germany Botanischer Garten München
0211S 63 Germany Isar IX
0214W 72 Germany Weide Godesberg
0218B 72 Germany Eckartsau
LVX1 72 Latvia Kalsnava
LVX2 54 Latvia Kalsnava

2.2. Study Setting and Measurements

Salix alba cuttings were planted under greenhouse conditions in 18 cell propagation
trays (three by six rows) in the spring of 2021. All seedling trays were top watered,
removing the possibility of drought. Developed shoots in the first and third rows of each
tray were pruned, leaving two shoots per cutting if more than two shoots had developed.
Shoots were left untreated in the middle row. During a period of extreme weather in June
(air temperature maximum of 31–33 ◦C), ambient air temperature in the greenhouse was
elevated to 35–38 ◦C for 3 consecutive days. Salix alba cuttings suffered from heat damage.
Shoot vitality was assessed in a binary manner—wilted or healthy. Height of the shoots
was measured only in the middle row, shortly prior to the onset of wilting. Six days after
the cessation of extreme thermal conditions, it was assessed if wilted shoots had regained
their turgor, if lateral shooting had taken place or if the cutting had suffered permanent
damage.

2.3. Data Analysis

R software version 3.6.2 (2019) was used to analyse and visualise acquired data [19].
For purposes of statistical analysis, wilting occurrence was transformed to percent of
shoots wilted per cutting. Generalised linear models with “gaussian” family were used
with wilted shoot percentage as response variable and clone, shoot height, shoot count, row
of the tray and the tray location on the table as the explanatory variables. The residuals of
the model were assessed visually. The best fitting model was selected based on AIC values.
Data did not follow normality assumptions; therefore, assessment of differences in wilting
among clones was carried out using Dunnett’s test with Bonferroni correction.

Cuttings that suffered from non-heat-related dieback were excluded from the analysis,
resulting in 585 cuttings and 1286 observations (shoots), of which 201 had their height
measured.
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3. Results

Wilting occurrence was best explained by shoot height, clone and shoot count per
cutting. According to the obtained results, evidence suggests that shoot height had a
significantly positive effect on wilting occurrence (p < 0.001). Overall, 31% of shoots were
wilted. Most wilting cases were noted at shoot heights of 400–449 mm; 86% of measured
shoots in this class were wilted. Wilting occurrence was also common in height classes
350–399 mm and 450–476 mm, 74 and 73%, respectively.

Clones 0206L, 0208N, 0218B and LVX2 had significantly (p < 0.05) more wilted shoots
than clones 0205K, 0207M, 0214W, 2011S and LVX1. Most wilted clones also exhibited
tendency to grow tall shoots, with the exception of the LVX2 clone, which had relatively
short yet wilt-prone shoots (Figure 1).

Agronomy 2021, 11, x FOR PEER REVIEW 3 of 6 
 

 

Cuttings that suffered from non-heat-related dieback were excluded from the analy-
sis, resulting in 585 cuttings and 1286 observations (shoots), of which 201 had their height 
measured. 

3. Results 
Wilting occurrence was best explained by shoot height, clone and shoot count per 

cutting. According to the obtained results, evidence suggests that shoot height had a sig-
nificantly positive effect on wilting occurrence (P < 0.001). Overall, 31% of shoots were 
wilted. Most wilting cases were noted at shoot heights of 400–449 mm; 86% of measured 
shoots in this class were wilted. Wilting occurrence was also common in height classes 
350–399 mm and 450–476 mm, 74 and 73%, respectively. 

Clones 0206L, 0208N, 0218B and LVX2 had significantly (P < 0.05) more wilted shoots 
than clones 0205K, 0207M, 0214W, 2011S and LVX1. Most wilted clones also exhibited 
tendency to grow tall shoots, with the exception of the LVX2 clone, which had relatively 
short yet wilt-prone shoots (Figure 1). 

 
Figure 1. Salix alba leading shoot height and occurrences of wilting shoots (box represent interquartile range; median is 
shown as the centre horizontal line in the box; whiskers show minimum and maximum observed values plus 1.5*inter-
quartile range or minus 1.5*interquartile range, respectively; black dots show outliers; mean shoot height is represented 
by the blue squares). 

Shoot count did not have a significant effect on wilting occurrence. 
After the cessation of the heat-induced stress period, 11% of wilted shoots recovered 

and regained lost turgor. The growing tip of the shoot suffered permanent damage in 89% 
of wilted cases. However, lateral shooting took place in 96% of these cases after the cessa-
tion of the stress period. Only 4% of shoots did not recover and did not exhibit lateral 
shooting after wilting. 

4. Discussion 
Multiple traits can be useful to estimate plants’ ability to tolerate and regenerate after 

a stress period [3,20,21]. Physiological traits are more difficult to assess, compared to mor-
phological traits, yet the importance of morphological traits in determining survival and 
growth outcomes is often overlooked [22,23] Therefore, the identification of traits that can 

Figure 1. Salix alba leading shoot height and occurrences of wilting shoots (box represent interquartile range; median is
shown as the centre horizontal line in the box; whiskers show minimum and maximum observed values plus 1.5*interquartile
range or minus 1.5*interquartile range, respectively; black dots show outliers; mean shoot height is represented by the blue
squares).

Shoot count did not have a significant effect on wilting occurrence.
After the cessation of the heat-induced stress period, 11% of wilted shoots recovered

and regained lost turgor. The growing tip of the shoot suffered permanent damage in
89% of wilted cases. However, lateral shooting took place in 96% of these cases after the
cessation of the stress period. Only 4% of shoots did not recover and did not exhibit lateral
shooting after wilting.

4. Discussion

Multiple traits can be useful to estimate plants’ ability to tolerate and regenerate after
a stress period [3,20,21]. Physiological traits are more difficult to assess, compared to
morphological traits, yet the importance of morphological traits in determining survival
and growth outcomes is often overlooked [22,23] Therefore, the identification of traits that
can be easily measured, and are good predictors of drought and heat resistance, can be
especially useful in nursery settings, when dealing with a large number of plants. It is
known that plants can withstand drought and cold stress better during their dormant stage,
but are especially sensitive to these stressors during active phase of shoot growth in spring
and summer [2]. A similar pattern is expected to be true for heat stress as well [24]. It is
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also known that heat stress inhibits plant growth and, as a result, plants exposed to heat
are shorter [14,25]. In this study, evidence was found that plant height affects plants ability
to withstand elevated temperatures—short plants are more heat tolerant. Plant height and
total leaf area are positively associated with increased evaporation, and, while stomatal
conductance is typically reduced under drought conditions, an increase in transpiration is
one of the plant mechanisms used to cool the leaves during extreme heat events and, thus,
water demand is higher in taller plants [3,26–29]. If the plant cannot support the water
and nutritional demand needed for basal metabolic processes and defence mechanisms,
wilting occurs [30–32]. In addition, heat tolerance is affected by phytohormones Abscisic
Acid (also known as stress hormone) and Ethylene, amongst others, that inhibit plant
shoot growth [14,28]. Therefore, it is possible that there is variation in phytohormone
composition and biosynthesis among the studied clones that determines both the height
and heat-tolerance properties.

Our results suggest that protective measures should be taken before shoots reach the
more heat-sensitive length of 350 mm and above. Outplanting of the saplings, mitigation of
adverse environmental conditions (by lowering the indoor temperature, providing shading
and altering relative humidity) and support of the plants ability to withstand heat stress (by
preconditioning the plants or additional application of fertilizers, silicone, phytohormones
or other biostimulants) are some of the potential protection measures [5,13,30,32–38]. This
study has limitations, since the shoot height was measured only in one of the tray rows
in which no shoot removal was carried out. In addition, shoot length is clone dependent.
It is expected that critical shoot height will decrease with increasing temperature. This
early-stage height–temperature relationship needs to be more extensively studied under
controlled conditions.

In this study, it was found that, following the wilting of leading shoots and heat stress
cessation, young and short shoots that did not suffer during the event of extreme conditions
also proceeded to wither and die. Lateral shooting began to take place afterwards. Even if
all shoots had wilted, the cutting itself remained viable and able to produce new shoots.
Cuttings in the middle row of the propagation trays, which were not reduced to two or
fewer shoots per cutting, had more cases of wilting. However, the shoot count and wilting
relationship did not prove to be statistically significant in this study. It was expected that
the removal of young, short secondary shoots would contribute to water loss reduction by
decreasing total transpiration area and, thus, prevent wilting. Shoot pruning, as well as
top pruning, has been shown to improve seedling survival by balancing the shoot-to-root
ratio in nurseries and under unfavourable site conditions [39–41]. Whether or not wilting
occurrence is affected by height and shoot count in field conditions, where root expansion
is not limited in space, should be further studied.
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