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Abstract: Potato (Solanum tuberosum L.) is the third most common plant crop in the world. Many
studies, such as those using marker-assisted selection (MAS), are devoted to the genomic evaluation
of potato. However, the nucleotide composition of some markers has not been described yet, and
some regions of the genome remain unknown. Thus, the development of new marker systems
for further genetic selection is required. Whole-genome sequencing and the search for structural
variants (SVs) should further develop molecular genetic studies of the potato crop. In this paper,
we will show the first results of our studies of the three backcrossed varieties Alaska, Argo, and
Shah, which were selected for sequencing. Alaska is a patented variety with confirmed resistance
to pathogens, while Argo and Shah are new perspective varieties. We sequenced genomes of these
varieties using a nanopore platform. As a result, we identified more than 24,000 authentic structural
variants with lengths varying from 4 bp to 100 Mbp. Deletion was found to be the most common
type of structural variant in the genome and the genes. The majority of SVs are located in non-coding
regions, including introns. However, a quarter of the genes of the sequenced varieties have some
chromosomal mutations. Some genes responsible for resistance to abiotic stress and pathogens were
duplicated, while genes of nucleic acid polymerization and few metabolic proteins were deleted.

Keywords: potato Solanum tuberosum L.; structural variants; potato genome

1. Introduction

Potatoes have a long history of cultivation and improvement around the world. The
main selection lines in potato breeding are focused on resistance to pathogens (viruses,
fungi, and bacteria), protection against abrupt climatic changes, and improvement of
nutritional quality [1]. Many wild potato species can be crossed with cultivated species
and varieties, creating a rich genetic breeding pool [2]. Approximately 40% of wild species
are carriers of genetic traits that defend against pests and diseases [3]. However, modern
varieties carry only a fraction of the beneficial genes of their wild relatives. Among
these genes, the most significant are related to resistance to viruses (Solanum stloniferum,
S. tuberosum ssp. andigena), nematodes (S. spegazzini, S. vernei), and blight (S. demissum,
S. bulbocastanum) [4–7]. For a long time, recurrent selection by phenotype remained the only
method of potato breeding [8]. This type of breeding is time-consuming and takes up to
30 years to obtain a variety [6]. Its main limiting factors include the quantitative nature of
essential traits, inbreeding depression, low selection intensity in the early generations, low
pollen fertility of cultivated varieties, and the accumulation of pathogens in hybrids [1,9].

Marker-assisted selection (MAS) allows early selection of hybrids to identify essential
genes and loci of quantitative traits (QTLs) and is widely used to increase the rate of
selection [10,11]. A wide range of genetic markers have been developed, for example, to
determine resistance to X and Y viruses [12–15], nematodes [16,17], Phytophthora [18,19],
and potato wart (Synchytrium endobioticum) [20]. Most of these markers were created using
two main techniques: amplified fragment length polymorphism (AFLP) or restriction
fragment length polymorphism (RFLP), i.e., without known sequences. All of them are
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related to the presence or absence of the PCR product, which means they are connected to
structural variants, such as an insertion or a deletion.

Before deciphering the potato genome, various genetic markers were used “blindly”
by breeders, while the association of candidate genes underlying the traits (although
analyzed with QTL) remained unknown. The potato genome was first sequenced in 2011
by the shotgun method using the Illumina and Roche platforms, amended with Sanger
sequencing data. Due to potato species’ polyploidy (two to five sets of chromosomes), the
genome of the doubled monoploid clone DM 1-3 516 R44 (hereafter DM) was sequenced
to facilitate genome assembly. As a result, 86% of the 844 Mb genome was covered. The
assembly included 12 pseudochromosomes with 39,031 predicted protein-coding genes [21].
Three reference assemblies were published during the potato genome sequencing research.
In 2011, DM assembly v4.03, comprised of 12 pseudochromosomes, was aligned and
compared to the available tomato genome. Later, DM v4.04 included new contigs from
whole-genome sequencing and augmented with unaligned reads. DM v6.1 was improved
by nanopore sequencing of the doubled monoploid genome and application of Hi-C
technology These updates made it possible to obtain longer contigs, reduce gaps in the
nucleotide sequences, and, as a result, improve sequence completeness [22]. The existence
of a reference genome is vital for further selective breeding programs. There is another
challenge in the study of the genome and the search for associations. Potato is a clonally
propagated plant, and it carries significant variability in the number of structural variant
(SV) copies and deletions or duplications in one-third of its genes [23]. Sequencing and
searching for SVs allow a detailed description of the potato genome to be made and predict
adverse mutations [24]. Moreover, this can help to understand some of the adaptations.
There is evidence that cultivated potato has increased copy numbers of disease resistance
and abiotic stress genes. However, most SVs lie outside of the coding sequences [25]. In
addition, the study of SVs helps create genetic markers in flanking non-coding parts of the
target to increase specificity [26].

In the Ural region, preference is given to varieties with a short vegetation period
due to climatic conditions. Further, widespread potato wart and late blight are the most
common potato pathogens in the Urals. The study of pathogen resistance in the Sverdlovsk
region primarily attracts our attention. Thus, new hybrids and varieties are tested for
resistance to potato wart, nematodes, Phytophthora sp., and X and Y viruses. The Alaska
variety, patented in 2020, is resistant to potato wart, Globodera rostochiensis [27], and to late
blight in tubers and leaves. Alaska has elongated tubers with red skin and white flesh
which becomes crumbly after cooking; the starch content is 14.0–18.5%; the yield can be
harvested until October. Argo and Shah are new varieties also resistant to potato wart.
Argo has red skin, white flesh and a rounded tuber; Shah has the same tuber shape but
yellow skin and flesh. All the varieties have a complex of economically valuable traits
(resistance to biotic and drought stress, starch content, etc.), making them suitable crops in
the Urals and similar regions.

2. Materials and Methods
2.1. Plant Materials

Our study focuses on three varieties of potatoes of the Ural selection—Alaska, Argo,
and Shah. All of the varieties are from the backcrosses line and have some common
ancestors. For DNA extraction, we used young tetraploid potato plants grown in a sterile
agar medium.

2.2. Genomic DNA Isolation and Purification

DNA was extracted from the plants with the innuPREP Plant DNA Extraction Kit by
Analytik Jena (Jena, Germany) according to protocol #3. Before isolation, samples were
homogenized in tubes with zirconium beads. Before sequencing, the resulting DNA eluate
was cleaned of residual RNA using the following procedure:
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1. 5 µL of RNase Cocktail™ Enzyme Mix by Invitrogen (Carlsbad, CA, USA) was mixed
with 100 µL of eluate in a 2 mL tube and incubated for 1 h at 37 ◦C;

2. At the end of incubation, 180 µL of AMPure XP by Beckman Coulter (Bray, CA, USA)
was added to the eluate, mixed gently by flicking the tube, and drops were then
separated by spinning, and the tubes incubated for 5 min;

3. The tubes were placed on a magnetic rack until discoloration of the liquid was
observed. Then the supernatant was removed;

4. The precipitate was washed twice with 300 µL of freshly prepared 70% alcohol;
5. Purified DNA was eluted in 100 µL of nuclease-free water by NEB (Ipswich, MA,

USA), mixed gently by flicking the tube, and incubated for 5 min, after dissolving
the precipitate.

We used a Short Read Eliminator Kit by Circulomics Inc. (Baltimore, MD, USA) to
enrich the library with long fragments. The quality of isolated and purified DNA was
tested on a Nabi UV/Vis Nano Spectrophotometer.

2.3. Sequencing of Genomic DNA

Sequencing was performed with the SQK-LSK109 kit using MinION Mk1C and FLO-
MIN106 cell by Oxford Nanopore Technologies (Oxford, UK). The library was prepared
according to the protocol “Genomic DNA by Ligation”. Only data obtained by nanopore
sequencing were used for this study.

2.4. Bioinformatic Analysis
2.4.1. Data Filtering

Guppy [28] was used to extract the FASTQ sequences from the 5 fast signals. The
resulting reads were filtered via NanoFilt [29] with a minimum read length of 600 bp and
quality above 7. NanoFilt was applied to remove 40 bp at each end of the reads. The DM
v6.1 assembly of the DM 1-3 516 R44 double monoploid potato genome [22] was used as
a reference.

2.4.2. SVs Calling

The filtered reads were aligned to the reference genome using NGMLR [30].
Sequencing depth was estimated in bamCoverage [31] and visualized in IGV [32].

Variant calling was performed with the options described in Table 1 using SVIM (Structural
Variant Identification by Mapped Long Reads) [33] and Sniffles [30] algorithms, which use
different approaches to search for structural variants. Sniffles uses split-read alignments to
search for SVs, while SVIM searches for SVs in each read and then combines them.

Table 1. Summary of the quality table of the obtained reads.

Parameter
SVIM Sniffles

Option Value Option Value

Minimum SV length –min_sv_size 3 −l 3
Maximum SV length –max_sv_size 100,000,000 — —

Minimum reads number for
SV determination –minimum_depth 20 –s 10

Minimum quality –min_mapq 40 –q 40
Maximum distance to group

SVs together –segment_gap_tolerance 5 –d 5

2.4.3. SV-Gene Matching

To search the indels enclosed within genes, we used annotation data based on DM
High Confidence Gene Model Set v6.1 [34].

Data were visualized and processed in R using packages ggplot2 [35] vcfR [36], se-
qinr [37] and VennDiagram [38].
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3. Results
3.1. Alignment of Three Potato Varieties’ Genomes against Reference

We obtained approximately 8.5 million reads with an average length of 51 gigabases
per sample. After filtering, we retained ca. 7.6 million reads with 44 billion nucleotides
in total.

The proportion of reads aligned to the reference genome was 72.3% for the variety
Argo, 74.1% for Shah, and 73.8% for Alaska. The whole reference genome was covered at
least 40 times. The remainder of the reads belonged to mitochondrial and plastid genomes,
as well as indeterminate repetitive multichromosomal regions. The results of sequencing
and filtering are shown in Table 2.

Table 2. Summary of the quality table of the obtained reads.

Variety Number of
Reads

Total Reads
Length,

Gbp

Mean Read
Length,

bp

Max Read
Length,

bp

Mean Read
Quality Coverage 1

Alaska 7,009,345 42 5992 138,417 22,5 42
Argo 7,916,456 47 5937 142,819 21,3 46
Shah 7,841,739 44 5611 119,045 20,8 44

1 The length of DM v6.1 reference assembly is 740 Mbp.

3.2. Finding Structural Variants

We used filtered and aligned reads to investigate structural variants in the genomes of
studied varieties.

SVIM and Sniffles require different approaches to filtering. The VCF-file provided by
Sniffles does not have a QUAL column, so quality control is available only in the Sniffles
option. We selected values of 40 and 20 on the Phred-scaled quality score for Sniffles and
SVIM, respectively, as a trade-off between quality and SV numbers. Estimation of sequenc-
ing depth also differed for SVIM and Sniffles, where the former estimates depth without
considering indels, and the latter estimates the exact read coverage. So, the difference
between both SV callers comprised 1.5–2 times. Therefore, we have chosen minimum
depths of 20 and 15 for SVIM and Sniffles, respectively, and removed sequences with
excessive read depth. Overrepresentation of any SV can indicate an unspecific alignment
of the mitochondrial and plastid genomes with the nuclear genome.

The total numbers of SVs detected by SVIM/Sniffles were 34,523/35,761, 57,614/57168,
44,876/44,674 for Alaska, Argo, and Shah, respectively. The sequencing coverage can
explain the difference in the number of SVs between varieties (e.g., Argo has the highest
coverage and the highest number of SVs). Both algorithms found approximately the
same number of SVs. We classified SVs into three groups: short (4 bp–5 kbp), medium
(5–100 kbp), and large (over 100 kbp). Short SVs were detected by both methods in
approximately equal numbers. However, SVIM was less sensitive to indels larger than
5 kbp. In addition, in comparison with SVIM, Sniffles was more sensitive to duplications,
revealed deletions, insertions, and inversions longer than 100 kbp (Figure S1). The total
numbers of structural variants are presented in Table 3.

Deletions and insertions are the most common SVs found, while duplications and
inversions are the least represented. Large inversions involving vast parts of chromosomes
are the most common among large SVs. The sequencing depth was almost equal for
the whole length of each chromosome. Nevertheless, the distribution of SVs within the
chromosomes was uneven and correlated with regions of euchromatin and heterochromatin
(Figures S2 and S3). The SV density was significantly reduced in the central part of the
chromosomes as compared to the edges.
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Table 3. Numbers of structural variants in the genomes of Alaska, Argo, and Shah varieties. Dele-
tions/insertions/duplications/inversions.

Variety SVIM Sniffles

Short SVs

Alaska 17,809/16,686/-/- 20,472/15,000/32/6
Argo 30,161/27,393/4/- 33,934/22,806/50/9
Shah 22,391/22,433/7/- 25,708/18,674/32/5

Medium SVs

Alaska 28/-/-/- 207/1/9/8
Argo 55/-/-/- 315/-/14/11
Shah 42/-/-/- 220/-/9/7

Large SVs

Alaska -/-/-/- 4/-/2/22
Argo 1/-/-/- 6/-/2/24
Shah 3/-/-/- 3/-/4/12

The numbers of indels identified by both SVIM and Sniffles are 16,438, 29,204, and
22,069 for Alaska, Argo, and Shah, respectively (Figure 1). The SVIM–Sniffles indels
comprised 24.6% of all found SVs. There were no common duplications or inversions. The
largest number of indels was identified for Argo. For this reason, this variety has more SVs
similar to those of other species. Only 9.8% of the SVIM–Sniffles indels were common for
all three varieties.

Figure 1. The unique and common SVIM–Sniffles structural variations for different potato varieties.
(a) All indels; (b) deletions; (c) insertions.

3.3. Structural Variants into Coding Sequences

Table 4 shows the results of the SVs and matching potato genes. Almost half of the
detected indels up to 5 kbp in length lie within genes. At the same time, short indels
with lengths of up to 30 bp have the greatest weight; the proportion of such deletions and
insertions is higher than 78% and 81%, respectively.

Table 4. Numbers of structural variants in the genome of Alaska, Argo, and Shah varieties. Dele-
tions/insertions/duplications/inversions.

Variety SVIM Sniffles SVIM–Sniffles

Alaska 8106/7398/-/- 9274/7302/9/1 4747/3410/-/-
Argo 13,381/12,069/-/- 15,082/10,886/21/1 8236/5884/-/-
Shah 10,070/10,188/3/- 11,451/8987/12/1 6000/4857/-/-
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Approximately one-third of all potato genes carry mutations (9179/8436, 12,821/11,800,
and 11,068/9757 in Alaska, Argo, and Shah varieties, respectively, based on SVIM/Sniffles
algorithms). The proportions of genes affected by deletions and insertions are 19.8%, 26.7%,
and 24.5% in Alaska, Argo, and Shah, respectively.

Most of the indels belong to introns and 3’-UTRs and should not have a visible effect
(Figure 2). However, about 1% of such indels are longer than 1500 bp, which leads to the
loss or alteration of the 3’-UTR, exons or entire genes and potentially could result in loss of
function. In addition, we found 600 deletions and 500 insertions, located either in coding
sequences (CDS and exons) or in the 5’-UTR regulatory region per variety.

Figure 2. The numbers of structural variants identified by (a) SVIM and (b) Sniffles algorithms.

Large deletions and duplications (2.5 kbp–55 Mbp) identified by Sniffles affect whole
genes and their clusters. Indels leading to duplications or deletions of one to two genes
are more frequent, but their total contribution to the change in the number of copies is
much lower than that of SVs longer than 100 kbp. (Table 5). We identified the encoded
proteins or protein families for some deletions and duplications (Table S1). For example,
dehydration-responsive protein (protein of drought stress [39]), ubiquitin-related protein
(resistance to pathogens, response to abiotic stress [40]), polygalacturonase inhibiting
protein (resistance to pathogens [41]), and β-fructofuranosidases (which play a role in the
cold-induced sweetening of potato tubers [42]) were duplicated. In contrast, some of the
nucleic acid synthesis-related proteins, metabolic enzymes and no apical meristem (NAM)
protein (protein of salt and heat stress, resistance to P. infestans [43]) were deleted.
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Table 5. Numbers of genes in the SVs. Deletions/duplications.

Variety
Number of Genes Number of SVs

Total >100 kbpSVs <100 kbpSVs Total >100 kbpSVs <100 kbpSVs

Alaska 2594/170 2540/135 54/35 29/10 3/2 26/8
Argo 1498/731 1435/680 63/51 41/17 5/2 36/15
Shah 926/1336 892/1305 34/31 26/13 3/2 23/11

4. Discussion

In the current study, we sequenced the genomes of three potato varieties selected at
the Research Center by Shanina E.P. and Klyukina E.M. (Ural Federal Agrarian Research
Center Ural Branch of the Russian Academy of Science, Ekaterinburg, Russia) and we
found their structural variants. All the varieties have biotic and abiotic stress tolerance
traits, making them applicable in the Urals and regions with similar climatic conditions
and soil.

The potato genome shows a high degree of diversity at the SV level. Using the SVIM
and Sniffles algorithms, we detected more than 30,000 SVs against DM v6.1 reference for
each variety based on a large number of high-quality sequencing reads. The total number
of the indels detected by both algorithms was more than 24,000 per variety, with the highest
number of SVs in Argo, and the lowest in Alaska. Noteworthy, these differences could
be caused by the difference in the sequencing coverage and depth. The coverage and the
depth could also affect the number of detected indels.

Previous research did not include SVs shorter than 500 bp [23,25], due to low cov-
erage, meanwhile SVs shorter than 500 bp made up more than 95% of all found SVs, in
concordance with recent research using a combination of sequencing techniques [24], and
demonstrating that the majority of all SVs can be shorter than 50 bp. On the other hand,
there is evidence that SVs larger than 100 kbp are common in the potato genome [23,44],
meanwhile, we found around 20 large SVs per variety and, notably, only a minority of SVs
belonged to deletions and duplications. There are a few possible reasons for this, including:
obtained coverage was insufficient to determine large deletions and duplications; read
length was less than necessary to cover an SV’s region at alignment; SVIM and Sniffles did
not enable accurate detection of SVs in a polyploid genome. Therefore, a higher coverage
could improve the detection of large SVs. As previously reported in other studies of the
potato genome [23–25], deletions prevail over the other types of SVs in intergenic and
genic regions.

The proportions of SVs were almost equal in intergenic and genic-intragenic regions.
About 50% of SVs shorter than 5000 bp affected up to one-third of all genes in the genome.
However, only about 1000 indels within exons, critical regulatory regions of the transcripts,
or entire genes could directly affect expression, e.g., cause frame-shift mutations. This kind
of mutation might affect gene expression [45]. The results correspond to early studies of
the structural variants in the potato genome [23–25], with the distinction that our work was
conducted using nanopore sequencing. About 40 large SVs included over 2000 genes and
could lead to changes in the gene copy number and the gene expressions in each variety. We
detected deletions in regulatory proteins of replication, methylations, and some metabolic
proteins. In the genome of the potato, there are about a hundred NAM-related proteins [42],
so deletions of this protein are unlikely to have a significant impact on the adaptability of
varieties. We found duplications of the dehydration-responsive protein and some ubiquitin-
related proteins in all the varieties, explaining their resistance to drought and other types
of abiotic stress. We also detected duplication of polygalacturonase- inhibiting protein
in Alaska’s genome. We assume this mutation determines the resistance of the variety
to late blight. The revealed duplication of β-fructofuranosidase in Argo can affect the
storage period.
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These results form the basis for further research aimed at detecting more target genes
that can determine storage longevity, yield, resistance to abiotic stress, and pathogenic
microorganisms related to particular geographic regions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11091703/s1, Figure S1: Karyotyping of SVs larger than 5 kbp on potato chromo-
somes, Figure S2: Distribution of deletions and insertions on potato chromosomes (a) identified by
Sniffles; (b) identified by SVIM, Figure S3: Sequencing depth and gene distribution per chromosome,
Table S1: List of structural variants containing a few genes found in Alaska, Argo and Shah.
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