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Abstract: Brassica napus L. is a vegetable oil crop, commonly known as rapeseed (or canola). It is
widely used as a source of oil and protein for food and industrial applications, but also as a remedy,
and in a field of attraction or as an ornament due to its diverse flower colors. Every part of rapeseed
is useful, even the waste, which could be used to feed animals, or recycled. In this review, the
use of rapeseed in these applications is presented, starting with the preparation of oil and protein
from the seeds, before their release in the market, to the utilization of natural unprocessed rapeseed.
Progress in rapeseed exploitation for food, remedy, energy source, and industrial applications are
analyzed to show variability in diverse findings, to provide insights and progressive descriptions of
rapeseed usage to other scholars. Moreover, advancements in breeding for rapeseed improvement
were described. In the future, strategies could be developed or improved to avoid or decrease crop
losses, but also to increase interest in propagating the valuable traits of rapeseed.

Keywords: rapeseed oil; rapeseed protein; processing; utilization; food; remediation; ornament;
genetic improvement

1. Introduction

Brassicaceae comprises of many economically important species widely used as sources
of oil and food, and as ornamental plants [1,2]. The youngest species, B. napus, is commonly
used as an oil crop and has several common names—rapeseed, oilseed rape, and colza. A
modified variant of rapeseed developed in Canada has been named “canola” or “double
low” variety, for its low content in erucic acid (less than 2%) and glucosinolates (less than
30 µmol/g in meal fraction) [3]. Rapeseed originated from spontaneous hybridization
between turnip rape (B. rapa) and cabbage (B. oleraceae) about 7500 years ago [4]. It is
widely cultivated in many places in the world. India has been cultivating rapeseed since
4000 BC; it extended to China and Japan about 2000 years ago [5], and was naturally
introduced in Europe and New Zealand where wild forms of ancestors were also found [6].
About 70 million tons (MT, yield) of rapeseed are produced per year around the world,
involving 66 countries: 34 countries in Europe, 15 countries in Asia, 9 countries in America,
6 countries in Africa, and 2 countries in Oceania [7,8] (Figure 1).

The biggest rapeseed-producing countries in 2019/2020 were Canada (19 MT), China
(13.1 MT), and India (7.7 MT); however, the European Union produced 16.83 MT of rape-
seed [9]. Rapeseed production is estimated to hit 68.90 MT in 2020/2021 [10].

Rapeseed is an annual species [11]. The winter, semi–winter, and spring types differ in
their cold and drought tolerances; consequently, the growing conditions are also different.
Winter-type rapeseed grows well in relatively high humidity and cooler temperatures.
Rapeseed cultivation needs well-drained soils with a pH ranging from 5.5 to 8.5 for optimal
growth (Figure 2A). Depending on the genotype and the environment, it requires 110 to
150 days to fully grow and mature (Figure 2B). The length of mature stem varies from 120
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to 150 cm (Figure 2C), and mature seeds are spherical—1.8–2.7 mm in diameter [11]—with
red-brown to dark brown or black color (Figure 2D).

Every part of rapeseed—flower, seeds, leaves, stem, and root—is used for food, reme-
dies, cosmetics, or industrial applications. Seeds are the most important part, as they are
used as oil and protein sources. Rapeseed seed oil and protein contents vary in different
lines of cultivars, and other components such as glucosinolates, phenols, phytic acid, cel-
lulose, and sugars are also found in the seeds. Known for its production of high-quality
vegetable oil, rapeseed competes with other crops. It is the second-most produced oil crop
in the world, after soybean, with 68.02 MT and 337.48 MT in the year 2019/2020, respec-
tively, surpassing sunflower (53.48 MT), peanut (45.52 MT), and cottonseed (44.3 MT) [12].

Rapeseed production, as in other crops, often encounters major difficulties, because
of multiple factors, such as the decrease in labor hands and farmers due to the increasing
cost of labor and agricultural inputs but resulting in lower outputs, weak agricultural
mechanization, yield instability due to climate variability, and weak cultivars (shatter,
biotic and abiotic factors). For instance, two of the most destructive infections that weaken
rapeseed crops in the world are stem rot disease, which is caused by Sclerotinia sclerotiorum;
and clubroot disease, which is caused by Plasmodiophora brassicae. In China, stem rot and
clubroot diseases have caused yield losses of 10–80% [13] and 20–30% [14], respectively.
This review synthesizes diverse progress in the exploitation of rapeseed as biomass for food,
remedy, energy source, and industrial applications. Advances in breeding for rapeseed
improvement are described, and directions for future research are provided. This will
provide an advanced portrait of the use of rapeseed and the current state of research for its
amelioration, in order to provide insights and expose existing gaps.

Agronomy 2021, 11, x FOR PEER REVIEW 2 of 39 
 

 

 
Figure 1. Worldwide rapeseed production in some main countries in year 2019 [8]. 

The biggest rapeseed-producing countries in 2019/2020 were Canada (19 MT), China 
(13.1 MT), and India (7.7 MT); however, the European Union produced 16.83 MT of rape-
seed [9]. Rapeseed production is estimated to hit 68.90 MT in 2020/2021 [10].  

Rapeseed is an annual species [11]. The winter, semi–winter, and spring types differ 
in their cold and drought tolerances; consequently, the growing conditions are also differ-
ent. Winter-type rapeseed grows well in relatively high humidity and cooler tempera-
tures. Rapeseed cultivation needs well-drained soils with a pH ranging from 5.5 to 8.5 for 
optimal growth (Figure 2A). Depending on the genotype and the environment, it requires 
110 to 150 days to fully grow and mature (Figure 2B). The length of mature stem varies 
from 120 to 150 cm (Figure 2C), and mature seeds are spherical—1.8–2.7 mm in diameter 
[11]—with red-brown to dark brown or black color (Figure 2D).  

Figure 1. Worldwide rapeseed production in some main countries in year 2019 [8].



Agronomy 2021, 11, 1776 3 of 37
Agronomy 2021, 11, x FOR PEER REVIEW 3 of 39 
 

 

 
Figure 2. Winter-type rapeseed: (A) Field established crop stand at a site in Huanggang, Hubei province (June 2018). (B) 
Blooming field in Xining, Qinghai Province (August 2018). (C) Post-harvested and dried stem and siliques. (D) Mature 
seeds. 

Every part of rapeseed—flower, seeds, leaves, stem, and root—is used for food, rem-
edies, cosmetics, or industrial applications. Seeds are the most important part, as they are 
used as oil and protein sources. Rapeseed seed oil and protein contents vary in different 
lines of cultivars, and other components such as glucosinolates, phenols, phytic acid, cel-
lulose, and sugars are also found in the seeds. Known for its production of high-quality 
vegetable oil, rapeseed competes with other crops. It is the second-most produced oil crop 
in the world, after soybean, with 68.02 MT and 337.48 MT in the year 2019/2020, respec-
tively, surpassing sunflower (53.48 MT), peanut (45.52 MT), and cottonseed (44.3 MT) [12]. 

Rapeseed production, as in other crops, often encounters major difficulties, because 
of multiple factors, such as the decrease in labor hands and farmers due to the increasing 
cost of labor and agricultural inputs but resulting in lower outputs, weak agricultural 
mechanization, yield instability due to climate variability, and weak cultivars (shatter, bi-
otic and abiotic factors). For instance, two of the most destructive infections that weaken 
rapeseed crops in the world are stem rot disease, which is caused by Sclerotinia scleroti-
orum; and clubroot disease, which is caused by Plasmodiophora brassicae. In China, stem rot 
and clubroot diseases have caused yield losses of 10–80% [13] and 20–30% [14], respec-
tively. This review synthesizes diverse progress in the exploitation of rapeseed as biomass 
for food, remedy, energy source, and industrial applications. Advances in breeding for 
rapeseed improvement are described, and directions for future research are provided. 
This will provide an advanced portrait of the use of rapeseed and the current state of 
research for its amelioration, in order to provide insights and expose existing gaps.  

  

Figure 2. Winter-type rapeseed: (A) Field established crop stand at a site in Huanggang, Hubei province (June 2018). (B)
Blooming field in Xining, Qinghai Province (August 2018). (C) Post-harvested and dried stem and siliques. (D) Mature seeds.

2. Rapeseed Seeds Processing

Rapeseed is mainly known as a source of edible and industrial oil, as well as protein.
Multiple extraction methods have been tested, and their variation affects oil and protein
yield and quality, notably the usage of solvents, temperature, pressure, and the time of
processing. However, some of these methods have not been tested at an industrial level.
One of the most common oil extraction methods is with a solvent (mostly hexane). In
brief, seeds are heated for softening, flaked to burst cell walls, and cooked to promote cell
disruption, before compression to release the oil, leaving the rest of the seeds to form a
protein cake. Residual oil is then extracted using the solvent, which filters the cake and
removes the oil. The solvent is removed from the cake and the oil, which undergo refining
and processing stages before their release in the market (Figure 3) [15,16].

This review focuses on advancements in processing that have emerged in the last
years, highlighting especially the variation in oil/protein yield and quality, from the
selection of cultivar and the time of seed-sowing, to the choice of extraction method.
Table 1 summarizes the rapeseed oil extraction methods, showing the advantages and
limitations of each method. In a recent study that compared yield, oil, and protein from
different cultivars sown at different periods of the year, it was revealed that the cultivar
sown in mid-autumn displayed the best performance in grain yield, oil productivity, and
oleic acid content [17].
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Table 1. Comparative study of rapeseed oil extraction methods.

Principle Outcome Edibility Advantages Limitations References

Solvent
Extraction

Seed
compression and
usage of hexane
to extract the oil

High oil yield

Low toxicity and
digestible at

hexane, 2% of
total food

Can be performed
on industrial scale

Possible health
issues [15–18]

Hexane Free Oil
Extraction

Enzymatic
reaction, usage
of gaz, heat or

ultrasound

–

Safe for
consumption,

better taste, and
color

Safer for
consumption, less
time-consuming,
better oxidative

stability and
shelf-life,

preserved or
improved
beneficial

compounds, better
taste and odor

Not tested on an
industrial scale [18,19]
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Table 1. Cont.

Principle Outcome Edibility Advantages Limitations References

Aqueous
Extraction

Water-based
extraction, usage

of enzyme
protease

High oil and
protein quality,
high oil yield

Safe for
consumption

Preserved oil and
protein quality,

water leftover can
be removed by

drying.

Not tested on
industrial an

scale
[20–23]

Heat Treatments
Heat treatments

for oil
refinement

–

Safe for
consumption,

but less
nutritious

Less
glucosinolates

compared to the
cold pressed

treatment.

Denaturation of
proteins,

formation of
transfat, loss of

beneficial
compounds, not

tested on an
industrial scale.

[24–30]

Chemicals Free
Extraction

Dry
fractionation,

sieving,
ultrafiltra-

tion/diafltration,
and precipitation

No
lignocellulosic
fiber, enriched

protein and
phenolic

fractions, less
phenolic acids
and condensed

tannins

Safe for
consumption,

better taste and
color.

Chemical-free,
improved isolates

taste and color.

Not tested on an
industrial scale [31–39]

2.1. Hexane Free Oil Extraction

Some alternatives to the usage of hexane in oil extraction have been proposed, due to
concerns regarding the impact of rapeseed oil production and processing on human health
and the environment, since beneficial antioxidants, phytosterols, and phenolic compounds
might be partially lost in the extraction with hexane [40]. Other methods were reviewed by
Gaber et al. [19], using enzymes (aqueous enzyme-assisted extraction), gas (carbon dioxide
or propane), heat (microwave-assisted extraction), or ultrasound, which might offer more
advantages: safer for human consumption, less time-consuming, better oxidative stability
and shelf-life, preserved or improved beneficial oil compounds which could be reduced or
removed by the solvent extraction, and even had a better taste and odor. However, these
methods need to prove their performance on an industrial scale and from an economical
point of view, probably the reason why solvent extraction is still maintained as one of the
common extraction methods for rapeseed oil.

Confortin et al. [17] demonstrated that using hexane for oil extraction offered low cost
and gave a higher oil yield, in comparison to the supercritical fluid extraction with CO2.
Major oil contents are obtained during the pressing process, and hexane is only used to
extract minor residual oil in the flake, and even after the extraction, the oil is separated
from hexane before mixing it with the oil obtained from pressing. In addition, hexane has
low toxicity and is digestible at less than 2% of total food. There is no evidence of any risk
in consuming foods with a residual trace of hexane [18].

2.2. Aqueous Extraction

Aqueous extraction is a proposed method to preserve both oil and protein high quality.
For instance, aqueous extraction of rapeseed oil (using a slurry composed of 1.5:10 water–
kernel) gave an oil of high quality (low acid and peroxide content) and high yield (94.73%),
and the water content of 25% could be easily removed by drying and no waste was left [20].
Fetzer et al. [21] investigated the effect of various parameters in aqueous extraction of
protein that would affect the protein yield and found the best protein yield at a NaCl
concentration of 0.25 M, with a temperature of 20 ◦C, and with the usage of enzyme
protease. Other parameters such as solid/liquid ration, extraction time, and pH displayed
no difference among tested samples, even in alkaline conditions, and one-hour treatment
was preferred. pH, temperature, and salt treatments have a perceptible impact on protein
yield. Gerzhova et al. [22] demonstrated that alkaline pH was better in extractability,
but without salt addition. However, a pH value higher than 10 was the best condition
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to get the highest protein extraction yield, and salt addition improved the solubility of
proteins, notably the cruciferin. Moreover, Akbari and Wu [23] suggested a treatment that
consisted of an acidic washing at pH 4, an alkaline extraction at pH 12.5, an isoelectric
precipitation at pH 4, and an ultrafiltration to get a maximum protein content and cruciferin
and napin yield.

2.3. Heat Treatments

Heat treatments affected the final products. In fact, during the oil deodorization
process, the oil is submitted to a high-temperature treatment, which promotes the reduction
of linoleic acids and their transformation into trans–fatty acid isomers [24], which could
extend the frying time [25]. Moreover, the refined oil might lose its beneficial nutrients,
such as vitamins (notably tocopherols), essential fatty acids, and antioxidants [26–28], but it
also had a decreased phenol, β–carotene, and oxygen radical absorbance, while the harmful
compounds, such as acid, peroxide, and p–anisidine were increased [29]. Furthermore, heat
could denature proteins and decrease their solubility. The usage of heat treatment is thus
not beneficial to obtain high oil and protein yields with good quality, and could decrease
the beneficial compounds and increase the harmful ones. This suggests that cold-pressed
oil might be the best choice since no harmful solvents for extraction and no heat treatments
are used. Nevertheless, it has been reported that meal from cold press extraction had a
higher anti-nutritive glucosinolates level, compared to that of the solvent extraction [30].

2.4. Chemical-Free Extraction for Better Protein Quality

To avoid the usage of chemicals for the extraction and concentration of proteins, and
to eliminate lignocellulosic fiber, multiple techniques were proposed [31–33]. For instance,
dry fractionation, which consisted of a combination of mechanical separation (milling) with
electrostatic (particle charge) or turbo (density) separation was reported to enrich protein
and phenolic fractions from plant materials due to the lignin removal [34–36]. Sieving was
also a proposed technique for fractionation. For instance, by using 250 to 600 µm sieve,
an increase in crude protein in particles, which resulted from <250 to 355 µm sieve, and
a decrease in total dietary fiber in particles, which resulted from 250 to 355 µm sieve in
the meal were observed in black- and yellow-seeded B. napus and B juncea. These meals
were suggested to be the replacement of soy meal in broiler chicken since no significant
effect on growth performance was observed [37]. The dark color and bitter taste of isolates,
which are caused by phenolic compounds, could be removed by ultrafiltration/diafiltration
at pH 12 and precipitation at pH 3.5 [38], resulting in a decrease of phenolic acids and
condensed tannins. Isolates might have a light color and no flavor, which are more suitable
for feeding. Recently, it was discovered that the bitter taste of isolates was caused by
a flavonoid compound named kaempferol 3–O–(2′′′–O–Sinapoyl–β–sophoroside) at a
low concentration of 3.4 µmol/L [39]. Knowing this, the bitter taste of isolates can now
be removed.

2.5. Preparing Biodiesel from Rapeseed

The standardization of rapeseed oil as a fuel was first made 20 years ago [41]. Biodiesel
is produced by the transesterification of animal or vegetable oils. In the presence of a
catalyst, the oil reacts with alcohol, which is usually methanol [42]. The biodiesel output
depends on the amount of free fatty acids, the type and ratio of alcohol, the catalyst used,
and the processing time and temperature. For instance, Kai et al. [43] tested a method of
producing rapeseed biodiesel with dimethyl carbonate, by using active sodium methoxide
as a catalyst. The conversion rate was reported to be greater than 96% at 65 ◦C, with a
processing time of two hours, a dimethyl carbonate and oil ratio of 3:1, and 2.0 wt% of
sodium methoxide. Transesterification has been suggested to be the best procedure to
produce rapeseed biodiesel because it is cheaper and less problematic for engines [44].
However, the use of a catalyst is a limitation due to its sensitivity to water, which decreases
its performance, and the presence of free fatty acid in the feedstock, which promotes soap
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production, increasing its viscosity and complicating its purification [45,46]. Fortunately,
an alternative method has been proposed in rapeseed biodiesel production, by using
carboxylate ester treatments, to avoid issues related to catalyst utilization [47].

3. Seed Oil and Protein-Processing Products

Rapeseed has been cultivated since ancient times in India, and in the Middle Ages, in
Europe. Due to its low cost, the oil from rapeseed was used to make soap, enlighten lamps
(odorless and slow–burning), lubricate engines, and cook meals [48]. Nowadays, multiple
utilizations of rapeseed have emerged and they are beneficial for health, environment,
and economy.

3.1. Edible Oil
3.1.1. Biochemical Properties

Rapeseed oil is mainly composed of triacylglycerol; it contains a low content of
saturated fatty acids (SFA, ~7%), compared to usual cooking oil, such as peanut (17%), olive
and soybean (15%), corn (13%), and sunflower (12%) [49]. The biochemical composition of
rapeseed with five other cooking oils is presented in Table 2. High SFA usually has a higher
melting point and poor solubility, which leads to the formation of sediments, and then
affects the oil clarity and digestibility [50]. Rapeseed oil contains high monounsaturated
fatty acids (MUFA, ~59 to 62% of oleic acid), and polyunsaturated fatty acids (PUFA,
~19% of linoleic acid omega–6, and ~9–11% of alpha–linolenic acid omega–3) [49,51–53].
Rapeseed oil also contains low transfats, which puts it in high competition with other
oil crops. Besides, high levels of vitamins are also observed, such as vitamin E (100 g
of oil contains ~22 mg of alpha–tocopherol,~27 mg of gamma–tocopherol, and~1 mg of
delta–tocopherol) and Vitamin K. Tocopherols are natural antioxidants and have a low
evaporation and degradation rate at a high temperature [54]; it was reported that about
30 mg/100 g of vitamin E were still maintained after frying, which makes rapeseed oil
much better than other vegetable oils [55]. Tocopherols could protect the PUFA in living
cells, but unfortunately, its content is reduced after the oil purification, especially during the
deodorization [56]. Similarly, the amount of sterols is reduced during these processes [57].
Rapeseed oil is rich in phytosterols, particularly brassicasterol, which is in high amounts
in Brassica oils. The products of oxidized phytosterols were reported to be harmful since
they were mutagenic and could originate free radicals, which could promote inflammation,
affect metabolism, hormones activity, and cell viability at high concentrations [58–60].
Phenolics are also present in rapeseed oil, which are in majority of canolol (~59%) and
sinapine (~2%), and other minor unidentified phenolics [61].

Table 2. Biochemical composition of common vegetable cooking oil [49,62].

. Rapeseed Corn Olive Peanut Soybean Sunflower

Fatty Acid SFA 7% 13% 14% 17% 16% 9%
MUFA 62% 27% 71% 45% 23% 57%
PUFA 28% 54% 11% 32% 57% 29%

Vitamin * Alpha–tocopherol 17.3 mg 22.6 mg 20.9 mg 15.2 mg 12.2 mg 68.5 mg
Alpha–tocotrienol – 1.49 mg <20.7 mg <21.5 mg – <20.6 mg
Beta–tocopherol – 1.1 mg <10.3 mg <9.97 mg 1.8 mg 2.54 mg
Beta–tocotrienol 8.07 mg 4.4 mg 20.7 mg <21.5 mg 1.6 mg <20.6 mg
Delta–tocopherol 1.48 mg 2.78 mg <10.3 mg <10.8 mg 22 mg <10.3 mg
Delta–tocotrienol – – <20.7 mg <21.5 mg – <20.6 mg

Gamma–tocopherol 41.3 mg 60.9 mg 1.78 mg 13.4 mg 70.4 mg <10.3 mg
Gamma–tocotrienol – 1.6 mg <20.7 mg <21.5 mg – <20.6 mg

Phylloquinone – – 26 µg 4.2 µg – 6.9 µg

Phytosterols * Stigmasterol 2.38 mg 55.3 mg 1.45 mg 17.8 mg 55.4 mg 29.2 mg
Campesterol 260 mg 153 mg 5.34 mg 33 mg 58 mg 33.9 mg
Brassicasterol 368 mg 0.414 mg <0.5 mg <0.5 mg – <0.5 mg
Beta–sitosterol 368 mg 538 mg 128 mg 122 mg 153 mg 205 mg

Delta–5–avenasterol 24.7 mg 25.9 mg 12.1 mg 16.4 mg 10.5 mg 11.4 mg
Campestanol – 12.9 mg <0.5 mg 0.14 mg 2.15 mg <0.5 mg

Beta–sitostanol – 30.4 mg 3.26 mg 3.58 mg 5.62 mg 3.36 mg
Stigmastadiene – – <1 mg <1 mg – <1 mg

Delta–7–Stigmastenol – – 22.4 mg 8.2 mg – 59.1 mg
Other phytosterols 14.7 mg 17.8 mg – – 20.8 mg –

* Value per 100 g of oil.
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3.1.2. Health Benefits of Rapeseed Oil

The fatty acid profile and other components present in rapeseed oil might justify its
beneficial impact on human health—as suitable for patients having various diseases or
just for disease prevention. Rapeseed oil has a low content of SFA, a high level of MUFA
(oleic acid) and PUFA (omega–3 and omega–6), and a high content of tocopherols and
phytosterols. First, SFA are essential; they can elevate the lipids level in blood. However,
SFA can be naturally synthesized by the human body, so a supplement intake is useless
or at least should be kept at the lowest level (<10% of total calories) [63]. Fortunately,
rapeseed oil contains less than 7% of SFA, which meets the recommended intake. Unsat-
urated fatty acids (UFA) can lower lipid levels in the blood, and then should be taken
properly. It was reported that UFA could positively affect human blood lipids compared
to SFA [64]. Several studies demonstrated the good effects of rich MUFA diets on human
blood lipid and glucose. For instance, it could decrease the chance to have foam cells’
formation and the development of atherosclerosis, which were induced by LDL cholesterol
oxidation, and then could reduce the risk of cardiovascular disease [65,66]. Moreover, rich
MUFA diets were reported to be suitable for diabetic subjects since they could improve
glycemic control [67–70], blood lipids [71], and lower insulin response [72,73]. It has been
affirmed that rich MUFA diets are as effective as high-carbohydrates and low-fat diets
in monitoring blood glucose in diabetics [74,75]. Besides, PUFA, such as α–linoleic acid
(omega–3) could reduce coronary issues and the production of inflammatory eicosanoids
and cytokines (tumor necrosis factors and interleukins). Rich PUFA diets are beneficial
for the immune system, heart, vision, cognition, and in healing tumoral cells [76–79].
Other studies also supported this fact, such as the reduction of cardiovascular disease
which was explained by the reduction of blood pressure, with an increase of the protective
blood lipoprotein [80–83]. Moreover, omega–3 could protect the kidneys [84–86], and
the brain from stroke [87]. Ingestion of omega–3 is strongly recommended to promote
good health and to prevent disease [88]. Additionally, conjugated linoleic acids (omega–6)
were reported to support body fat reduction and had antidiabetogenic, anticarcinogenic,
antiatherogenic, and immune–modulating properties [89]. The phytosterols in rapeseed
could decrease blood cholesterol [90–93] and had an anticancer ability [94]. It was recom-
mended to consume 2 g/day of phytosterols to effectively reduce the LDL cholesterol by
10–15% [90,91]. Tocopherols might work with other compounds to boost immunity [95]
and prevent cancer [96].

Following these studies, several investigations on a rapeseed-based diet confirmed
the health benefits of rapeseed oil intake on blood lipid and glucose, but also on heart
health, probably due to its richness in UFA. For instance, a low level of erucic acid, a high
level of UFA, and phytosterols of rapeseed oil could reduce the LDL cholesterol in the
blood and prevent coronary heart disease [97–99]. A cardiac antiarrhythmic effect was
also reported [100], and an improvement of endothelial function reducing cardiovascular
risks [97]. Note that the FDA has suggested eating about 19 g of rapeseed oil daily, to
reduce the risk of coronary heart disease [101]. In several studies in compliance with this
FDA requirement, intake of rapeseed oil reduced total LDL and apolipoproteins cholesterol
levels, which indicated improved cholesterol levels with rapeseed diet compared to other
diets rich in SFA [102–107]. A lower blood glucose level was also reported in diabetic
subjects who consumed rapeseed oil [105,108]. These studies indicated that rapeseed oil
could improve blood lipids and glucose compared to diets with high SFA. Recent years’
discoveries reinforced these findings. Indeed, the effects of high oleic acid rapeseed oil
consumption resulted in improved glycemic control and an attenuated cardiovascular risk
factor in type 2 diabetes subjects [109]. Additionally, Liu et al. [110] found a reduced fat
mass in a high oleic acid rapeseed intake rather than in a flax/safflower oil diet, particularly
in the abdominal fat, due to the reduction of blood pressure and triglycerides. Moreover,
consuming more MUFA than PUFA decreased the risk of metabolic syndrome and obesity
in that study. Taken together, the rapeseed oil diet has positive effects on blood lipid and
glucose, on the cardiovascular system, and on supporting fat loss.
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It is clear that rapeseed oil has a lot of qualities, but despite the above-mentioned bene-
fits, some controversies have been pointed out, notably its antioxidant and bad cholesterol-
reducing activities. A study demonstrated that 10% of rapeseed oil diet decreased an-
tioxidants, and increased bad cholesterol and blood pressure, compared to soybean oil
diet, which resulted in a short lifetime in rats [111]. Another study exposed a metabolic
syndrome and heart disease related to rapeseed oil consumption in overweight/obese
subjects: a metabolic syndrome was found in regular consumers rather than in occasional
consumers [112]. Some studies demonstrated that a higher chance of heart failure, coronary
artery damage, and shorter lifetime was found in humans who consumed high UFA oils
compared to the ones who consumed SFA oils [113,114]. Additionally, some inflammatory
markers were found to be increased while heating rapeseed oil [115]. Given the fact that
the bad effects of rapeseed oil on health are less supported due to the limited number
of performed studies in comparison to those that demonstrated good effects, its benefi-
cial effects are still convincing. However, it would be safer to perform in-depth studies
investigating the other side, to comprehend in which precise case it might be harmful.

3.1.3. Multiple Usages of Edible Rapeseed Oil

The main usage of rapeseed oil is as liquid oil for frying, for salads and dressing,
cooking, baking, and in the formulation of shortenings. The choice of vegetable oil for
these common usages depends on the flavor, nutritional value, texture, stability, cost, and
availability, while avoiding transfats as possible [56]. The word “virgin oil” is often seen
in the market and this kind of oil is extracted by cold-pressing and filtration. Virgin oil is
qualified as the best in terms of nutritional value and economical asset (simple processing
with high selling price). The frying oils quality depends on the oxidative stability, and
the amount of saturated and transfats should be at the lowest. The rapeseed “high oleic
acid and low linolenic acid” (HOLL) oil has a better frying performance compared to
sunflower and palm oils [56,116]. HOLL oil is more refined with a light flavor and a
smooth texture, and it contains ~78% of oleic acid, ~12% of linoleic acid, and ~3% of
alpha–linolenic acid. It is suitable for deep-frying, recycling, and long-term storage due to
its high stability and its oxidation-resistance. HOLL oil has less acrylamide, less oxidized,
and toxic compounds, so that it could be re-used for as far as 10 days [56,117]. Moreover,
rapeseed oil can be blended with other oils to improve physicochemical properties. It
was reported that an 80:20 blend of rapeseed and olive oil, added with 20% of palm oil
was a better oil combination compared to a blend with a higher ratio of olive oil, and the
fatty acid profile showed low free fatty acids and high oleic acid contents, but also a low
peroxide level and a high iodine value [118], which might indicate deep-frying suitability
and long-time storage. Otherwise, raw oils add an extra flavor and texture for salads and
mayonnaise, and rapeseed oil enhances their nutritional value.

3.2. Inedible Oil
3.2.1. Biodiesel

Rapeseed oil was reported to have a low cold point (0 ◦C) and pour point (−15 ◦C),
which was much lower than that of other feedstock [119], and which has made it more
suitable for biodiesel usage. Rapeseed is the favorite oil crop for biodiesel production in
Europe [120], which accounted for 50 to 70% of European biodiesel production [121], as
in 2008, 66% of biodiesel came from rapeseed [122]. Rapeseed biodiesel maintains a fluid
property even at low temperatures and has delayed crystal formation, making it suitable
for cold climates. Moreover, rapeseed has a higher oil content and a lower iodine value
(less oxidation) compared to other vegetables; for instance, 127–160 and 48 gallons per
acre were obtained in rapeseed and soybean, respectively [123], with 114 and 130 of iodine
value, respectively [124]. Based on these pieces of evidence, rapeseed oil generates more
energy, with less chance of oxidation and deposit formation that might clog fuel pumps
and injectors.
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One of the main factors that degrade environmental wellness is the emission of
greenhouse gas (GHG) from the transport sector. Rapeseed oil can reduce GHG (up to 90%)
compared to fossil diesel [125,126]. Concrete reductions of GHG are obvious in Europe and
North America with rapeseed-based biofuels, as for Canada, annual GHG was reduced
by 4.4 megatons [127]. Moreover, rapeseed biodiesel is biodegradable (decompose within
~30 days) [128], and accelerates the degradation of regular diesel fuels when they are
blended. It is less poisonous in water, which decreases the impact of spills in sensitive
areas. Rapeseed oil is also a clean alternative for fuel, which can be blended to diesel fuels
for use in aviation, ship, trucks, and heavy machinery for agriculture, forestry, mining, and
construction [129]. The limitations of using biodiesel as fuel are the cost (it is relatively
high compared to petroleum), storage due to its vulnerability to oxidation, and its ability
to degrade some materials made of elastomer and rubber in fuel distributions [130].

3.2.2. Other Industrial Applications of Rapeseed Oil

Rapeseed oils are used in making useful tools. High erucic acid rapeseed (HEAR) oil
is especially used for industrial applications. HEAR was originally produced to increase
the oil yield, but also to fight disease and stress [131]. Canada developed an herbicide-
tolerant cultivar: a super high erucic acid cultivar with ~66% of erucic acid contents [131].
Erucic acid was subjected to a high-temperature splitting and distillation [132], to produce
erucamide (slip agent for the plastic film), and not only erucic acid and its derivatives
were cationic surfactants, which could be used in detergent, for laundry softness, and
other household products, but they could also be used as emollient (erucyl alcohol), food
emulsifier (glyceryl tribehenate), and in producing photographic material (film and paper
from silver behenate) [133]. They were also widely used in pharmaceutical products, ink,
paper, textile, foam, plastics, and fuel industries’ manufacturing [124]. Rapeseed oil could
also be used as a dust mask in swine barns to reduce health effects [134].

HEAR is an excellent material for cosmetics fabrication, erucic acid could improve hair
substantivity [133], whereas oleic acids could soften hair and protect against dryness and
linoleic acid promotes hair growth and maintains a healthy scalp [135]. Rapeseed oil can
be used to manufacture creams and soaps. Soaps are produced in the cold process so that
all the beneficial compounds are still maintained, and light color, dense, and creamy foams
are obvious during usage. While making homemade soap, rapeseed oil can be mixed with
other oils such as coconut oil, or other oils that enhance the scent [136].

Rapeseed oil pesticide was developed and used to eliminate insects by irritation,
including aphids, loopers, worms, caterpillars, and mites, among others. Rapeseed oil
insecticide was used as a spray and in an irrigation system and had no harmful effects on
humans and the environment due to its low toxicity and rapid decomposition [137,138].
The active compounds are yet to be identified in these rapeseed pesticide oils.

3.3. Rapeseed Meal
3.3.1. Meal Composition

Rapeseed meal is the residual product from seed oil extraction. According to the
growth conditions, harvest, and processing, the protein content in rapeseed meals could
vary from 35 to 40%. The oil and carbohydrates (sugar, starch, and fiber) contents in
rapeseed meals could also vary according to the processing, with a ratio of ~1–3.5% and
~23%, respectively [139,140]. It has been revealed that the amino acid profile is suitable for
animal feeding (less lysine and high methionine and cysteine) [140]. Rapeseed meal served
as an excellent co-addition to other protein sources due to this richness in methionine
and cysteine [141]. It also has a good source of minerals (phosphorus and selenium)
and vitamins (choline, niacin, and tocopherols). The meal from the modified variant of
rapeseed contains less than 30 µmol/g of glucosinolates, some minerals, and vitamins.
Cultivars with low glucosinolates content emerged in the late 1960s [142], and the trait
was incorporated into low erucic acid lines to generate a rapeseed cultivar containing both
low erucic acid and low glucosinolates contents [143]. Anti-nutritive compounds such as
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glucosinolates and tannins still subsist in these rapeseed meals, but at lower levels. In
fact, not only are they harmful to health, but they negatively affect the palatability and
digestibility of the meal [144], and the eggs’ weight and quality in hens [145]. Fermentation
and enzymatic treatments have been established to reduce these anti–nutritive compounds
in rapeseed meals, and the protein value could be increased at the same time [146–149]. For
instance, a fermentation coupled with enzymatic hydrolysis decreased the glucosinolates
content by 30.06%, and increased the trichloroacetic acid-soluble protein content by 81.70%,
compared to a fermentation process alone [149]. Actually, various double low cultivars
have been developed, as presented by Hansen et al. [150], who performed a meta–analysis
showing those various double low cultivars and their non–adverse effects as a meal in
animal growth performance.

3.3.2. Human Food Application

Rapeseed proteins have a good balance of amino acid profiles [151]. Thus, rapeseed
meal has been qualified as a good protein source for human consumption due to its
nutritional value and functionality [152,153]. Rapeseed is reported to have three to four
times higher proteins than rice and wheat [154]. It had better emulsifying and foaming
properties in comparison with soybean [155]. Moreover, rapeseed meal could be used as
a substrate for fungi to produce enzymes. For instance, Trichoderma reesi could produce
xylanase, xylosidase, cellulase, and acetyl–xylan esterase, with rapeseed meal as substrate.
Some modifications might be done to protein to improve functional properties, for instance,
to get a gel that is 3.5 times stronger than the protein alone [156], to improve water and oil
absorption, foaming, emulsification activity, and stability of hydrolysates [157]. In addition,
transglutaminase was reported to enhance the hardness, elasticity, and strength of gels at
40 ◦C [158]. Besides, rapeseed protein hydrolysates were used in many applications, such as
in inhibition of angiotensin I converting enzyme [159–161], as an antioxidant [152,160,162],
as an anti–hypertensive agent [163], for therapeutic protein productions as in Chinese
hamster ovary cells growth promoter [164] and in meat flavor production [165].

Some powder proteins supplements based on rapeseed have been developed, such as
SuperteinTM and Puratein of Burcon Nutrascience [166]. The production of these isolates
did not require harsh chemicals and were reported to have better organoleptic, physical,
and functional properties compared to the isolates from conventional extraction [167].
Isolexx and Vitalexx of BioExx Specialty Proteins, Ltd. are other isolates used in a vari-
ety of foods and beverages at the same range as soy proteins [168], especially to assist
muscle growth in bodybuilders. The capacity of rapeseed proteins (albumin and globulin
fractions, and isolate) to substitute soybean protein isolate as an emulsifier was studied
by Tan et al. [169]. Globulin fractions demonstrated a higher emulsifying capacity and a
higher emulsifying activity index at low pH, and droplet size was smaller or comparable at
pH4 and pH7. One concern in rapeseed isolate usage in the food industry is its bitter taste,
which could be removed by the discovery of its factor kaempferol 3–O–(2′′′–O–Sinapoyl–β–
sophoroside) [39]. Another concern is the safety of rapeseed isolate for consumption and
its allergy causative property. The European Food Safety Authority Panel [170] evaluated
IsolexxTM, and reported that heavy adults could take about 2.2 g isolate per kilogram
of body weight per day; however, allergies have been reported in subjects who had al-
lergic reactions to mustard intake. No nutritional drawback nor toxic effects were found
at the recommended use and dosage, indicating that rapeseed protein isolate is safe for
human consumption.

3.3.3. Animal Fodder

Rapeseed meals can be used to feed ruminants, poultry, fish, and crustaceans. In-
corporation of rapeseed meals in animal diets implies a balance in protein ratio, which
consequently has an impact on palatability and feed intake, body performance, and the
production of milk, meat, or eggs.
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Rapeseed meals, as protein supplements, could enhance weight in cattle [171–174].
It could be used as a substitute to barley (up to 15%), as demonstrated by Damiran and
McKinnon [175], but they found no significant change in the performance of steers. Besides,
the milk yield was significantly increased in cattle supplemented with rapeseed meal (com-
pared to those fed with soybean meal) [176,177], and in a combination of rapeseed meal
with wheat distillers’ dried grains with soluble [178], or as a substitution for wheat [179].
Incorporating rapeseed meals in pig diet was limited to 25% [180] since they only could
tolerate 2 to 2.5 µmol/g of glucosinolates [151,181]. Rapeseed meal was incorporated
in wheat, soybean, or corn-based diets, and affected feed efficiency, protein digestibility,
energy value, and microbial community [37], without influencing feed intake and body
weight [182]. In contrast, Lee and Woyengo [183] found that adding cold–pressed rapeseed
meal into corn–soybean meal basal diet could reduce daily feed intake and growth per-
formance. Besides, Lyu et al. [184] demonstrated that a high fiber diet in pigs negatively
affected nutrient digestibility and energy value, despite a period of adaptation. Thus,
dehulled rapeseed meal is a better choice. It was revealed that the dehulled rapeseed
meal could improve the digestibility of phosphorus but did not alter the bodyweight of
pigs [185]. Otherwise, Velayudhan et al. [186] studied the impact of incorporating rape-
seed meal in sows during gestation and lactation and reported that a ratio of 300 g/kg
of rapeseed meal could support sows and suckling piglet performances without negative
impacts on nutrient digestibility and energy value, and with a positive impact on the sows’
gut lactic acid bacteria. In contrast to pigs, sheep could tolerate high-glucosinolate meals
and could be fed with rapeseed meals, with no bad effects on the consumption of the
meal, the growth performance and weight of sheep, and milk production [187–189]. Other
studies demonstrated that weight gain in sheep and goats was obvious with the addition of
rapeseed meals to their diets [190,191]. Sutton [192] investigated feeding rapeseed meals to
horses and no effect was found on a feed intake up to 15%. The incorporation of rapeseed
meal was beneficial for rabbits’ growth [193].

In poultry, the supplementation of rapeseed meal was beneficial for ostriches [194].
In layer chicken, rapeseed meal formulated on a digestible amino acid was found to
be a cost-effective diet, and it did not negatively affect the production of eggs or feed
intake [195–197]. Broiler chickens could be fed rapeseed meal, even with a diet formulated
on digestible amino acid up to 30%, improving the average daily weight gain, without any
harmful effects on health and performance [198,199]. Rapeseed meal replacement in basis
diets, such as soybean meal, has been studied for poultry. It was recently reported that
partial replacement of rapeseed meal did not harm chickens [200,201]. Moreover, Mnisi
and Mlambo [202,203] investigated this replacement in Japanese quail diet and found that
growth performance, health, and meat quality were not affected at a ratio of less or equal to
12.5%. However, feed intake decreased at 17.5% of rapeseed meal. For turkey, adding 15%
of raw or fermented rapeseed meal in the diet resulted in an improved final bodyweight,
a stimulated antioxidant activity, a positive effect on intestinal histomorphology [204], as
well as improved meat quality in terms of antioxidant contents and fatty acid profile [148].
Choosing between yellow or black seed rapeseed meal has an impact on nutritive value.
Rad-Spice et al. [205] and Kozlowski et al. [206] performed analyses on broiler chicken and
turkey, respectively. In broiler chicken, a gain of body weight was found to be significantly
lower in the yellow seed B. napus diet, but no difference in the feed conversion ratio was
found. In turkey, no difference in apparent metabolizable energy and standardized ileal
amino acid digestibility was found, as well as in feed intake and bodyweight gain. These
findings suggest that both black and yellow seed rapeseed meal could effectively replace
soybean meal, as long as diets are formulated on a digestible amino acid basis. Reducing
seed hulls is one of the focuses of rapeseed breeding. It has been proven that yellow
seed cultivars (less fiber) are more digestible [207]. Digestibility could be improved by
manipulation of the seed coat development through genetic engineering [208].

Fishes and crustaceans were fed rapeseed meal, alongside other diets, and no negative
performance was observed [209–214]; however, the feed ratio in shrimps should not exceed
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30% to avoid growth defects and feed intake reduction due to the fiber content in rapeseed
meal [215]. To sum up, rapeseed meals can be incorporated in animal diets, with the right
formulation. Table 3 summarizes the rapeseed meal assays performed on animals.

Table 3. Rapeseed meal assay in animals.

Meal Composition Palatability/Feed
Intake Effect Animal

Performance References

Mammals

Cattle and steer
Rapeseed meals
with or without

wheat dried grains
Weight gain Improved milk

yield of 1 L/day [171–174,176,177]

Pig and sow

25% of rapeseed
meals mixed with
wheat, soybean or

corn

No change

Better feed
efficiency, protein
digestibility, and

microbial
community

Better energy [38,151,180–182]

40% of
cold–pressed

rapeseed meals
with corn or

soybean meal

Reduced

Reduced growth,
increased liver and

thyroid gland
weight, and

decreased serum
tetraiodothyronine

[183]

High fiber meals Reduced
digestibility Reduced energy [184]

Dehulled meals

Better P
digestibility, no
change in body

weight

[185]

300 g/kg of
rapeseed meals

Better lactic acid
bacteria, no impact

on digestibility

No change in
energy [186]

Sheep Rapeseed meals
and other diets

No change on
growth and weight

No change on milk
yield [187–189]

Goat Rapeseed meals
and other diets Weight gain [190,191]

Horse 15% rapeseed
meals No change [192]

Rabbit Rapeseed meals
and other diets Improved growth [193]

Poultry

Ostriches Rapeseed meals
and other diets [194]

Chicken

Up to 30% of
rapeseed diets
formulated on

digestible amino
acid

No change Improved weight
gain

No change in egg
production [195–199]

Rapeseed meals as
partial replacement

of soybean meals
No change No bad effects No change [200,201]

150 g/kg of yellow
seed rapeseed

meals
Small weight gain [205,206]

Quail

12% rapeseed
meals as partial
replacement of
soybean meals

Decrease of 17.5%
rapeseed meal No bad effects No change in meat

quality [202,203]

Turkey

15% of raw or
fermented

rapeseed meals
with other diets

Improved
bodyweight,

antioxidant activity,
and intestinal

histomorphology

Improved meat
quality [148,204]

200 g/kg of yellow
seed rapeseed

meals
No change

No change in
amino acid

digestibility and
bodyweight

[205,206]

Aquatic Species

Fishes Rapeseed meals
with other diets No change [209–214]

Shrimp
30% rapeseed

meals with other
diets

No change No change in
growth No change [209–215]
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3.3.4. Protein for Bioplastic Based Materials and Cosmetics Fabrication

Due to some anti-nutritional compounds that are present in meals after oil extraction,
the usage of rapeseed meal in the non–edible sector has been studied and exploited. In
recent years, the use of rapeseed meals to make bioplastic-based materials and cosmetics
has emerged. Bandara et al. [216] reviewed the success of using rapeseed protein as a
capsule for bioactive drugs delivery. Rapeseed protein could be used as an adhesive, while
blended with resins and nanomaterials, but also as plastic films for packaging. Additionally,
Zhang et al. [217] discussed the fabrication of polymer films from rapeseed protein, based
on aqueous extraction and protein precipitation. Thermoplastic properties of rapeseed
protein are palpable in the presence of water, glycerol, sorbitol, and polyethylene glycol.
Moreover, the mechanical and moisture barrier properties are comparable with that of
other bioplastics from plants. Taken together, the beneficial uses of rapeseed protein in
manufacturing capsule and plastic packaging are reinforced.

The processing of meals for bioplastics production affects the property of the final
product. For example, injection molding of the meal at 120 ◦C resulted in stronger sam-
ples, and the viscoelastic properties became higher with increasing temperature [218]. In
addition, highly deformable green biodegradable materials were produced from rapeseed
meals, and a higher protein content promoted the elongation at break and decreased tensile
strength. Moreover, that tensile strength and modulus were enhanced by the addition of
cellulose fiber at more than 5 wt% [219]. Besides, densification and torrefaction of rapeseed
meal and hull were studied by Azargohar et al. [220]. The torrefaction aimed to increase
the hydrophobicity and heating value of the pellet. They observed that increasing the
rapeseed meal/water mass ratio could improve the pellets’ mechanical strength. Thus,
the torrefied pellets had lower moisture adsorption, a lower oxygen content, but a higher
heating value, and a higher carbon content. Porosity was also increased. The addition of
alkali lignin could improve the torrefied pellets’ mechanical strength, had no effect on the
relaxed density of the pellets, and increased the moisture adsorption.

Rapeseed meals could also be used for fabrication of cosmetics. The application
of rapeseed hydrolysates in producing skin anti-aging formulations was reported by
Rivera et al. [221], who converted the rapeseed protein-rich residues to biologically active
peptides by using enzymes. After 24 h of exposure, hydrolysates were biocompatible with
skin, in contrast to the non-hydrolyzed extract, which led to cells’ toxicity. The antioxidant
and anti-inflammatory activities were obvious, indicating that the enzymatic treatments of
rapeseed protein emerged as bioactive compounds suitable for skin.

4. Utilization of Natural Unprocessed Rapeseed
4.1. Vegetable Food, Tea, and Homeopathy

Rapeseed leaves and stems could be used as edible vegetables, or as a potherb for
seasoning. Seeds could be used as condiments and as spices. The winter-type cultivar
is the most cultivated rapeseed in the world, which gives it great economic potential
due to the limitation of existing vegetable crops in winter [222]. Green leaves are one
of the richest sources of essential minerals, protein, and vitamins [223]; they are rich in
antioxidant phenolic compounds and regular consumption of leaves is recommended to
prevent the risk of chronic diseases [224–229]. Rapeseed leaves are excellent vegetable diets
for weight loss, due to their low–fat composition, their richness in calcium (the highest
in green leafy vegetables), and their high content of vitamin C [222,230]. Vitamin C is a
well–known antioxidant that boosts immunity and protects macromolecules, as oxidation
is causative of several acute and chronic diseases, such as cold, asthenia, allergy, and bad
cholesterol [231]. Brassica also contains a good level of folate (Vitamin B9), which is greatly
needed during pregnancy to produce new cells and prevent birth defects, especially in the
brain and the spine [232]. Additionally, rapeseed contains iron, carotene, and dietary fiber,
which reduce lipid absorption while combined with cholesterol and cholate [233]. Phytates
and tocopherols (vitamin E) are also antioxidants that are present in rapeseed [234], and
phytosterols could reduce serum and low-density lipoprotein (LDL) cholesterols [235,236].
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Glucosinolates are active compounds that are found mainly in cruciferous vegetables.
Lots of studies have confirmed that eating cruciferous vegetables could greatly prevent
cancer, due to the presence of glucosinolates that have demonstrated to have anti-cancer
properties [237–243]. Glucosinolates are only harmful when they are processed for animal
feed, because toxic products that are catalyzed by an enzyme called myrosinase could be
released during the treatment [244]. Fortunately, myrosinase could be removed without
affecting plant bioactive compounds, by ablating myrosin cells, which normally contain
myrosinase [245]. Dietary glucosinolates cannot be directly assimilated by mammals
(including humans), but are hydrolyzed into isothiocyanates and other cyanates [246],
and these compounds have a strong anti-cancer ability because they are one of the best
substances in vegetables that induce apoptosis [247–250]. Isocyanates’ ability to inhibit
and fight against cancer was reported in several studies [237,251–256].

Rapeseed flowers could be used as infused tea [257], and the pollens could be eaten
because they are beneficial for the immune system to fight against diseases such as cancer.
This could be explained by the presence of steroids in pollen, which could affect cancer
cells’ viability, notably in the prostate [258–260]. Apart from the leaves, rapeseed roots
are also beneficial because of their various diuretic, anti–gout, anti–inflammatory, and
anti–scurvy qualities [261]. Some recent studies have demonstrated that rapeseed has a
good performance against Alzheimer’s [262] and prostate disease [263]. Thus, rapeseed is
an excellent vegetable crop, it is of low cost, and has a long period of availability, so it can
be used as a frequent component in the human diet.

4.2. Honey Production from Rapeseed

One hectare of land may contain about 350–700 thousand rapeseed plants, and each
plant can produce more than 100 flowers [264], which offers a high potential for rapeseed in
producing honey [265]. It has been estimated that one hectare of crops might produce 60–90
kg of honey [266]. About 40% of honey produced in China comes from rapeseed [267],
while Canada produced ~80–96 million pounds of honey in 2015 to 2019 [268].

Honeybees are highly attracted by flowers with bright colors as in rapeseed, but
also by the odor of nectars, which is due to phenylacetic and phenylpropionic acids [269].
Indeed, rapeseed and bees have a mutually beneficial relationship. Rapeseed has a long
flowering period, and flowers make a good habitation for bees, but also provide high
quantity and high quality of nectar [270]. Thus, bees can have good shelter and nutrition
for up to one month, without the need to go far for feed. Rapeseed pollen also has a good
balance of protein and fat that meet the requirements of a bee colony to reach optimum
production, i.e., a crude protein value of 22% to 27%, and fat content of ~7% [271,272].

Rapeseed flowers can be pollinated by bees, and consequently, the yield is
increased [273,274]. This implies that one strategy to increase the yield of rapeseed is
to increase the bees’ density, already proven to be effective in a study led by Xie et al. [275],
resulting in more than 30% higher seed yield, in comparison to the non–pollinated crops.

In other studies, the pollinated crops displayed higher pod numbers, seeds per pod,
and seed weight [276–278], but bees’ density is also an important key in crop productiv-
ity [279]. The germination rate is also improved by the bees’ pollination [270,280]. In
addition, seeds treated with insecticides seemed not to be harmful to the bees, because
insecticides were not released in the air, and no poisonings were obvious in the fields [281].
Thus, humans too can be a part of a mutual relationship with rapeseed and bees by pro-
viding protection and needs for these two actors, and in turn, humans can get abundant
honey with all its benefits.

4.3. Ornament and Field Attraction

Rapeseed flowers have been used to decorate buildings and graves in Germany,
Switzerland, and Italy [281–283], and now they are widely used for ornamental purposes.
Rapeseed is an excellent crop in horticulture—it is beautiful as indoor and outdoor decora-
tive flowers, and as a field to visit for leisure and tourism purposes. As rapeseed has a long
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flowering period, its beauty can be enjoyed for an extended period of time. In addition,
the creation of colorful rapeseed flowers via interspecific hybridization and intergenic
hybridization resulted in acquiring white, milky white, golden yellow, orange, purple,
pink, and red flowers [284–286]. Flower colors are due to pigments, such as carotenoids,
betalains (in yellow and red flowers), and anthocyanins (in yellow, red, orange, pink, blue,
and purple flowers) [287,288], which are accumulated in the vacuoles of epidermal cells,
and their amount in the cells, their association with other pigments or metal ions, vacuole
pH, and the thickness of the epidermal cells were proven to influence the color type and
intensity [288–291]. In rapeseed, color variation is linked to cyanidin biosynthesis [286]. A
recent study reported the difference in chemical constituents of rapeseed petals displaying
different colors and highlighted that the highest level of flavonoids was found in red petals
and the lowest was in pale white petals, whereas the richest amount of phenolic acids was
found in pink and pale white petals [292]. Various colors of rapeseed flowers increase its
value as decorative and landscape plants, and exploitation in the art and tourism sector
creates employment and income for local people.

4.4. Agricultural Residues

Besides, after the seeds are harvested, the rapeseed straws are used for animal feed.
The yield of straws is about four times higher than that of the seed yield, and straws still
contain a good level of proteins, which are significantly higher than that of the legume [293].
Rapeseed crude proteins are also higher than that of wheat [294,295]. The only drawback
in using straw as animal feed is the high level of fiber, which decreases digestibility and
palatability. Ammonia treatments were suggested to solve this difficulty. Huang et al. [296]
reported that to reduce fiber and increase protein availability, the rapeseed straw should
be impregnated with water (30% of straw volume) and 3.5% of ammonia urea. Adding
40% of this mixture to cattle diet could effectively increase their weight. Rapeseed leaves
could be used to feed animals—they contained more than 15% of crude proteins and
promoted weight gain in animals, 800–1200 g and 150–250 g per animal per day in cattle
and lambs, respectively [297]. Producing rapeseed forage is low-cost, which makes it useful
for animal feed.

Rapeseed straws, hulls, and cake could be used to produce biochars [298–300]. Biochars
are used as a mixture with composts to enhance soil property, to increase crop produc-
tion [301]. In the system of soil enrichment, rapeseed agricultural waste is an excellent
substrate in vermicomposting [302], and biochars of rapeseed could effectively reduce the
availability and intake of heavy metals in soil [303–305]. In addition, the dehulled rapeseed
could be used to furnish fuel pellets for energy production [300].

4.5. Phytoremediation

The environmental pollution caused by heavy metals is a major problem in agricultural
development, because of soil and groundwater contamination, which are dangers for public
health. Plants can be used for phytoremediation—the root can absorb cadmium (Cd), the
main heavy metal that causes pollution. The absorbed Cd from the soil ascends above
and is eliminated when the plant is fully grown. Using plants for bioremediation could
maintain productivity and is pollution-free [306]. Several studies have demonstrated
that rapeseed is an excellent crop for phytoremediation, for its performance in absorbing
heavy metal [307–311]. For instance, Cadmium (Cd) and Zinc (Zn) could be removed at
2.4% and 1.80%, respectively, while planting rapeseed in soils polluted with those heavy
metals [307]. Thus, a significant part of lead (Pb), Cd, and Zn could be accumulated in the
roots of rapeseed after growth in soil rich in heavy metal contamination [308]. Similarly,
Belouchrani et al. discovered that rapeseed could accumulate a high concentration of
Zn, which could positively affect the root, stem, leaves size, and number, and the dry
matter of rapeseed after 12 weeks of growth [309]. Moreover, areas polluted by chrome
(Cr) could be cleaned with rapeseed after four months of growth. The concentration of
Cr in the shoot and root of rapeseed increased, while those of the soil decreased at a
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level of 1% [310]. Rapeseed root fixes and accumulates most of the soil heavy metals
because the rapeseed main root develops on the surface horizon, where the highest amount
of heavy metals are concentrated [308]. Rapeseed has been qualified as a heavy metal
hyperaccumulator [309,312], which makes it an excellent crop for phytoremediation.

Additionally, rapeseed could supplement nutrients to the soil; for instance, by using
rapeseed as a green manure, rice yield was increased [313–315]. Moreover, rapeseed could
enhance crops with growth and development with a hormone named brassinolide [316].
Cycling rapeseed cultivation with other plants is not competitive, because rapeseed is
a spring/winter type crop, whereas others such as rice, corn, and soybean are summer
crops. Another advantage of rapeseed manure is its ability to improve beneficial soil
bacteria [317] and to alleviate or suppress the harmful effect of infections [318–322] and
nematodes [323–325]. Another beneficial use of rapeseed manure is in weed management,
which could increase crop yield [326–330]. Thus, rapeseed can be used for phytoremedi-
ation and manure to detoxify the soil and balance soil micro-organisms for the good of
the crops.

5. Advancement in Breeding Aiming to Improve Rapeseed

In the past century, conventional breeding has been doing well in constantly increasing
the potential yield of many crops [331,332]. However, more precise and cheaper method-
ologies have been invented. Increasing hybrid performance is the main goal of breeding in
many crops, including rapeseed, i.e., higher biomass yield, better seed quality traits, fast
growth and productiveness, more resistant to stress and disease [333,334].

5.1. Hybrid Heterotic Potential

A cross between two parental lines with valuable traits is an approach that could
enhance offspring with superior qualities (heterosis). Multiple factors affect the level of
heterosis, but in comparison to self–pollinated species, the cross–pollinated species display
a higher level of heterosis [335,336]. Moreover, genetic diversity (GD), reproductivity of par-
ents, adaptability, studied traits, and environmental parameters affect heterosis [335–337],
but GD has been thought as insufficient to increase heterosis level [338]. In rapeseed,
hybrid was often a result of a cross between different accession (intraspecific heterosis),
which is an easy and low–cost but highly effective technique, or a cross between different
subspecies (interspecific heterosis), which offers a higher level of genome stability, and
is commonly used in allopolyploid species, or between different species/genus (wide
hybridization heterosis) that display stronger hybrid vigor compared to the intraspecific
heterosis [337]. Hybrid performances in seed-yield and yield-related traits were tested
in several studies involving crosses between semi-winter and spring types [339], winter
and semi-winter types [340], winter and resynthesized types [341], and resynthesized lines
(i.e., lines derived from artificial resynthesis of rapeseed from the two parental species, in
order to increase the genetic diversity to introduce one or more genes to improve specific
traits) [342,343], half-diallel populations [344,345], and wide hybridization, which resulted
from a cross between B. napus and B. oleracea [346]. For example, Radoev et al. [341] found
a heterosis level of 30% for grain yield and 0.7% for kernel weight, while combining winter
and resynthesized rapeseed. DH lines were developed in four locations in Germany, and
33 QTLs and many detected epistatic interactions were found. It has been affirmed that
epistasis with partial dominance to over-dominance factors is responsible for the heterosis
performance. Additionally, Li et al. [346] suggested that introgression of B. oleracea can be
beneficial for genetic variation and heterotic potential in rapeseed since significant positive
correlations were found between the introgressed B. oleracea genomic components and
heterosis. To investigate the correlation between hybrid performance and genetic distance,
Luo et al. [347] led studies on harvest index and found that GD was not correlated with
harvest index heterosis, indicating a limited prediction of heterosis with GD in their study
(SNP-based methods).
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5.2. Pollination Control Systems for Hybrid Seed Production

In rapeseed, pollination control systems play important roles in heterotic applica-
tions. The pollination control systems aim to increase the vigor and productivity of the
hybrid [348]. It includes the use of techniques of self-incompatibility (SI) [349], and those
inducing sterility, such as cytoplasmic male sterility (CMS), genie (or nuclear) male sterility
(GMS), pollen sterility induced through chemical hybridizing agents (CHAs), and pollen
sterility induced through recombinant DNA (rDNA) technology [350]. However, SI is some-
times unstable and is sensitive to high temperatures, CO2 and NaCl, resulting in problems
in the maintenance and propagation of alleles from parental lines. Thus, in allotetraploid
rapeseed, male sterility is the only efficient approach to produce hybrid seed (reviewed
by Singh et al.) [351]. Male sterility is important in hybrid breeding but also in biological
safety applications, which limits the dispersion of transgenes [352]. Among the multiple
successes in rapeseed male sterility application is the increased resistance to Sclerotinia
sclerotiorum in Ogura CMS restorer with B. oleraceae as a donor [353]. In another study,
pollen and seed fertility were improved, and glucosinolate content was reduced [354].
Moreover, better cold tolerance was observed in a male sterile hybrid by protoplast fusion
of a cold-sensitive male sterile B. oleraceae and a cold-tolerant fertile B. rapa [355].

5.3. Exotic Germplasm to Enhance Heterotic Potential

A cross between an elite germplasm and an exotic germplasm is an approach that
could enhance heterotic potentials. Exotic germplasm has extensive genetic diversity for
important traits that could be provided to the elite germplasm, which were probably
lost in the elite due to selection procedures or accession issues [356–358]. Unfortunately,
using exotic germplasm is time-consuming and usage of Marker–Assisted Selection (MAS)
is faster but inefficient for complex traits as yield, and massive linkage drags are often
encountered, ensuing a gap between elite cultivars and introgressed materials [359]. In
rapeseed, numerous studies have been undertaken to analyze the effect of exotic sources
in breeding [350–367]. For instance, Kramer et al. [365] analyzed QTL alleles from exotic
sources in hybrid seed yield of spring-type B. napus. A previous study revealed that some
QTL alleles from exotic donors increased hybrid seed yield while re-evaluating the QTL
in the same genetic background and hybrid combination. However, evaluation in a new
genetic background resulted in no difference in exotic QTL or significantly lower seed yield
in the hybrid than the spring QTL alleles, indicating that the effect of the exotic source
was not predictive of other genetic backgrounds or hybrid combinations. Another study
performed by Wang et al. [368] demonstrated excellent adaptability under low-nitrogen
stress of a rapeseed type with introgression of exotic subgenome component from B. rapa
and B. carinata; the hybrid showed strong heterosis in both vegetative and reproductive
growth. Besides, Guo et al. [367] investigated eight yield traits in rapeseed, comparing
resynthesized lines developed from a cross between B. oleracea L. ssp. alboglabra Bailey and B.
rapa L. ssp. chinensis and campestris, and common lines, including elite bred from China and
exotic spring lines from Germany and Canada. Significant differences between them were
found: the resynthesized lines displayed higher siliques length, 1000–seed weight, and
main inflorescence length, but shorter plant height and first branch height primary branch
number, seeds per siliques and siliques density and lower number of primary branches
and number of seeds per siliques, which were not found in the progenies B. oleracea and B.
rapa, indicating that resynthesized lines can provide new germplasm for common lines in
rapeseed breeding and gene pool enrichment.

5.4. Genomic Selection (GS)

Genomic selection (GS) is a strategy proposed initially by Meuwissen et al. [369]. GS is
performed from phenotypic analysis, predicting the genetic value or the genomic estimated
breeding values of an individual in a testing population, including progeny or/and those
with no specific phenotypes. Knowledge of the relationship between individuals is needed
to analyze genetic covariance and then to make predictions. In rapeseed, GS has been
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carried out in several studies to enhance important traits, such as seed oil and fatty acid
contents, seed protein content, seed glucosinolates, seed acid detergent lignin and hull
content, oil yield, seed yield, seedling emergence, lodging resistance, flowering time, and
plant height [366,370–372]. For example, Li et al. [371] effectively compared different GS
models using FT trait in B. napus and found high levels and no apparent difference of
accuracies among the models. Moreover, Würschum et al. [370] could detect small-effect
QTLs with GS, and reported medium-to-high prediction accuracies, studying yield-related
traits in rapeseed. Thus, GS is an effective way to detect valuable breeding materials for
complex traits such as yield.

5.5. Nested Association Mapping (NAM) and Multi–Parents Advanced Generation
Intercrosses (MAGIC)

NAM is a concept initially tested in maize; it correlates phenotype to genotype, and
has for purpose the dissection of complex traits genetic architecture. NAM combines
the advantages of association mapping and linkage analysis, i.e., it offers the feasibility
of ancient and recent recombination, the possibility of many alleles analysis, and the
accessibility of high mapping resolution and statistical power, using low to moderate
genetic marker density [373,374]. Unfortunately, to our knowledge, rare studies have been
reported on NAM in rapeseed.

In 2013, Samans et al. [375] announced the German public–private consortium,
PreBreed–Yield, which aims at genotyping and characterizing extensive NAM populations,
joining new genetic variety, and which would be used as a resource for B. napus genome
analysis and future breeding. The basic development of the NAM population was based
on a cross between an elite winter parent and 50 different founders. For example, Shun-
mugam et al. [376] crossed an elite parent with 50 spring lines of B. napus to generate NAM
population, to study genetic variability in growth physiology, flowering and maturation
phenology, yield, seed, and leaves-associated traits. Their findings indicated positive corre-
lations among the founders and the reference line, for leaf characteristics, gas exchange,
and flowering phenology. In addition, Li et al. [377] used computer simulation to find the
best statistical model for application in rapeseed and indicated that higher power of QTL
detection was higher in the joint composite interval mapping (JCIM) model and DH–NAM
mating design.

MAGIC population is another concept of multi–parental population. Founders are
carefully chosen before population development, according to the trait of interest and it is
important that founders provide originality to the population. Thus, multiple interesting
alleles would be in combination to develop genotypes [378]. A study performed by Zhao
et al. [379] developed MAGIC populations in rapeseed by crossing eight elite parents
producing 680 lines. The traits studied were related to yield and disease resistance, and
offspring displayed a significant difference in five studied traits compared to parents;
also, a normal distribution of trait variation was obvious. Moreover, nine lines displayed
more resistance to Sclerotinia sclerotiorum and provided higher seed yield and quality
performance. The development of this MAGIC population in rapeseed allowed the authors
to conclude that it is ideal for the selection of elite lines [379]. More studies should be done
using these multiparental populations in rapeseed, to benefit from advantages offered by
these strategies.

5.6. Genome Sequencing

Access to genome sequence opens opportunities in the knowledge of their structure
and function, but also the evolution of species; it is also very important to design strategies
and tools that are beneficial for crop improvement [380]. Genome sequencing allows to
uncover the DNA identity of an organism and permits the comprehension of genome
diversity via detection and characterization of structural variation in the genome (e.g., copy
number variation). This implies that normal, abnormal (disease), and rare phenotypes
could be investigated through genome sequencing [381–383]. Therefore, genome sequenc-
ing could serve to reveal agronomical important loci. The release of genome sequence of
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the winter-type cultivar “Darmor–bzh” [4] opened many opportunities in comprehension of
rapeseed genome, and in the achievement of studies that aim at breeding improvement.
However, a single reference has been qualified as inadequate to study the genetic profile
of a species [384]. Fortunately, genome assembly of two other cultivars: a winter-type
“Tapidor” [384] and a semi-winter-type “Zhongshuang11 – ZS11” [385] have been reported.
Actually, a rapeseed pangenome has been established with more than 1690 accessions is
available [386], which is a valuable resource to structural variation of genes associated
with agronomic traits. Currently, knowledge and application of genomics could help to
improve traits in the field [384]. Several pieces of research have been conducted using
genome sequencing/resequencing in rapeseed, comprehending traits variation, stress, or
disease resistance [387–390]. For example, Yao et al. [390] reported the whole-genome
re–sequencing (WGR) and fine mapping of an orange petal color (OPC) gene (Bnpc1)
in spring B. napus, using two backcrosses (BC) populations produced from OPC parent
and a yellow petal color parent. One BC population was subjected to WGR with bulked
segregation analysis (BSA) and exposed two major candidate intervals of Bnpc1 on C9
chromosome. The other BC population was used to build genetic and physical linkage map
using SSR and InDel markers. The observation indicated Bnpc1 was located in scaffold_38
on C9, flanked by two Indel markers, which were included in the first re-sequenced can-
didate region on C9. Their findings might help in OPC variety development in rapeseed.
Another study on Brassica genera flowering time (FT) gene variation was described by
Schiessl et al. [391]—they deep-sequenced B. rapa and B. oleracea flowering regulator genes,
which were homologs of 35 A. thaliana genes and were able to uncover SNP, Indel, and CNV
for the FT genes network. The obtained data were compared to B. napus and this helped
demonstrate rearrangement in B. napus genome, which might happen as a consequence of
polyploidization. Their findings enabled understanding of the evolution and speciation of
Brassica genera and added important information on FT.

5.7. Genome Editing Technologies (GETs)

GETs encompass gene manipulation within an organism, or incorporation of valu-
able genes into an elite germplasm, both resulting in an effective alteration of genotype
and phenotype without extensive backcross [392,393]. Additionally, GETs offer a more
controlled, precise, and faster strategy to induce modification of genes function, like si-
lencing or expression enhancement, but also the insertion or deletion of genes at precise
locations in a genome [394,395]. GETs promote genetic variation and include systems as
Zinc finger proteins (ZNFs), Transcription activator–like effector nucleases (TALENs), and
CRISPR (Clustered, regularly interspaced, short, palindromic repeats)/Cas. ZFNs and
TALENs allow to knock-out or cleave specific targeted sequences by use of DNA binding
motif/domain, whereas CRISPR/Cas system promotes cleavage of any target sequence
by changing the sequence of a guide RNA (gRNA). CRISPR/Cas is a recent technology
that offers more advantages compared to ZFNs and TALENs due to its simplicity and
high effectiveness, but also in CRISPR/Cas system, mutations could be simultaneously
implemented in many genes with multiple gRNAs injections. GETs are effectively used
to enhance crop breeding; for example, Rodríguez–Leal et al. [396] demonstrated that
CRISPR/Cas9 was effective and beneficial in quantitative variation for diverse traits—they
pointed out in their findings the possibility of instantaneous selection and fixation of new
alleles in non-transgenic plants, and the fine manipulation of yield components.

CRISPR/Cas9 is now extensively applied to elucidate genes functions in many species,
including rapeseed, to name a few in LPAT genes [397], in WRY genes [398], TERMINAL
FLOWER 1 [399]. Braatz et al. [400] applied the CRISPR/Cas9 system to ALCATRAZ (ALC)
genes, which are implicated in the development of valve margin in seeds, contributing
to their smash from mature fruits. Removing ALC function would enable more breakage
resistance of seeds during harvest. Their findings showed stable mutations inherited in
T2 generations, free of wild-type alleles, and obtained from a single-step strategy. In
addition, no off-target mutations were found in the T2 generations, and whole-genome
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sequencing revealed the insertion of vector sequences into the genome. While testing
shatter resistance in ALC knocked-out plants, it was revealed that more resistance was
perceived in siliques more than 5 cm in length. Another study illustrating the usage of
genome editing by CRISPR/Cas9 in B. napus was reported by Yang et al. [401]. Twelve
genes related to plant development regulation were subjected to the analysis. Similarly,
no off-target mutations were found in T0 generation and stable and inheritable mutations
were observed in T1 generation, free of novel mutations or reversion. Findings reported
by both Braatz et al. [400] and Yang et al. [401] illustrated the precision and effectiveness
of using CRISPR/Cas9 in altering rapeseed genome, with high stability and heritability,
to get beneficial phenotypes. To date, more than 20 genes in B. napus were modified via
CRISPR/Cas9, and the editing efficiency ranged from 0–70%, with almost 100% of positive
transgenic lines obtained (reviewed by He et al.) [402], which is a good reason to promote
the application of this strategy to enhance rapeseed breeding.

6. Future Directions

At present, it is clear that rapeseed has high potential in satisfying human, animal, and
crop demands in many aspects (Figure 4), with beneficial impacts on health, environment,
and economy.
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Despite several efforts furnished on rapeseed research, some remarks that need reflec-
tion are discussed below, to provide direction to future research works.

To satisfy the increasing oil demand, increases in rapeseed production are required.
However, until now and based on the above-mentioned findings, only the solvent and
cold-pressed extractions are used for huge productions. On one hand, the use of a solvent
is cheap, but might harm health. On the other hand, the cold-pressed method gives a
lower yield, but healthier oil. These were the reasons why other methods of oil and protein
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extraction, using non-chemical tools, have arisen, but now their performance on a great
scale remains unclear, i.e., would they produce healthier and long shelf-life products?
Would the yield be greater and the time of production faster? Would the cost of production
be lower, or at least be well covered by the selling price? Would they be environment-
friendly? Consequently, these methods should be tested at an industrial scale, to determine
the yield, cost, and time of production. Most importantly, the impact on health and the
environment should be deeply studied.

Consuming rapeseed oil has been reported in some studies to be beneficial and in other
to be detrimental. To understand this divergence, extensive studies should be performed
to detect the circumstances in which consuming rapeseed oil might be unsafe.

Having a diverse and sufficient quantity of affordable and nutritious foods is nec-
essary to support healthy and active living. Rapeseed has been demonstrated to offer
benefits when consumed as vegetables, tea, and condiments, but also to provide oil, protein
meal, and honey, making it an excellent choice to complete human and animal nutrition,
and to prevent or fight certain diseases. However, the presence of some anti-nutritional
compounds still subsist; thus, the usage of molecular tools and application of appropriate
processes and formulations might cover or relieve these limitations. Besides, more diversity
in rapeseed food might be created to allow larger choices. In addition, rapeseed is rich in
nutritious components and good proteins; this could be exploited to tackle famine and
malnutrition in under-developed countries. All these possibilities should be studied in
the future.

Inedible products from rapeseed are now occupying important places in different
sectors, as described earlier, but the utility should not be limited to these findings; more
possibilities should be studied, for example in producing pesticides and in manufacturing
fast biodegradable products such as bags or bottles, instead of using chemical-based
products that increase waste and degrade the environment. The exploitation of rapeseed
in pharmaceutical and cosmetic industries should be enlarged, due to its richness in
anti–cancer and antioxidants compounds.

Rapeseed contributes greatly in creating a loving environment with its beautiful
diverse colors, as well as boosting some crops’ growth and healing soil from heavy metals
and undesirable infections. With genetic engineering, these rapeseed qualities could be
enhanced and maintained, even in environmental fluctuation.

While searching for literature on rapeseed processing and usage, gaps in the time
of studies was found for some topics; this might indicate a lack of interest. In addition,
evolution of the studies tends to follow the same topics, whereas other areas are still unclear.
This should re-ignite the interest of researchers.

In conclusion, rapeseed is an important multifunctional crop that deserves more atten-
tion, protection, and improvement. With this review, we aimed to present rapeseed value
to increase researchers’ interest, explore more about its potential and re-ignite the interest
of professionals (dampened by rapeseed losses caused by various diseases and decrease
in cultivation, which limit rapeseed profitability). Effectively, extensive researches have
allowed exploiting, at most precise, the molecular mechanism controlling beneficial traits
in rapeseed (oil, protein, yield, disease resistance). Still today, efforts are being made to
optimize these valuable traits. However, some issues are encountered in rapeseed cultiva-
tion. Some countries have low agricultural mechanization levels and agricultural inputs,
and increased labor costs, which decrease farmers’ motivation in rapeseed cultivation. In
addition, the global economic competitiveness of rapeseed should be improved. Thus, eco-
nomic and management strategies should be revised to avoid the high input/low output
in rapeseed production, which might motivate farmers to cultivate the crop. Thus, the
sustainability of rapeseed production could be ensured and the profitability enjoyed.
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