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Abstract: Among cereal crops, wheat has been identified as a major source for human food consump-
tion. Wheat breeders require access to new genetic diversity resources to satisfy the demands of a
growing human population for more food with a high quality that can be produced in variable envi-
ronmental conditions. The close relatives of domesticated wheats represent an ideal gene pool for the
use of breeders. The genera Aegilops and Triticum are known as the main gene pool of domesticated
wheat, including numerous species with different and interesting genomic constitutions. According
to the literature, each wild relative harbors useful alleles which can induce resistance to various
environmental stresses. Furthermore, progress in genetic and biotechnology sciences has provided
accurate information regarding the phylogenetic relationships among species, which consequently
opened avenues to reconsider the potential of each wild relative and to provide a context for how we
can employ them in future breeding programs. In the present review, we have sought to represent
the level of genetic diversity among the wild relatives of wheat, as well as the breeding potential of
each wild species that can be used in wheat-breeding programs.

Keywords: wheat germplasm; Aegilops-Triticum; next generation sequencing; genetic diversity;
breeding program; environmental stresses

1. Introduction

Climate change and subsequent increasing abiotic and biotic stresses threaten food
security globally, as they can hinder the potential yield performance, increase the number
of pests and diseases generations, alter synchrony between plants and pests, increase risk
of invasion by migratory pests, increase incidence of insect-transmitted plant diseases, and
reduce the effectiveness of biological control, especially for natural enemies [1,2]. One
worthwhile strategy for increasing crop productivity and stability that may be applied in
a wide range of environments is ‘crop genetic improvement’ through the introgression
of novel genes, QTLs, and even novel alleles from wild relatives to local or modern
varieties [3]. As such, breeders must simultaneously both improve the genetic background
and reduce the impact of environmental stresses on the grain production. Among cereal
crops, wheat has a significant role in supplying the 20% of all calories consumed by people
worldwide. Due to climate change, mainly caused by biotic and abiotic stresses, the
demand for wheat bread wheat is predicted to increase dramatically in the future as the
global human population increases. Hence, wheat production will have a vital bearing on
food security in the coming decades [4].

After the green revolution, numerous bread wheat varieties were released by
agronomists and breeders in different parts of the world. Although this task helped to
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increase the breeding population of wheat, the genetic basis of the wheat was narrowed
through the shearing of the breeding lines and various breeding cycles, which in turn
decreased species variability. Wild relatives of wheat offer great possibilities for breeders to
develop new varieties with a more appropriate genetic background for various agricultural
systems [5]. Hence, the use of an ancestors’ gene pool is an appropriate strategy for
developing new superior bread wheat cultivars. Wheat wild relatives are closely related
species that have a long history in wheat breeding, mostly for abiotic stress tolerance. These
species are identified as the critical resources required to sustain global food supply [4]. The
tribe Triticeae, which is part of the Pooideae subfamily of the grass family Poaceae, includes
the genera Triticum and Aegilops L. These relatives provide important gene pools for wheat-
breeding programs, since they are connected to the most important agricultural crop,
Triticum aestivum L. [6]. In this review, we have summarized the phylogenetic relationships
among wild wheats and their potential applications in wheat breeding.

2. The Trend of Bread-Wheat Evolution

Wheat was domesticated from its wild relatives during the pre-pottery Neolithic
(PPN) period nearly 12,000 years ago, in the Middle East’s Fertile Crescent, which included
several wide ranges of geographical zones from Lebanon, Israel, Jordan, and Syria via
southeast Turkey, as well as into Iraq and western Iran via the Tigris and Euphrates rivers [7]
(Figure 1). Research conducted by Weide et al. [8] reported that the first hybridization
between wild wheats occurred in the west of Iran.
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Triticum and Aegilops are two key genera which include various wild wheat with
different genomic constitutions and which have played direct or indirect roles in wheat
domestication. Table 1 shows some of the key articles that have denoted how wheat
evolution occurred.
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Table 1. Some key articles regarding the trend of wheat evolution.

Article Reference

Evolution in the genus Triticum and the origin of cultivated wheat [9]

Genome symbols and plasma types in the wheat group [10]

Cytogenetics of wheat and its close wild relatives-Triticum and Aegilops [11]

Genome symbols in the Triticeae (Poaceae) [12]

Phylogenetic relationships of Triticum and Aegilops and evidence for the
origin of the A, B, and D genomes of common wheat (Triticum aestivum) [13]

Evolution of domesticated bread wheat [14]

Wheat domestication: Lessons for the future [15]

Distinguishing wild and domestic wheat and barley spikelets from early
Holocene sites in the Near East [16]

Emergence of agriculture in the foothills of the Zagros mountains of Iran [17]

On the Identification of domesticated Emmer wheat, Triticum turgidum
subsp. dicoccum (Poaceae), in the Aceramic Neolithic of the Fertile Crescent [18]

DArTseq-based analysis of genomic relationships among species of
tribe Triticeae [19]

Domestication and crop evolution of wheat and barley: Genes, genomics,
and future directions [20]

Bread wheat: a role model for plant domestication and breeding [21]

Roadmap for accelerated domestication of an emerging perennial
grain crop [22]

Current progress in understanding and recovering the wheat genes lost in
evolution and domestication [23]

Although phylogenetic relationships among wild relatives of wheat have been exten-
sively reviewed by many researchers e.g., [24], we report here an information flow diagram
for the trend of wheat domestication (Figure 2). This diagram shows wheat’s evolution pro-
cess and a general viewpoint of relationships among the close relatives of common wheat,
which descended from a 3 million-year-old common ancestor and gave rise to the Aegilops
and Triticum taxa [25]. Briefly, the T. urartu Tumanian ex Gandilyan (with A-genome) and
A. speltoides Taush. (with B genome) have created a tetraploid form of wheat known as
emmer wheat (T. turgidum ssp. dicoccoides (Körn) Aschers and Graebner Thell.), due to
the natural hybridization processes occurring several hundred thousand years ago [13].
T. turgidum L. ssp. dicoccum Thell. and free-threshing T. turgidum L. spp. durum Desf. are
the result of the domestication of wild emmer. A second hybridization event occurred
between A. tauschii Coss. and T. turgidum, which resulted in the hexaploid bread wheat T.
aestivum L. [13]. Consequently, the polyploidy genome of T. aestivum with an AABBDD
genome contains three sub-genomes AA, BB, and DD from T. urartu, A. speltoides, and A.
tauschii, respectively. Furthermore, Table 2 shows all wild wheat species with various alien
genomic constitutions.
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Table 2. List of different Aegilops and Triticum species along with their genomic constitutions.

Species

Genome

References

[26] [27] [10]

T. monococcum L. A
T. urartu Tumanian ex Gandilyan A
Ae. speltoides Tausch S
Ae. bicorne (Forsk.) Jaub. & Sp. Sb

Ae. longissimum Schweinf. & Muschli in Muschli Sl

Ae. sharonensis Eig Sl

Ae. searsii Feldman & Kislev Ss

Ae. mutica Bioss. Mt T
Ae. tauschii Coss. D
Ae. comosa Sibth. & Sm. M
Ae. uniaristata Vis. Mt Un N
Ae. caudata L. C
Ae. umbellulata Zhuk. Cu U
T. dicoccoides Korn AB
T. dicoccum Schrank AB
T. durum Desf. AB
T. turgidum L. AB
T. persicum (Percival) Vavilov ex Zhukovsky AB
T. aestivum L. em. Thell. ABD
T. spelta L. ABD
T. compactum Host ABD
T. sphaerococcum Perc. ABD
T. macha Dek. et Men. ABD
T. timopheevi Zhuk. AG M
T. zhukovskyi Men. et Er. AAG AAUG
Ae. ovate L. CUMO UM UM
Ae. biuncialis Vis. CUMb UM
Ae. columnaris Zhuk. CUMc UM
Ae. triaristata Wild. CUMt UM UM
Ae. recta (Zhuk.) Chen. CUMtX UMUn UMX
Ae. variabilis L. CUSV US USl

Ae. triuncialis L. CUC UC
Ae. cylindrica Host CD
Ae. crassa (4x) Boiss. DJ DM DCX
Ae. crassa (6x) Boiss. DJX DDM DCXSS

Ae. vavilovi (Zhuk.) Chen. DMS CCXSS

Ae. ventricosa Tausch DMV DUn DN
Ae. juvenile (Thell.) Eig DMU

3. Levels of Genetic Diversity in Wheat Germplasm
3.1. Phenotypic Diversity

Wild wheat species are highly diverse and variable in terms of agronomic and morpho-
logical traits. The distribution of these species in different ecological zones has resulted in
several species with unique traits. The first studies on phenotypic diversity in wild wheat
species and landraces referred to a study conducted by Percival [28], which described
diversity through plant height, spike length, number of spikelets, and straw quality among
landraces of bread wheat from Iran. Jaradat [29] indicated significant genotypic variation
for developmental and yield traits among Jordanian wheat landraces. Anker et al. [30]
investigated 76 accessions of wild wheat species including T. boeoticum ssp. boeoticum,
T. boeoticum ssp. thaoudar., T. urartu and T. monococcum in terms of 17 agronomic and
morphological characteristics. The germplasm accessions showed significant variation for
flowering data, length of spike, length of awns, and length of anthers. Arzani et al. [31]
investigated a collection of wild relatives including 24 Aegilops and Triticum accessions
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belonging to Ae. crassa, Ae. umbellulata, Ae. caudata, Ae. cylindrica, Ae. glabra, Ae. squarrosa,
Ae. triuncialis, T. monococcum, T. dicoccides, and T. compactum from different regions of
Iran. These authors estimated genetic diversity using 25 agronomical and morphological
characters, and finally reported that for qualitative qualities, there is a lot of variance across
species, as well as inter- and intraspecific variation for quantitative traits. Later, a study in-
volving 254 accessions of Ae. tauschii from several regions of Iran indicated a high diversity
for spike-related characteristics such as rachis node length, spike width, number of seed per
spike, rachis node width, spikelet glum length, seed length, and width [32]. The evaluation
of 68 accessions of Ae. tauschii ssp. strangulata and Ae. tauschii ssp. tauschii sampled from
different regions of Iran indicated significant variation within populations for most phe-
notypic traits, such as peduncle length, plant height, awn length, number of fertile tillers,
spike length, and biological yield. Likewise, an experiment using 180 accessions of Aegilops
and Triticum genera was performed by Pour-Aboughadareh et al. [33] to evaluate genetic
diversity using different agronomic characters. In this study, the Shannon–Weaver (HSW)
and Nei’s (HN) genetic diversity parameters revealed intermediate to high phenotypic
diversity for most traits in Triticum and Aegilops species. These researchers recommended
that the genetic diversity among studied Iranian Aegilops and Triticum species such as Ae.
crassa, Ae. cylindrica and Ae. umbellulata can provide new insights for the rediscovery of
valuable agronomic traits, which can be exploited for the improvement and adaptation
of common wheat. In view of this fact, several studies have been performed to measure
the extent and pattern of phenotypic diversity in the wheat germplasm collections using
different traits. Table 3 shows that attempts have been made to characterize the estimate of
genetic diversity levels in wild relatives of wheat using phenotypic data.

Table 3. List of several studies that reveal high levels of phenotypic diversity in wild relatives of wheat.

Target Species Traits References

A. tauschii

Plant height, peduncle length, number of tillers per plant,
number of spikes per plant, number of spikelets per spike,
spike length, leaf length, number of grains per spike, length
and width of rachis node and spike, seed color, glume color,
glume hairiness

[32–37]

T. boeoticum

Plant height, peduncle length, spike length, number of
spikes, number of spikelet per spike, number of grains per
spike, leaves number, glume shape, glume color, branched
spike, anther color, grain color, awn color, plant height,
glume length, flag leaf length, leaf length

[31,33,35,38,39]

T. aestivum

Plant height, peduncle length, number of tillers per plant,
number of spikes per plant, number of spikelets per spike,
spike length, leaf length, number of grains per spike, glume
shape, glume color, branched spike, anther color, grain color,
awn color, plant height, glume length

[31,33,36,39–45]

T. durum

Leaf length, number of seeds per spike, spike dry matter,
spike length, number of spikes, number of spikelets per
spike, thousand seeds weight, harvest index, grain yield,
various physiological traits

[31,33,46–49]

T. dicoccoides

Plant height, peduncle length, number of tillers per plant,
number of spikes per plant, number of spikelets per spike,
spike length, heading date, flag leaf length, flag leaf width,
harvest index, glume shape, glume color, branched spike,
anther color, grain color, awn color, glume length

[31,33,37,46–48,50]

T. urartu Plant height, peduncle length, leaf length, number of spikes,
spike length, number of spikelets per spike, seed yield [33,34,51]
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Table 3. Cont.

Target Species Traits References

Ae. caudate, Ae. cylindrical,
Ae. crassa, Ae. speltoide,
Ae. umbellulata, Ae. neglecta,
Ae. triuncialis, Ae. strangulata,
Ae. ligustica, Ae. biuncialis,
Ae. columnaris, Ae. vavilovii

Glume shape, glume color, branched spike, anther color,
grain color, awn color, plant height, glume length, flag leaf
length, spike length, number of stems, plant height,
peduncle length, number of spikes, number of spikelets per
spike, length and width of rachis node and spike, number
seeds per spike, seed color, glume hairiness

[31–33]

T. monoccocum Plant height, grain per spike, heading time, maturity time,
hairiness, waxiness, growth habitus and grain hull [34,52]

T. dicoccum Plant height, grain per spike, heading time, maturity time,
hairiness, waxiness, growth habitus and grain hull [52]

T. aegilopoides Plant height, spike length, number of stems [34]

3.2. Plant Genetic Resources and Molecular Diversity

Over the last three decades, many studies have been performed to characterize the
genetic diversity in ancestral and wild relatives of wheat based on different molecular-
marker systems. A general pattern change in plant genetic resources (PGR) was triggered
by the political system, as well as the advancement of molecular biology and electronic
data processing, as seen here for wheat [53]:

I. PGR maintenance in situ versus ex situ. Ex situ servicing has lost its hegemony [54].
Wild wheats are successfully preserved in the wild, while landraces thrive in the field.
The predicted improvement was not achieved using new approaches [53].

II. Inclusion of underutilized and neglected crop varieties [55]. Some plants are likely
extinct in conventional farming zones, although landraces for others have only re-
cently been discovered. Wild relatives have become increasingly important in wheat
breeding, with Secale, Aegilops, Hordeum, and other genera being used in addition to
wild Triticum varieties [53].

III. Techniques for determining taxonomic diversity both inside and between taxonomic
groups. Insights into population dynamics and evolution are being gained thanks to
modern technology.

IV. Genetic loss is an issue in genebanks as well [56].
V. Landraces have a wide range of morphological variation. Breeders are less famil-

iar with infraspecific classification schemes, which are helpful for characterization
and handling.

VI. Measurement techniques: Molecular markers are used to classify genetic variations
on a basic basis, without taking into account ecological adaptation.

VII. Traditional assessment programs can be expanded by genebanks. Pre-breeding will
become more important.

VIII. Under long-term storage and reproduction conditions, genebanks are accurate and
cost-effective, but strategic reproduction principles are needed [57].

Genetic resources are critical for the current and future sustainability of world wheat
production. They include a wide variety of genetic variation, which is essential for increas-
ing and sustaining wheat production potential by providing novel sources of resistance and
tolerance to biotic and abiotic stressors [58]. The germplasm preserved is particularly rich
in wild crop relatives, traditional farmer cultivars, and ancient cultivars, all of which form
a significant genetic diversity reserve. Ex situ or in situ conservation of material protects
against genetic degradation and provides a source of resilience to biotic and abiotic stres-
sors, and enhances quality and yield characteristics for future crop improvement. Breeders
use well-adapted cultivars from particular regions to build modern high-yielding wheat
cultivars, which are an assembly of genes or gene combinations. International agricultural
research has greatly increased the availability of broadly adaptable, genetically varied
germplasm [58]. Traditional approaches are often overlooked, whereas new possibilities
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are exaggerated. Landrace preservation in genebanks and on farms is difficult. The role of
PGR is traditional. Orthodox approaches can be used to study landraces, but molecular
methods can answer complex questions [53]. According to numerous studies, a high level
of genetic diversity among wild relatives of wheat has been reported, which may refer to
their natural distributions in a wide range of ecosystems and even in natural hybridiza-
tion among various species. Hence, herein, we have only listed some studies that use at
least one molecular marker system to investigate the level of genetic diversity, the genetic
makeup of the population, as well as complementary genetic tests, such as association
mapping or gene cloning. In accordance with previous reports, we found that, among wild
wheats, Ae. tauschii Coss. has been the most subjected to genetic studies (Table 4). Indeed,
this confirms the potential of this species for future wheat breeding programs.

Table 4. List of several studies that reveal a high level of molecular diversity in wild relatives of wheat.

Marker Species References

RAPD Ae. kotschyi, Ae. variabilis, Ae. tauschii, Ae. cylinddrica, Ae. crassa, Ae.
biuncialis, Ae. triuncialis, Ae. geniculata, T. boeoticum [59–64]

RFLP Ae. geniculata [65]

AFLP Ae. kotschyi, Ae. variabilis, T. turgidum, T. dicoccon, T. dicoccoides, T.
araraticum, T. monococcum, Ae. geniculata, Ae. ventricosa [66–70]

IRAP T. monococcum, T. boeoticum subsp. boeoticum, T. boeoticum subsp.
Thaoudar., T. urartu [71]

REMAP T. boeoticum [72]

TRAP Ae. tauschii, Ae. cylindrica, and Ae. crassa [73]

ISSR Ae. ventricosa, Ae. taucshii, Ae. cylindrica, Ae. umbellulata, Ae.
triuncialis, Ae. biuncialis, Ae. crassa, Ae. kotschyi, Ae. speltoides [59,74–76]

SSR
T. turgidum, T. dicoccon, T. dicoccoides, T. araraticum, T. monococcum, Ae.
geniculata, Ae. ventricosa, Ae. crassa, Ae. cylindrica, Ae. biuncialis, Ae.
triuncialis, Ae. tauschii

[63,66,70,77–86]

cpSSR

Ae. cylinddrica, Ae. kotschyi, Ae. peregrina, Ae. triuncialis, Ae. uniaristata,
Ae. speltoides, Ae. longissima, Ae. sharonensis, Ae. searsii, Ae. bicornis, Ae.
tauschii, Ae. crassa, Ae. vavilovii, Ae. ventricosa, Ae. juvenalis, T. urartu,
T. boeoticum, T. araraticum, T. dicoccoides

[87,88]

EST Ae. caudata [89]

EST-SSR Ae. cylindrica, Ae. tauschii, Ae. triuncialis, Ae. crassa [90]

SINE Ae. umbellulata [91]

ITE T. boeoticum [64]

SCoT T. turgidum, T. boeoticum, T. urartu, Ae. tauschii, Ae. caudata, Ae. crassa,
Ae. neglecta, Ae. triuncialis, Ae. speltoides [73,92,93]

CBDP T. turgidum, T. boeoticum, T. urartu, Ae. tauschii, Ae. caudata, Ae. crassa,
Ae. neglecta, Ae. triuncialis, Ae. speltoides [94,95]

DArT T. turgidum, Ae. Kotschyi, Ae. cylindrica, Ae. neglecta, Ae. colummaris,
Ae. biuncialis, Ae. triuncialis, Ae. juvenalis, Ae. tauschii [96–98]

SNP T. turgidum, Ae. Kotschyi, Ae. cylindrica, Ae. neglecta, Ae. colummaris,
Ae. biuncialis, Ae. triuncialis, Ae. juvenalis, Ae. tauschii [97,99–103]

4. Potential of Wild Relatives for Use in Wheat Breeding Programs

Farmers’ desired qualities (yield potential, large seed, high seed weight) and breeders’
preferred characteristics (high seed weight, large seed, yield potential) both benefit from
genetic variety in wheat germplasm (e.g., biotic and abiotic resistance) [103]. It is clear that
an increasing number of genetic diversity studies on wheat and their wild relatives are
revealing the ideal potential of these natural resources and also suggesting ways of devis-
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ing targeted methods to exploit the diverse existence of ex-situ germplasm collections [5].
To date, various attempts have been made to improve common wheat by using genetic
diversity in wild relatives. Arguments for the greater use of wheat relatives’ include: the
taxonomic relationship between wheat and its relatives, cross-compatibilities, F1 fertility,
and subsequent progeny, exploration and utilization of this natural resource, and avail-
ability and regional financial support based on their geographic distribution [104]. In this
section, we highlight some representative examples in which wild wheats showed specific
ability versus different environmental stresses.

4.1. Drought

The extensive use of advanced lines has resulted in the loss of genetic basis of bred
varieties of wheat that has, in some cases, led to increased susceptibility to various abiotic
stresses [103]. Drought or a lack of water is one of the most significant environmental factors
affecting global wheat production. Drought tolerance is a multi-dimensional quantitative
characteristic that has a dramatic impact on plant development stages [105]. The impacts
of drought stress have been intensely studied in wheat and its relatives. Among wild
wheats, Aegilops species have been considered as an ideal source for improving the genetic
background of bread wheat to tolerate drought stress.

Several Aegilops species, such as Ae. speltoides, Ae. tauschii, and Ae. geniculata, have
indicated the ability to overcome drought stress [106,107]. Introgression of drought toler-
ance to bread wheat was achieved by hybridization between durum wheat and Ae. tauschii
species. DNA fingerprinting of synthetic hexaploid (SHs), materials showed that they can
respond well to water deficit due to their excellent features, such as a longer root system and
higher soluble carbohydrates [108]. The use of carbon isotope discrimination (∆) has been
proposed to estimate transpiration efficiency, water use efficiency, and drought tolerance
in different wild wheat species [109]. This method was performed by Waines et al. [110]
on several Aegilops species. Their results revealed a high intraspecific variation in most
species, and, among the tested species, ∆ values were highest in Ae. speltoides. Wild emmer
wheat (T. dicoccoides) can donate excellent drought tolerance compared to other wheat
species. It is clear that this ancestral species can better overcome drought conditions com-
pared to durum wheat [111]. Therefore, T. dicoccoides is one of the most important sources
for drought tolerance and is highly proper as a donor for developing agronomical and
physiological features related to tolerance in cultivated wheat species. In a comprehensive
study conducted by Pour-Aboughadareh et al. [112], a set of 180 accessions belonging
to 12 wild and domesticated species along with two commercial tolerant and sensitive
control varieties were examined in terms of shoot dry mass and chlorophyll fluorescence
parameters under two water regimes: optimum irrigation (FC = 100%) and drought stress
(FC = 30%). A considerable number of wild wheats with alien genomes, such as Ae. crassa
(DM genome), T. urartu (Au genome), Ae. cylindrica (DC genome), and Ae. caudata (C
genome), indicated a higher tolerance to drought stress as compared with the domesticated
genotypes and tolerant control, reflecting greater drought adaptations in these species.

Upon exposure to drought stress, plants undergo many physiological and molecular
changes. One of these changes is the production of reactive oxygen species (ROS) in
different plant tissues. The ROS family—-including singlet oxygen (1O2), superoxide (O2–),
hydroxyl radical (OH), and hydrogen peroxide (H2O2)—-act as signal molecules in the
response to drought stress. On the other hand, increasing the production of ROS may result
in cellular damage and finally cell death [113]. Therefore, antioxidant gene overexpression
could induce tolerance to this stress. Plants have antioxidant systems in place to scavenge
excess ROS and protect themselves from the harmful consequences of oxidative stress by
generating various antioxidants. A detailed description of antioxidant mechanisms can be
found in the review by Bose et al. [114].

Some research has focused on the state of antioxidant activities and the ROS path-
way in bread wheat germplasm. Recently, Ahmadi et al. [115] examined the antioxidant
activities in several wild relatives of wheat in response to drought stress. The wild ac-
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cessions used in their study revealed more activities in the expression of antioxidative
enzymes—including catalase (CAT), guaiacol peroxidase (GPX), superoxide dismutase
(SOD), and ascorbate peroxidase (APX)—than the cultivated wheats. Remarkably, four
wild wheats—T. boeoticum, Ae. crassa, Ae. cylindrica, and Ae. Umbellulata—responded well
to severe drought stress (FC = 25%) by elevating enzymatic antioxidants as the primary
defense system, which contributes to the cell’s ability to maintain oxidative equilibrium. In
another study, Pour-Aboughadareh et al. [116] showed a high rate of variability among
Ae. cylindrical, Ae. tauschii, and Ae. crassa species, along with T. aestivum landraces in
terms of several photosynthetic and physiological traits under severe water deficit stress.
These authors stated that, among 200 samples related to these species, 19 accessions from
Ae. crassa and 1 accession from Ae. tauschii indicated considerable tolerance to drought
conditions through the maintenance of their biomass and other physiological capacities.
When the top-ranked accessions were evaluated in terms of biochemical traits, Ae. crassa
showed better potential for scavenging the ROS through higher activity of CAT, APX, GPX,
and peroxidase (POD) antioxidant enzymes [117].

The root system, as an important organ for the uptake of water and nutrients, is the
first part of a plant that senses water shortage [118]. Recently, many efforts have been
made to indicate the relationships among root system features and drought tolerance
adaptability in the wild relatives of wheat under drought conditions. Ahmadi et al. [119]
focused on seedling root architectural traits in the whole collection of wheat germplasm
containing 180 accessions along with two control bread wheat genotypes under two water
regimes. They reported a high level of root variability in some wild wheat responding
to drought stress. When the root system of the different species was compared under
drought stress conditions, it was found that four species of wild wheat—Ae. speltoides
(As a putative B genome), Ae. cylindrica (DC genome), Ae. neglecta (UM genome), and
Ae. tauschii (D genome)—had a great ability to extend their root system. In another
study, Djanaguiraman et al. [120] showed that Ae. speltoides was an ideal candidate for
improving the root system architecture in wheat. These authors examined 48 Chinese
spring wheat-alien chromosome lines belonging to Ae. longissima, Ae. geniculate, Ae. searsii,
Ae. peregrine, Ae. speltoides, Th. intermedium, L. racemosus, and D. villosum in terms of
several physiological and root features under drought stress. The results showed that
the wheat-alien chromosome lines with chromosome segments from Ae. speltoides were
identified as drought tolerant, so that their acceptable tolerance was associated with a deep
and profuse root-system structure.

4.2. Salinity

Salinity stress is another environmental challenge that dramatically limits wheat
production worldwide [121]. It has been reported that more than 800 million hectares of
the world’s total land are affected by salinity [122]. As a result, attempts to improve wheat
salt tolerance are critical for long-term agriculture and might considerably increase wheat
output. The screening of wheat germplasm has a significant role in breeding programs
aimed at improving salinity tolerance [123]. Although a number of salt-tolerance traits
have been characterized by Colmer et al. [124], we mention several key studies that have
introduced wild wheats with superior salt-tolerance. The effects of salinity on plant growth
include osmotic pressure, oxidative stress, ionic toxicity, and nutritional imbalance, which
in turn severely limits the development and function of all plants.

Plants often have a variety of tolerance mechanisms that enable them to reproduce in
marine environments, including reducing root Na+ uptake and limiting salt concentration
in the cytosol [125]. Effective removal of Na+ from roots and shoots and the isolation
of specific organelles, intracellular compartments, or cells of Na+ are other important
processes for surviving salinity stress [126]. Thus, the ability to maintain high K+ and
low Na+ concentrations in leaves is associated with salt tolerance. Research on different
wild wheats under salinity stress has indicated that some Aegilops species can withstand
heavy salt stress and have a greater tolerance than other wheat species [127]. For example,
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Gorham et al. [128] revealed that Ae. tauschii has a higher Na+:K+ ratio in their leaves
than other species. In fact, this result suggested that there is a close relationship between
Na+ exclusion and D genome that enhanced the Na+:K+ ratio. In a study conducted
by Ahmadi et al. [129], Ae. tauschii along with Ae. neglecta species responded well to
severe salinity treatment at the seedling stage. Kiani et al. [130] found that Ae. cylindrica
accessions differed significantly in terms of physiological characteristics, including their
susceptibility to salt stress throughout the vegetative stage. The results from the last two
reports have postulated the key impact of C genome on salt exclusion in this wild wheat.
Furthermore, the observation of Ahmadi et al. [131] in the screening of wheat germplasm
to explore the source of salinity tolerance revealed a high potential for some Aegilops
and Triticum in coping with salinity stress. These researchers looked at root and shoot
biomass, physiological parameters, and ROS scavenging enzymes in a core collection of
181 accessions that included landrace genotypes and various wild relatives of wheat. Based
on their results, several wild species with alien genomes, such as Ae. cylindrica (DC), Ae.
caudata (C), and T. boeoticum (Ab), revealed an appropriate response to salinity stress by
increasing enzymatic antioxidants. These results support the fact that there is a good
potential for salinity tolerance in wild relatives of wheat, which in turn reveals new insights
for reconsidering the associations between wheat progenitors and salinity tolerance.

4.3. High Temperature

Crop growth rates are influenced by temperature conditions. The high temperature,
as another environmental stress, has limited wheat production in the world. As a result of
global warming, all crops may undergo many changes in their growth and development.
Hence, an exploration of ideal sources of variability to high temperature tolerance for
wheat and other field crops is required. High temperature fluctuations have a significant
impact on plant development in a variety of ways. Chlorophyll concentration and the
photosynthetic ability of leaves are reduced due to this stress [132]. Because thylakoid
membranes are one of the most vulnerable cellular structures to this stress, there is a clear
link between chlorophyll concentration and thylakoid membrane damage caused by high
temperatures [133]. Thus, damaged thylakoid membranes leads to loss of chlorophyll
content and reduced photosynthesis capacity [134]. In recent years, analyzing chlorophyll
fluorescence has been one of the most popular approaches in plant physiology to measure
photosynthetic activity. It plays a critical role in understanding key photosynthetic systems,
plant responses to environmental change, and ecological diversity [135]. The analysis of
chlorophyll fluorescence components, such as initial fluorescence (Fo), maximal quantum
efficiency (Fv/Fm), and primary yield of photochemistry (Fv/Fo), is a critical approach for
determining the integrity of the internal mechanisms within a leaf during photosynthetic
activities. It also provides a precise method for assessing damage to photosystem II centers
(PSII) and, as a result, identifying plants that are resistant to certain stressors, particularly
high temperatures [112,136,137]. Fo is a measure of the stability of the light-harvesting
complex among chlorophyll fluorescence components, and it is enhanced in the leaves
of plants under high temperatures compared to optimal conditions [138]. In theory, an
increase in this parameter might be read as a decrease in the rate constant of energy trapping
by PSII, which could be the result of the light-harvesting complex becoming physically
disconnected from the PSII core [139]. In genotypes of Ae. tauschii and Ae. speltoides, an
increase in the Fo parameter has been recorded under high temperature stress [140]. Using
this parameter, researchers have illustrated that Ae. tauschii had greater thermostability of
the photosynthetic mechanism. High-temperature stress was also applied to wheat species
at anthesis and maintained for 16 days, resulting in reductions in chlorophyll content, the
number of grains per spike, grain weight, and grain yield per plant of 38, 40, 56, and 70%,
respectively [141]. Pradhan et al. [141] indicated that among Aegilops species, Ae. geniculate
and Ae. speltoides displayed a greater tolerance to high temperatures for grain yield (58–61%
decline than optimum temperature), while Ae. longissima yields showed an 84% decline.
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4.4. Low Temperature

Low temperature, as the fourth important abiotic stress, affects wheat growth and
production in many regions of the world. Extreme cold stress causes a change in cell
architecture by preventing exterior water mobility and converting internal water to a
crystalline state. Low temperature stress-sensitive plants, as a rule, are unable to con-
tinue growing over extended periods of time and respond to cold by altering metabolite
concentrations [142]. Generally, efforts to improve cold tolerance through existing plant
genetic materials appear to have been unsuccessful because of limited genetic diversity
for this characteristic. Wild relatives of wheat offer a potential source of additional ge-
netic variability which could be utilized to improve the cold tolerance of wheat, and, up
to now, numerous studies have focused on these species under different environmental
conditions. Nonetheless, no work has been undertaken to investigate the whole set of wild
relatives in response to cold stress. Only a few examples could be found. For instance,
Limin and Fowler [143] found that Ae. tauschii responded well to freezing stress, while all
species related to Sitopsis section were sensitive. However, it has been reported that Ae.
speltoides and T. turdidum have a higher tolerance than other wild species [144,145]. In a
study conducted by Stankova et al. [146], among different Aegilops species, Ae. cylindrica
revealed the highest cold tolerance, whereas Ae. genioulata and Ae. biuncialis were identified
as sensitive relatives. They also demonstrated that Ae. triuncialis and Ae. neglecta have
intermediate tolerance. Moreover, Masoomi-Aladizgeh et al. [147] evaluated several Ae.
tauschii accessions under controlled cold conditions, demonstrating the capability of this
species in response to freezing stress.

4.5. Biotic Stresses

Unexpected biotic stressors similar to other environmental stresses continuously pose
a danger to wheat production. Pathogen resurgences have occurred from the monoculture
of contemporary wheat cultivars with limited genetic diversity, posing a danger to wheat
supply [148]. Several living creatures, such as fungi, viruses, insects, nematodes, arachnids,
and weeds, induce biotic stress in plants. Pathogenic fungi, among, other biotic stressors,
pose a serious threat to wheat production across the world. Stripe rust, stem rust, leaf
rust, powdery mildew, head blight, and other diseases negatively affect wheat production
and grain quality worldwide. Yellow rust has historically caused and continues to cause
substantial and severe losses in vulnerable wheat cultivars all throughout the world [149].
Aphid, hessian fly, green bug, and borers are among the most common insect pests that
damage wheat.

Only a few of these biotic stress resistance genes in wheat have been identified and
cloned thus far. Species from the primary gene pool (Triticum spp.), secondary gene
pool (e.g., T. timopheevii), and tertiary gene pool (e.g., Aegilops), are among the R gene
donors [150]. The wild relatives of wheat may be divided into main, secondary, and tertiary
gene pools based on their genomic makeup [151,152]. These gene pools provide a plentiful
supply of disease and pest resistance genes in wheat. Species with homologous genomes
to farmed wheat make up the main gene pool. T. aestivum, T. turgidum, and species with
the A and D genomes—T. monococcum, T. urartu, T. boeoticum, and Ae. tauschii—-make
up this group [152]. Many genes providing disease and insect pest resistance have been
transmitted by hybridization and backcrossing procedures, and some of them are still
used in cultivar improvement [153,154]. An active collection of 280 Ae. tauschii accessions
is kept at the Punjab Agricultural University (PAU) in Ludhiana, India. Various biotic
stressors, including as leaf rust, stripe rust, powdery mildew, and Karnal bunt (KB), have
been shown to carry resistance genes in these accessions. The KB resistance of Ae. tauschii is
quite strong. The polyploid Triticum and Aegilops species, which share at least one genome
with wheat, make up the secondary gene pool of bread wheat. Many resistance genes have
been given by these species, which have been utilized in cultivar development [151].

It has been reported that, in wheat or its wild relatives, more than 240 rust resistance
genes have been identified and formally recognized, the majority of which are race-specific



Agronomy 2021, 11, 1656 13 of 31

resistance genes [153]. The QTL regulating stripe rust resistance in T. monococcum was found
on chromosome 2A (QYrtm.pau-2A), whereas the QTL controlling stripe rust resistance
in T. boeoticum was found on chromosome 5A (QYrtm. pau-5A). Co-introgression of T.
boeoticum sequences related to stripe rust-resistant QTL, QYrtb.pau-5A [155] revealed that
one stripe rust-resistant gene from T. boeoticum acc. pau5088 was verified to be introgressed
in cultivated wheat. T. durum was used as a bridge species to introduce leaf and stripe
rust resistance genes from diploid species Ae. umbellulata and Ae. caudata [155,156]. In
general, through the use of different approaches, a number of resistance genes have been
transferred from wild relatives to bread wheat. Among the identified resistance genes,
most numbers are related to leaf rust, followed by powdery mildew, and green bug [157].
In general, Table 5 indicates some identified or transferred resistance genes in various
Aegilops species.

Table 5. Identified or transferred resistance genes from various Aegilops species into bread wheat.

Pest Species Gene References Disease Species Gene References

Eyespot Ae. ventricosa Pch1 [158] Stem rust Ae. speltoides Sr32 [159]
Powdery mildew Ae. speltoides Pm1d [160] Sr47 [161]

Pm32 [162] Ae. comosa Sr34 [163]
Pm53 [164] Ae. ventricosa Sr38 [165]

Ae. longissima Pm13 [166] Ae. searsii Sr51 [167]
Ae. geniculate Pm29 [168] Ae. geniculate Sr53 [169]
Ae. umbellulata Pm57 [170] Leaf rust Ae. umbellulata Lr9 [171]
Ae. tauschii Pm19 [172] Lr76 [173]

Pm34 [174] Ae. speltoides Lr28 [163]
Cyst nematode Ae. ventricosa Cre2 [175] Lr37 [165]

Cre5 [176] Lr47 [177]
Cre6 [178] Lr51 [179]

Ae. triuncialis Cre7 [180] Lr66 [181]
Ae. peregrine CreX [182] Ae. kotschyi Lr54 [183]

CreY [182] Ae. sharonensis Lr56 [181]
Root knot nematode Ae. peregrine Rkn2 [184] Ae. geniculate Lr57 [185]

Ae. ventricosa Rkn3 [186] Ae. triuncialis Lr58 [187]
Hessian fly Ae. ventricosa H27 [188] Ae. peregrine Lr59 [189]

Ae. triuncialis H30 [190] Ae. neglecta Lr62 [191]
Ae. tauschii H22 [192] Strip rust Ae. comosa Yr8 [193]

H23 [192] Ae. ventricosa Yr17 [165]
Green bug Ae. speltoides Gb5 [194] Ae. sharonensis Yr38 [181]

Ae. tauschii Gb3 [195] Ae. geniculate Yr40 [185]
Russian wheat aphid Ae. tauschii Dn3 [196] Ae. neglecta Yr42 [189]
Wheat curl mite Ae. tauschii Cmc4 [197] Ae. umbellulata Yr70 [173]

5. Transcriptome Analysis Uncovers Hidden Information about the Benefits of Wild
Relative Potentials

Progress in biotechnological tools, such as the GeneChip® Wheat Genome array and
RNA sequencing, have indicated that the transcripts associated with starch biosynthesis
and defense proteins in hexaploid bread wheat are expressed 2–3 weeks after anthesis. The
transcripts that are most numerous in growing plants, on the other hand, were associated
with storage proteins that are expressed during the developmental phase [198–201]. While
transcriptome analysis was done in hexaploid wheat during grain production [202,203],
bread wheat and its wild progenitors have yet to be subjected to a thorough transcriptional
characterization. Studying the expression of these key genomes at specific stages during
grain development in bread wheat and its wild relatives can be very beneficial. This will
be useful to understand the changes in wheat grain consistency that occurred during the
transition from ancient bread wheat to modern bread wheat. Kaushik et al. [201] used
RNAseq to study the development of bread wheat grains and their diploid progenitor
cells to evaluate gene expression patterns and monitor differentially expressed genes. To
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analyze gene expression profiles and screen differentially expressed genes, they used
transcriptomics methods to compare the expression of key genes in hexaploid bread wheat
and its three diploid parents during the entire grain production process. It can help to better
understand the molecular mechanisms of metabolic pathways involved in the production
and regulation of key components of grain growth. In addition, transcriptome sequencing
of bread wheat and its ancestors is used to study the genetics of wheat endosperm growth.

5.1. Grain Development Related Proteins

Global wheat security is under threat due to the need for wheat to feed the world’s
growing population [203]. Wheat grain production is thought to be a significant deter-
minant of yield and flour content. Understanding the process of wheat grain growth, as
well as identifying key candidate genes that perform important functions during grain
development, is crucial. Reduced expression of TabZIP60 has been reported to improve
grain yield and nitrogen uptake through RNAi interference by upregulating TaNADH-
GOGAT expression. Compared to the wild type, the grain yield of the overexpression
line increased by 16.6–26.8% [204]. Previous studies have used genome-wide association
analysis study (GWAS) to classify new genomic regions related to grain yield and character-
istics related to grain yield in 123 synthetic hexaploid wheat (SHW) grown under drought
stress. Among them, 35648 derived single nucleotide polymorphism (SNP) genotypes
were sequenced [205]. They found that SHW has a significant genetic diversity in grain
yield and yield-related traits. Under drought stress, GWAS in 123 synthetic hexaploid
wheat established multiple new genomic regions or haplotype blocks related to grain yield
and yield-related traits. Most marker-trait associations (MTAs) are found in the genome,
and some are annotated with drought stress functions. This further demonstrates that
the given MTA is reliable. MTAs are also linked to a variety of characteristics on other
chromosomes, but only inside the genes that have the same annotation. This led to the
identification of candidate genes from the same gene family that are considered impor-
tant in grain yield and yield-related characteristics in drought-stressed SHWs [205]. Wild
relatives of wheat may be useful for studying different facets of evolution and growth
involved in the production of bread wheat. Grain production involves several biochemical
and physiological processes that occur in a variety of tissues [206]. There are major stages
including fertilization, multinucleate endosperm, cellularization, and early grain filling,
full grain filling, and desiccation [207]. Grain production is critical for completing a crop’s
life cycle because it accumulates various nutrient stocks as well as embryo development
and maturation. The nutritional and economic value of wheat grain is determined by the
accumulation of these nutrient stocks [201].

5.2. Nutrient Reservoir

Nutrient reserves (NRs), carbohydrate metabolism (CM), and defense proteins (DPs)
are the most common genes involved in wheat grain production [206]. Carbohydrates
are the most common, followed by storage proteins in NR. However, carbohydrates are
metabolized by complex mechanisms affecting a variety of genes. The genes involved
in anabolism and catabolism have been studied in CM, which has been designated as a
separate class. Wheat genotypes contain different kinds of storage proteins in terms of
consistency and quantity because the coding region of wheat storage protein is highly
polymorphic [208]. Starch is the most prevalent nutrient in T. aestivum, followed by storage
proteins and lipids [199]. Thus, the synthesis and aggregation of starch and storage proteins
are crucial for the growth of wheat grain. Albumins, globulins, and gluten are the most
common storage proteins. Glutenins and gliadins are two types of gluten. Glutenins are
often made up of proteins with high and low molecular weights [201,208]. Prior research
has revealed that the glutenin and gliadin subunits of wild wheat relatives varied greatly.
Ahmadi et al. [209] used unique molecular markers to characterize the allelic variation of
glutenin and gliadin in 180 Aegilops and Triticum accessions obtained from different parts
of Iran. They revealed that the allelic status of Glu-3A and Gli-As.2 was related to genomic
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constitutions, resulting in a large variance in the gliadin and glutenin subunits in di- and
tetraploid wild relatives of Ae. umbellulata, Ae. caudata, Ae. tauschii, and T. urartu genomes.
As a result, previous studies may yield new avenues for improving dough consistency by
reconsidering the connections between other progenitors and wild cousins. Researchers
have been encouraged to hunt for unique and beneficial alleles to create new kinds that are
better suited to new uses, given the discovery of this very varied gene pool.

5.3. Carbohydrate Metabolism

The most significant metabolic process in the formation of wheat grains is carbohy-
drate metabolism. According to research on the wheat grain proteome, 21% of differentially
expressed proteins are involved in carbohydrate metabolism [210]. β-glucosidase is one
of the most common enzymes studied in wheat. It is responsible for the hydrolysis of
carbohydrates. Adenosine diphosphate ADP pyrophosphorylase, starch synthase [211],
starch branching enzyme, and starch debranching enzyme [206] are the four major enzymes
involved in the production of starch, the main ingredient of endosperm.

5.4. Defense Proteins during Grain Development

The preservation of developing grains is the next critical phase during grain pro-
duction after the deposition of storage materials. To resist or postpone several biotic and
abiotic pressures, plants can trigger a range of molecular and biochemical defense mech-
anisms through irreconcilable interactions between the host and biotic/abiotic stimuli,
resulting in a variety of signaling pathways [212]. Several investigations have proven
that amylase/trypsin inhibitors regulate wheat defense responses by inhibiting the en-
zyme activities of amylase and trypsin in pests [210,213,214]. Insect defensive responses
are considered to be aided by the Bowman–Birk family of cysteine-rich proteases [215].
Considering the change in genome size, 55.62, 55.92, 68.13, and 103.33 million reads were
generated for the genome species of T. urartu, Ae. speltoides, Ae. tauschii, and T. aestivum,
respectively. There are significant differences in the genome size [216] and the number of
genes [216–219] between wheat hexaploid and its diploid ancestors. The number of genes
expressed in hexaploid wheat is not proportional to the size of its genome, although it
is slightly higher than that in diploid wheat. It has also been suggested that the size of
the genome in the polyploid genome is not proportional to gene expression [220–222]. In
hexaploid wheat, however, a review of half the number of reads showed significantly fewer
transcripts. Researchers discovered that Ae. speltoides (BB) shared the most transcripts of the
three progenitors. When sub-genomic research was performed, it was discovered that the
number of transcripts in hexaploid bread wheat’s B genome was somewhat greater [201].

5.5. Carbohydrate and Protein Related Transcripts

Kaushik et al. [201] also analyzed the gene expression of three main protein classes:
nutrient reserves, defense protein, and carbohydrate metabolism. Albumin, globulin,
prolamin, and glutenin are storage proteins formed primarily during grain growth. The
gene ontology study of transcriptome data of hexaploid bread wheat and its diploid
ancestors shows that nutrient pool behavior is remarkably rich. When ancient diploid wheat
and modern bread wheat were compared, albumin was found to be highly upregulated
in bread wheat. As a result, Ae. speltoides had a higher expression of this gene in diploid
progenitors (BB) [201]. Prolamins are proline and glutamine-rich proteins that make up
roughly half of the nitrogen in wheat grains [216,223,224]. Gliadins, which belong to the
prolamin family, are the oldest wheat nutrient reservoirs [225]. When compared to T.
monococcum, these proteins were upregulated in bread wheat. Bread wheat transcriptome
comparisons demonstrated an upregulation of α/β gliadin and γ-gliadin B in Ae. tauschii
(DD and) Ae. speltoides (BB). The diploid progenitor AA genome (T. urartu) genotype
exhibited a lower gliadin gene expression in this example. In comparison to its diploid
progenitors, high molecular weight glutenins expressed more transition in bread wheat.
Gluten is formed when gliadin and glutenin combine, and it is much higher in bread
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wheat than in its diploid progenitors. α-β Gliadins were found to be actively expressed
in wheat endosperm from 11 days to 4 weeks after anthesis [226]. High molecular weight
glutenins were also found to be most abundant during early grain filling, a finding that
had previously been recorded in Norin 61 bread wheat [227].

5.5.1. Carbohydrate Biosynthesis Genes

In bread wheat and its diploid progenitors, many glucose metabolism-related genes
are differently expressed. Starch biosynthesis is carried out by two types of enzymes:
granule associated starch synthase and starch synthases [228,229]. When hexaploid wheat
was related to its diploid progenitors, granule bound starch synthase (GBSS-I) was down-
regulated, and starch synthase genes were upregulated. This finding shows that hexaploid
bread wheat produces less amylose and more amylopectin during grain production than its
progenitors [201]. In bread wheat, major starch aggregation occurs during the early stages
of grain production [230]. In T. aestivum and Ae. tauschii, stage-specific GBSS expression
data is also related to this discovery. The starch in the endosperm is broken down to produce
glucose, which is then used by the scutellum for the growth of the embryo [231]. Compared
with hexaploid bread wheat, the gene expression of some important and abundant enzymes
in starch metabolism such as AMY3 amylase and α-glucosidase is reduced in Ae. speltoides
and T. monococcum [201,232]. In the late stage of grain filling, the gene expression of
carbohydrate catabolism enzymes such as amylase and glucosidase was higher, but the
gene expression of carbohydrate anabolism enzymes (such as starch synthase bound to
carbohydrate granules) was larger at first. Therefore, although carbohydrate biosynthesis
occurs early in the filling process, the consumption of carbohydrates for energy production
(ATP) occurs later. This is due to the reduced amount of carbohydrates available from
sources [233].

5.5.2. Defense Proteins

Wheat grains are mainly composed of carbohydrates and protein, which account for
about 80% of grain weight. It is essential to safeguard these nutrient reservoirs in wheat
grains against biotic and abiotic influences and to keep them alive before germination
by defense proteins. Many differentially expressed genes linked to defense proteins are
identified when different phases of bread wheat grain production are compared [206,234].
When opposed to T. monococcum, Ae. tauschii, and Ae. speltoides, a trypsin inhibitor, which is
implicated in herbivorous pest resistance [235], was upregulated in hexaploid wheat. This
suggested that both Aegilops species have an almost identical voice, which is better than T.
monococcum. In diploid progenitors, a stage-specific study of this gene revealed a related
pattern. In bread wheat, the defense protein thionin was found to be upregulated [236,237].
However, stage-specific expression showed that expression was higher in the early stages
in hexaploids, while in diploids it was higher in the later stages. Some defense proteins,
such as Bowman Birk type trypsin inhibitors (pathogen inactivator) [238,239], subtilisin
chymotrypsin inhibitors (known to suppress insect larvae) [240], and wheat monomeric
amylase inhibitors [241], were also downregulated in hexaploid wheat. The expression
of both defense-related genes was shown to be higher in hexaploids at the early stages of
grain filling and lower in diploids during the later stages.

6. Dynamic Wheat Transcriptome and Small RNA in Wild Relatives of Wheat under
Abiotic Stresses

The genome’s substructure aids in mapping dynamically transcribed sections to biotic
and abiotic stressors during plant growth and adaptation. Transcriptome profiling was
carried out on the wheat genome to provide a better understanding of both gene expression
levels and harvests [242]. In 2004, 35 individual cDNA libraries representing extremely
detailed developmental stages of different grains and seedling tissues were used to create
microarrays with high-density from the publicly accessible wheat EST resource, which
included 26,382 sequences [242]. However, due to the immobile existence of probes and the
reliance on genome annotation quality, the microarrays provided insufficient expression
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proof. Indirect measurement of gene expression levels was found to be illustrative of cDNA
arrays through hybridization signs, and expression levels were detected to be illustrative
of the tenacity of genuine transcript estimates in individual tissues or cell lines [243]. A
systematic analysis of the entire transcriptional environment was carried out using next-
generation RNA sequencing. Even though it demonstrated alternate splicing, it failed to
display genome-wide gene function in terms of quantity [244,245].

Allohexaploid wheat is one example of the analysis of genetic associations between
the three homologous genomes (A, B, and D) because it has recently suffered two allopoly-
ploidization events. Several experiments have used microarrays and other methods to
equate resynthesized or normal wheat allopolyploids to their progenitors [246–248]. In this
survey, the non-additive gene expression in allohexaploid offspring was evaluated using
the average parental gene expression level or number (i.e., the father’s average (MPV)) [249].
Nonetheless, it has been found that additivity is more extensive than non-additivity [248].
MicroRNA (miRNA) and small interference RNA (siRNA) are small RNAs that control gene
expression through post-transcriptional processes and epigenetic modifications [250,251].
In interspecific hybrids and allopolyploidies of Arabidopsis, changes in miRNA expression
induce the non-additive expression of target genes, hindering developmental adaptability
and vitality [252]. Subsequent studies have shown that the cis- and trans-regulation of
miRNA and other genes can affect the normal changes in the biochemical and metabolic
pathways that drive growth vigor and stress response [253,254]. In addition, by directing
DNA methylation, siRNA, especially those related to transposable factors (TE), can act as a
genomic shock absorber and control gene expression.

After polyploidization of wheat, the number of siRNAs corresponding to ET is signifi-
cantly reduced, and it is rich in repeating sequences originating from TE (>80%), indicating
that they play important roles during allohexaploidization [255]. Small RNA-mediated
genome alteration and gene regulation are possibly involved in allohexaploidization, ac-
cording to new evidence [256]. However, analysis of the homologous expression and
limited abundance of RNA from individuals throughout the genome requires information
from the genome sequence [257–259]. When these tools are combined with next-generation
sequencing technologies, they can answer questions regarding how allohexaploidization
affects homeolog expression and changes molecular pathways that lead to the nascent
allohexaploid of wheat’s growth vigor and adaptation, as well as whether small RNAs
play a role in this process [242]. T. aestivum originated as a hybrid between Ae. tauschii and
T. turgidum and outcompeted its parents in growth adaptability and vigor following chro-
mosomal doubling. To further understand the molecular foundation for this achievement,
Li et al. [244] used recently available A and D genome sequences to undertake mRNA
and small RNA transcriptome studies in nascent allohexaploid wheat and subsequent
generations, their progenitors, and the natural allohexaploid cultivar Chinese Spring [244].
Expressed protein-coding genes were found to be uncommon but essential for growth
vigor. In addition, a considerable number of protein-coding genes showed an advantage in
the expression level of the parent, and genes whose total homologue expression level in
the offspring were the same as that of T. turgidum showed an advantage in the expression
level of the parent, which is presumably involved in growth and those whose expres-
sion was similar to that in Ae. Tauschii possibly involved in adaptation. Furthermore,
upon polyploidization, a large proportion of microRNAs exhibited nonadditive expression,
theoretically resulting in differential expression of essential target genes. In addition, in
heterozygous progeny, an increased density of small interfering RNAs was observed for
transposable D homozygotes binding elements, which may explain the biased repression
of D homoeologs. These findings shed light on small RNA-mediated dynamic homoeolog
control pathways that can play a role in nascent hexaploid wheat heterosis [244]. In conclu-
sion, Table 6 summarizes the important microRNAs which have been identified in various
wild species of wheat under different growing conditions.
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Table 6. The brief of identified microRNAs in wheat and some of its relatives.

Species Tissue Conditions References

T. aestivum

seedlings, flag leaves, seeds, root, leaf, spike,
immature and mature embryos, grain, shoot,
spikelet, dry grain, embryo of germinating
seed, shoot, spike, grains, flag leaves

N-stress, cold stress, heat stress,
drought stress, dehydration stress,
UV-stress, high temperature stress,
salinity stress, water-deficit stress

[260–276]
[277–283]

T. durum roots, leaves, flag leaf, spikes, heads, seedling,
young seedlings

N-stress, water deficit, stress, early
water stress, heat stress [277,283]

T. dicoccoides leaves, plant drought and stresses [274,284,285]

Ae. sharonensis,
Ae. speltoides,
Ae. tauschii,
T. monococcum,
and T. urartu

leaf, root drought stress [286]

7. Next-Generation Sequencing in Bread Wheat

Encoded genomic sequence information is needed to fully leverage wheat’s ability
to feed the world’s rising population. Since the bread wheat genome is so large, about
17 gigabases, conventional sequencing methods are challenging to use. Next-generation
sequencing (NGS) can sequence a large genome in a limited amount of time. Refseq V1,
as an important standard quality in hexaploid wheat reference genomes, was created by
the International Wheat Genome Sequencing Consortium (IWGSC). It offered details on
the locus and order of 107,891 genes from 21 sequenced chromosomes and has allowed
for the discovery of more than 4 million molecular markers [242,287]. NGS could also
help researchers obtain various reference-related genomes from bread wheat and review
genome-wide relationships, epigenetic functionalities, and population genetics, among
other things. This review compiles and discusses the existing knowledge about the use
of NGS in wheat science, taking into account the relevance of wheat genomics and NGS.
Exome capture combined with NGS technology is an important method for analyzing the
wheat genome in depth. This approach may be used to sequence whole exon complements
in the genome [288].

NGS technology is now commonly used to analyze transcripts. The sequence tags gen-
erated by these technologies represent genes that are expressed without prior knowledge of
the gene sequence. Next-generation transcriptome sequencing can be used to analyze gene
expression, the structure of genomic loci, and the sequence variations present in expressed
loci [289]. This can be achieved by de novo assembly of the transcriptome sequence data or
by aligning the reads with the genomic sequence. NGS technology revolutionized genome
biology and has begun to provide important resources for the improvement of wheat crops.
Compared to all of the previous sequencing technologies, these technologies provide a
faster and cheaper method of generating wheat sequence data. Although the large size and
complexity of the wheat genome make the use of NGS difficult, advances in sequencing
technology and bioinformatics tools have made the application of NGS in wheat increas-
ingly feasible. This type of application will eventually allow for a comprehensive package
of wheat genome sequencing and annotations of the genome sequence to express genes and
genomic variation across sub-genomes [290]. The application of NGS technology provides
the opportunity to study and understand the structure and evolution of polyploid crop
genomes. Discovery of numerous genome-wide molecular SNP markers has begun in
wheat, which may have the largest and fastest impact on crop improvement. In the next few
years, the challenge may shift from NGS analysis of the wheat genome to the association
of sequence variation with heritable agronomic traits. As in rice, corn, and sorghum, the
wheat genome sequence will advance our understanding of the genetic basis of agronomic
traits, as well as aid the development of new technologies for improving wheat crops [290].
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Genome-Wide Association Studies and SNP Microarrays

It is challenging to investigate wheat genetic variants. The most effective approach
used to search for genetic mutations and their effects on phenotypes is to perform GWAS.
Previously, genome-wide observations for various wheat genomes were obtained using
single nucleotide polymorphism (SNP) microarrays. When compared to NGS, SNP mi-
croarray is less expensive and allows for a fast sequencing of the related genes. It aids in
the comprehension of the marker traits connected in the creation of maps, as well as the
ancestral relationships between populations. However, due to the sensitivity of recognition
and the ability to recognize genetic variation, NGS outperforms SNP microarrays [291].
In addition, NGS-based genotyping will reveal new genetic variations and allow detailed
analysis of population genetics.

Arora et al. [292] revealed that the variation of grain size in the germplasm of Ae.
Tauschii and the genetic basis was analyzed using a GWAS. The grain length, width, and
weight of 177 Ae.tauschii germplasm evaluations in 3 years showed an almost normal
distribution, and the variation was 1.74, 1.75, and 2.82 times, respectively. These lines were
genetically characterized using the Genotype Sequencing Protocol (GBS), which produced
11,489 SNP markers. Genetic diversity analysis revealed the existence of two distinct sub-
groups in Ae. tauschi. Based on GBS markers, the genetic similarity between germplasms
was calculated, and GWAS was performed using 114 non-redundant germplasms and
5249 SNP markers. A total of 17 SNPs related to grain size traits distributed on seven
chromosomes were revealed, of which 4444 had the most significant marker-trait asso-
ciations with 6D, 5D, and 2D. For some related SNP markers, candidate genes related
to cell division and differentiation were identified. Further efforts to validate these loci
will help to understand their role in determining the grain size and allelic diversity in the
current germplasm, as well as the effect on grain size when transferred to the bread wheat
background [292].

In hexaploid wheat, GBS has recently become an important method for GWAS. GBS
examines millions of SNP markers, which are used to discover genetic variation through the
multiple analyses of samples from different genomes. Where the interested gene or locus
genes necessitates map-based gene cloning, it is a popular method in forward genetics [293].
Outbreeding the mutant organism to create a population of mapping is part of map-based
cloning in plants [294]. GWAS helps to promote crop improvement by raising awareness of
Market Portrait Associations (MTAs). Lozada et al. [295] reported that, by using different
panels of 239 soft red winter wheat (T. aestivum L.) genotypes, GWAS was performed on
grain yield (GY), grain yield components, and agronomic characteristics over two growing
seasons and eight site years. Analysis of variance showed the significant effects of the
environment andgenotypes in the GY, and its components. Compared to other traits,
including plant height and kernel weight, the narrow heritability of the GY is moderate.
Using compressed linear mixed models and 5715 single nucleotide polymorphism markers
to measure eight traits, 112 significant MTAs were detected. The MTA of GY and agronomic
traits are consistent with the previously reported QTLs of winter and spring wheat. The
highly significant MTA of the GY shows an overall negative allele effect on the minor alleles,
indicating that the breeder has been selected for these alleles. The markers associated with
multiple traits observed on chromosomes 1A, 2D, 3B, and 4B have slight positive effects
and serve as potential targets for marker-assisted reproduction to select and enhance the
GY and its related traits. After labeling verification, these multi-portrait sites have potential
that can be used by MAS to enhance the GY and adaptability of soft red winter wheat [295].

GWAS was performed on 208 series durum wheat panels using 6211 DArTseq SNP.
This panel has been phenotyped for 2 years under the conditions of yield potential (YP),
drought stress (DT), and heat stress (HT). GWAS has identified the most important trait-
marker linkages on chromosomes 2A and 2B, and the markers in the study explain variation
in traits. Common markers were identified for stress tolerance indices: stress susceptibility
index, stress tolerance, and stress tolerance index estimated for sub-DT and HT traits.
The GWAS from the three environments of irrigation and stress and its comparison with
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the trait itself and the stress index determined the QTL hotspots on chromosomes 2A
and 2B [296]. Thirteen traits were evaluated in 373 Ae. tauschii germplasm grown under
normal drought stress conditions and simulated with polyethylene glycol, and performed
a genome-wide association study using 7185 SNP markers [297]. They used a general
linear model and a mixed linear model to determine 208 and 28 SNPs related to all traits,
and both models detected 25 important SNPs distributed throughout the genome. Public
database searches revealed several candidate/flanking genes related to drought resistance,
which were divided into three categories based on the type of protein encoded. In another
study, Mehrabi et al. [298] evaluated a set of T. durum landraces using SNP markers and
root system features, as well as some agronomic characteristics, over three stages of plant
growth and development. They reported that most significant MTAs were identified on
chromosome B. Furthermore, 167 QTLs were detected for root system and agronomic
traits, among which 16 QTLs for root-related traits overlapped with different measured
agronomic traits.

8. Concluding Remarks

Plant genetic resources are valuable assets for humankind. Among crop wild relatives,
wild wheat species have an important role in durum and bread wheat evolution. Hence,
thousands of Aegilops and Triticum accessions have been collected and are conserved in
various genebanks worldwide. These resources have donated an assortment of alleles
needed for resistance/tolerance to various environmental stresses, however, they have yet
to be used sufficiently in breeding programs. Our review has highlighted the potential
of wild kinds of wheat to use in future breeding programs. We believe that this paper
provides useful information and improves the understanding of natural diversity among
plant genetic resources and biotechnological tools for graduate students and also for the
practical applicability of the researchers.

Author Contributions: A.P.-A. conceived the idea; A.P.-A. and F.K. wrote the manuscript; A.P.-A.
and H.M. prepared the figures; A.P.-A., F.K. and H.M. collected information and prepared the table.
A.P.-A. and P.P. revised the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: Open access funding provided by University of Helsinki.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Skendzic, S.; Zovko, M.; Zivkovic, I.P.; Lesic, V.; Lemic, D. The impact of climate change on agricultural insect pests. Insects 2021,

12, 440. [CrossRef]
2. Bakala, H.S.; Mandahal, K.S.; Sarao, L.K.; Srivastava, P. Breeding wheat for biotic stress resistance: Achievements, challenges and

prospects. In Current Trends Wheat Research; IntechOpen: London, UK, 2021.
3. Nevo, E.; Chen, G. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 2010, 33,

670–685. [CrossRef]
4. Redden, R. New Approaches for crop genetic adaptation to the abiotic stresses predicted with climate change. Agronomy 2013, 3,

419–432. [CrossRef]
5. Glaszmann, J.C.; Kilian, B.; Upadhyaya, H.D.; Varshney, R.K. Accessing genetic diversity for crop improvement. Curr. Opin. Plant.

Biol. 2010, 13, 167–173. [CrossRef]
6. Von Botmer, R.; Seberg, O.; Jacobsen, N. Genetic resources in the Triticeae. Hered. 1992, 116, 141–150. [CrossRef]
7. Faris, J.D.; Zhang, Q.; Chao, S.; Zhang, Z.; Xu, S. Analysis of agronomic and domestication traits in a durum × cultivated emmer

wheat population using a high-density single nucleotide polymorphism-based linkage map. Theor. Appl. Genet. 2014, 127,
2333–2348. [CrossRef] [PubMed]

8. Weide, A.; Rieh, S.; Zeidi, M.; Conard, N.J. Using new morphological criteria to identify domesticated emmer wheat at the
aceramic Neolithic site of Chogha Golan (Iran). J. Archaeol. Sci. 2013, 57, 109–118. [CrossRef]

9. Kimber, G.; Sears, E.R. Evolution in the genus Triticum and the origin of cultivated wheat. In Wheat and Wheat Improvement; Heyne,
E.G., Ed.; American Society of Agronomy: Madison, WI, USA, 1987.

http://doi.org/10.3390/insects12050440
http://doi.org/10.1111/j.1365-3040.2009.02107.x
http://doi.org/10.3390/agronomy3020419
http://doi.org/10.1016/j.pbi.2010.01.004
http://doi.org/10.1111/j.1601-5223.1992.tb00814.x
http://doi.org/10.1007/s00122-014-2380-1
http://www.ncbi.nlm.nih.gov/pubmed/25186168
http://doi.org/10.1016/j.jas.2015.01.013


Agronomy 2021, 11, 1656 21 of 31

10. Kimber, G.; Tsunewaki, K. Genome symbols and plasma types in the wheat group. In Proceedings of the 7th International Wheat
Genetic Symposium, Cambridge, UK, 13–19 July 1988.

11. Gupta, P.K. Cytogenetics of wheat and its close wild relatives—Triticum and Aegilops. In Chromosome Engineering in Plants: Genetics,
Breeding, Evolution; Gupta, P.K., Tsuchiya, T., Eds.; Elsevier: Amsterdam, The Netherlands, 1991.

12. Wang, R.R.C.; van Bothmer, R.; Dvorak, R.; Fedak, G.; Linde-Laursen, I.; Muramatsu, M. Genome symbols in the Triticeae
(Poaceae). In Proceedings of the 2nd International Triticeae Symposium, Logan, UT, USA, 20–24 June 1994.

13. Petersen, G.; Seberg, O.; Yde, M.; Berthelsen, K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of
the A, B, and D genomes of common wheat (Triticum aestivum). Mol. Phylogenet. Evol. 2006, 39, 70–82. [CrossRef]

14. Eckardt, N.A. Evolution of domesticated bread wheat. Plant Cell 2010, 22, 993. [CrossRef] [PubMed]
15. Charmet, G. Wheat domestication: Lessons for the future. CR Biol. 2011, 334, 212–220. [CrossRef] [PubMed]
16. Tanno, K.; Willcox, G. Distinguishing wild and domestic wheat and barley spikelets from early Holocene sites in the Near East.

Veget. Hist. Archaeobot. 2011, 21, 107–115. [CrossRef]
17. Riehl, S.; Zeidi, M.; Conard, N.J. Emergence of agriculture in the foothills of the Zagros Mountains of Iran. Science 2013, 341,

65–67. [CrossRef] [PubMed]
18. Weide, A. On the identification of domesticated emmer wheat, Triticum turgidum subsp. dicoccum (Poaceae), in the aceramic neolithic

of the Fertile Crescent. Arch. Inf. 2015, 38, 381–424.
19. Edet, O.U.; Gorafi, Y.S.; Nasuda, S.; Tsujimoto, H. DArTseq-based analysis of genomic relationships among species of tribe

Triticeae. Sci. Rep. 2018, 8, 16397. [CrossRef] [PubMed]
20. Haas, M.; Schreiber, M.; Mascher, M. Domestication and crop evolution of wheat and barley: Egnes, genomics, and future

directions. J. Integr. Plant Biol. 2019, 61, 204–225. [CrossRef]
21. Venske, E.; Santos, R.S.; Busanello, C.; Gustafson, P.; Oliveira, A.C. Bread wheat: A role model for plant domestication and

breeding. Hereditas 2019, 156l, 16. [CrossRef]
22. DeHaan, L.; Larson, S.; López-Marqués, R.L.; Wenkel, S.; Gao, C.; Palmgren, M. Roadmap for accelerated domestication of an

emerging perennial grain crop. Trends Plant Sci. 2020, 25, 525–537. [CrossRef]
23. Rahman, S.; Islam, S.; Yu, Z.; She, M.; Nevo, E.; Ma, W. Current progress in understanding and recovering the wheat genes lost in

evolution and domestication. Int. J. Mol. Sci. 2020, 21, 5836. [CrossRef]
24. Kilian, B.; Ozkan, H.; Pozzi, C.; Salamini, F. Genetics and genomics of the Triticeae. In Plant Genetics and Genomics: Crops and

Models 7; Springer: Berlin, Germany, 2009.
25. Peng, J.H.; Sun, D.; Nevo, E. Domestication evolution, genetics and genomics in wheat. Mol. Breed. 2011, 28, 281–301. [CrossRef]
26. Lilienfeld, F.A. Genome-analysis in Triticum and Aegilops. Concluding review. Cytologia 1951, 16, 101–123. [CrossRef]
27. Kimber, G.; Sears, E.R. Assignment of genome symbols in the Triticeae. In Proceedings of the 6th International Wheat Genetics

Symposium, Kyoto, Japan, 28 November–3 December 1951.
28. Percival, J. The Wheat Plant; Duckworth: London, UK, 1921.
29. Jaradat, A.A. Phenotypic divergence for morphological and yield-related traits among landrace genotypes of durum wheat from

Jordan. Euphytica 1991, 52, 155–164. [CrossRef]
30. Anker, C.C.; Niks, R.E. Prehaustorial resistance to the wheat leaf rust fungus, Puccinia triticina, in Triticum monococcum (s.s.).

Euphytica 2001, 117, 209–215. [CrossRef]
31. Arzani, A.; Khalighi, M.R.; Shiran, B.; Kharazian, N. Evaluation of diversity in wild relatives of wheat. Czech J. Genet. Plant Breed.

2005, 41, 112–117. [CrossRef]
32. Aghaei, M.J.; Mozafari, J.; Taleei, A.R.; Naghavi, M.R.; Omidi, M. Distribution and diversity of Aegilops tauschii in Iran. Genet.

Resour. Crop Evol. 2008, 55, 341. [CrossRef]
33. Pour-Aboughadareh, A.; Ahmadi, J.; Mehrabi, A.A.; Moghaddam, M.; Etminan, A. Evaluation of agro-morphological diversity in

wild relatives of wheat collected in Iran. J. Agric. Sci. Technol. 2017, 19, 943–956.
34. Karagöz, A.; Pilanali, N.; Polat, T. Agro-morphological characterization of some wild wheat (Aegilops L. and Triticum L.) species.

Turk. J. Agric. For. 2007, 30, 387–398.
35. Nazari, M.; Moosavi, S.S.; Maleki, M. Morpho-physiological and proteomic responses of Aegilops tauschii to imposed moisture

stress. Plant Physiol. Biochem. 2018, 132, 445–452. [CrossRef] [PubMed]
36. Moosavi, S.S.; Nazari, M.; Maleki, M. Responses of above and below-ground traits of wheat wild relative (Aegilops tauschii) and

bread wheat (Triticum aestivum L.) to imposed moisture stress. Desert 2017, 22, 209–220.
37. Suneja, Y.; Gupta, A.K.; Bains, N.S. Stress adaptive plasticity: Aegilops tauschii and Triticum dicoccoides as Potential donors of

drought associated morpho-physiological traits in wheat. Front. Plant Sci. 2019, 10, 211. [CrossRef] [PubMed]
38. Pour-Aboughadareh, A.; Mahmoudi, M.; Moghaddam, M.; Ahmadi, J.; Mehrabi, A.A.; Alavikia, S.S. Agro-morphological and

molecular variability in Triticum boeoticum accessions from Zagros Mountains, Iran. Genet. Resour. Crop Evol. 2017, 64, 545–556.
[CrossRef]

39. Moosavi, S.S.; Abdi, F.; Abdollahi, M.R.; Tahmasebi-Enferadi, S.; Maleki, M. Phenological, morpho-physiological and proteomic
responses of Triticum boeoticum to drought stress. Plant Physiol. Biochem. 2020, 156, 95–104. [CrossRef]

40. Kianersi, F.; Mousavi, S.S.; Afiuni, D.; Abdollahi, M. Genetic diversity and heritability of some suitable morpho-physiological
traits in bread wheat (Triticum aestivum L.) under terminal moisture stress. Adv. Crop Sci. 2013, 3, 376–388.

http://doi.org/10.1016/j.ympev.2006.01.023
http://doi.org/10.1105/tpc.110.220410
http://www.ncbi.nlm.nih.gov/pubmed/20382836
http://doi.org/10.1016/j.crvi.2010.12.013
http://www.ncbi.nlm.nih.gov/pubmed/21377616
http://doi.org/10.1007/s00334-011-0316-0
http://doi.org/10.1126/science.1236743
http://www.ncbi.nlm.nih.gov/pubmed/23828939
http://doi.org/10.1038/s41598-018-34811-y
http://www.ncbi.nlm.nih.gov/pubmed/30401925
http://doi.org/10.1111/jipb.12737
http://doi.org/10.1186/s41065-019-0093-9
http://doi.org/10.1016/j.tplants.2020.02.004
http://doi.org/10.3390/ijms21165836
http://doi.org/10.1007/s11032-011-9608-4
http://doi.org/10.1508/cytologia.16.101
http://doi.org/10.1007/BF00029391
http://doi.org/10.1023/A:1026577307163
http://doi.org/10.17221/6149-CJGPB
http://doi.org/10.1007/s10722-007-9239-0
http://doi.org/10.1016/j.plaphy.2018.09.031
http://www.ncbi.nlm.nih.gov/pubmed/30292161
http://doi.org/10.3389/fpls.2019.00211
http://www.ncbi.nlm.nih.gov/pubmed/30858862
http://doi.org/10.1007/s10722-016-0381-4
http://doi.org/10.1016/j.plaphy.2020.08.016


Agronomy 2021, 11, 1656 22 of 31

41. Moosavi, S.S.; Kian Ersi, F.; Abdollahi, M.R. Application of multivariate statistical methods in detection of effective traits on bread
wheat (Triticum aestivum L.) yield under drought stress condition. Cereal Res. 2013, 3, 119–130.

42. Naghavi, M.R.; Toorchi, M.; Moghaddam, M.; Shakiba, M.R. Evaluation of diversity and traits correlation in spring wheat
cultivars under drought stress. Not. Sci. Biol. 2015, 7, 349–354. [CrossRef]

43. Adel Ahmed, E.; Abd El-Aziz Afiah, S.; Abdulaziz Al-Doss, A.; Ibrahim, E.I. Morphological variability and genetic diversity of
wheat genotypes grown on saline soil and identification of new promising molecular markers associated with salinity tolerance.
J. Plant Interact. 2019, 14, 564–571.

44. Tshikunde, N.M.; Mashilo, J.; Shimelis, H.; Odindo, A. Agronomic and physiological traits, and associated quantitative trait loci
(QTL) affecting yield response in wheat (Triticum aestivum L.): A review. Front. Plant Sci. 2019, 10, 1428. [CrossRef]

45. Rehman, H.U.; Tariq, A.; Ashraf, I.; Ahmed, M.; Muscolo, A.; Basra, S.M.A.; Reynolds, M. Evaluation of physiological and
morphological traits for improving spring wheat adaptation to terminal heat stress. Plants 2021, 10, 455. [CrossRef]

46. Peleg, Z.; Fahima, T.; Krugman, T.; Abbo, S.; Yakir, D.; Korol, A.B.; Saranga, Y. Genomic dissection of drought resistance in durum
wheat x wild emmer wheat recombinant inbreed line population. Plant Cell Environ. 2009, 32, 758–779. [CrossRef] [PubMed]

47. Peleg, Z.; Fahima, T.; Korol, A.B.; Abbo, S.; Saranga, Y. Genetic analysis of wheat domestication and evolution under domestication.
J. Exp. Bot. 2011, 62, 5051–5061. [CrossRef]

48. Fatiukha, A.; Deblieck, M.; Klymiuk, V.; Merchuk-Ovnat, L.; Peleg, Z.; Ordon, F.; Fahima, T.; Korol, A.; Saranga, Y.; Krugman,
T. Genomic architecture of phenotypic plasticity in response to water stress in tetraploid wheat. Int. J. Mol. Sci. 2021, 22, 1723.
[CrossRef]

49. Pour-Aboughadareh, A.; Mohammadi, R.; Etminan, A.; Shooshtari, L.; Maleki-Tabrizi, N.; Poczai, P. Effects of drought stress on
some agronomic and morpho-physiological traits in durum wheat genotypes. Sustainability 2020, 12, 5610. [CrossRef]

50. Huang, L.; Feng, L.; He, Y.; Tang, Z.; He, J.; Sela, H.; Krugman, T.; Fahima, T.; Liu, D.; Wu, B. Variation in stripe rust resistance
and morphological traits in wild emmer wheat populations. Agronomy 2019, 9, 44. [CrossRef]

51. Pour-Aboughadareh, A.; Alavikia, S.S.; Moghaddam, M.; Mehrabi, A.; Mazinani, M.A. Evaluation of morpho–physiological traits
in some Triticum urartu populations from Iran under normal and water deficit stress conditions. J. Agric. 2013, 15, 135–148.

52. Gurcan, K.; Demirel, F.; Tekin, M.; Demirel, S.; Akar, T. Molecular and agro-morphological characterization of ancient wheat
landraces of turkey. BMC Plant Biol. 2017, 17, 171. [CrossRef] [PubMed]

53. Hammer, K.; Knüpffer, H. Genetic resources of Triticum. In Advances in Wheat Genetics: From Genome to Field; Springer: Tokyo,
Japan, 2015.

54. Brush, S.B. Genes in the Field: On-Farm Conservation of Crop Diversity; CRC Press: Boca Raton, FL, USA, 2000.
55. Padulosi, S.; Bergamini, N.; Lawrence, T. On-farm conservation of neglected and underutilized species: Status, trends and novel

approaches to cope with climate change. In Proceedings of the International Conference, Frankfurt, Germany, 14–16 June 2011.
56. Teklu, Y.; Hammer, K. Farmers’ perception and genetic erosion of tetraploid wheat landraces in Ethiopia. Genet. Resour. Crop Evol.

2006, 53, 1099–1113. [CrossRef]
57. Stubbe, H. Spontane und Strahleninduzierte Mutabilität; Georg Thieme Verlag: Stuttgart, Germany, 1937.
58. Skovmand, B.; Reynolds, M.P.; DeLacy, I.H. Searching genetic resources for physiological traits with potential for increasing yield.

In Application of Physiology in Wheat Breeding; CIMMYT: Mexico City, Mexico, 2001; pp. 17–28.
59. Goriunova, S.V.; Chikida, N.N.; Kochieva, E.Z. RAPD analysis of the intraspecific and interspecific variation and phylogenetic

relationships of Aegilops L. species with the U genome. Genetika 2010, 46, 945–959. [CrossRef]
60. Okuno, K.; Ebana, K.; Noov, B.; Yoshida, H. Genetic diversity of Central Asian and north Caucasian Aegilops species as revealed

by RAPD markers. Genet. Resour. Crop Evol. 1998, 45, 389–394. [CrossRef]
61. Mguis, K.; Mahjoub, A.; Abassi, M.; Albouchi, A.; Ouerghi, Z.; Nadia, B.B.; Bejaoui, Z. Morphological and genetic variation in

Aegilops geniculata Roth. from Tunisia. Int. J. Agric. Res. 2015, 6, 8–21.
62. Mahjoub, A.; El, M.G.; Mguis, K.; El, M.G.; Brahim, N. Evaluation of genetic diversity in Aegilops geniculata Roth accessions using

morphological and RAPD markers. Pak. J. Biol. Sci. 2009, 12, 994–1003. [CrossRef]
63. Guadagnuolo, R.; Savova-Bianchi, D.; Felber, F. Gene flow from wheat (Triticum aestivum L.) to jointed goatgrass (Aegilops

cylindrica Host.), as revealed by RAPD and microsatellite markers. Theor. Appl. Genet. 2001, 103, 1–8. [CrossRef]
64. Mallabaeva, D.S.; Ignatov, A.N.; Sheiko, I.A.; Isikov, V.P.; Gelyuta, V.P.; Boiko, N.G.; Seryapin, A.A.; Dorokhov, D.B. Use of RAPD

and ITE molecular markers in studying the genetic structure of the Crimean population of T. boeoticum Boiss. Cytol. Genet. 2007,
41, 181–189. [CrossRef]

65. Zaharieva, M.; Santoni, S.; David, J. Use of RFLP markers to study genetic diversity and to build a core-collection of the wild
wheat relative Ae. geniculata Roth (=Ae. ovata L.). Genet. Sel. Evol. 2001, 33, 269–288. [CrossRef]

66. Naghavi, M.R.; Mardi, M.; Pirseyedi, S.M.; Kazemi, M.; Potki, P.; Gaffari, M.R. Comparison of genetic variation among accessions
of Aegilops tauschii using AFLP and SSR markers. Genet. Resour. Crop Evol. 2007, 54, 237–240. [CrossRef]

67. Monte, J.V.; De Nova, P.J.G.; Soler, C. AFLP-based analysis to study genetic variability and relationships in the Spanish species of
the genus Aegilops. Hereditas 2001, 135, 233–238. [CrossRef] [PubMed]

68. Kaya, I.; Kirisozu, A.C.; Ersoy, F.Y.; Dere, S.; Akkaya, M.S. Genetic diversity and relationship analysis among accessions of
Aegilops ssp. in Turkey using amplified fragment length polymorphism (AFLP) markers. Afr. J. Biotechnol. 2011, 72, 16167–16174.

69. Goryunova, S.V.; Chikida, N.N.; Kochieva, E.Z. AFLP, RAPD, and ISSR analysis of intraspecific polymorphism and interspecific
differences of allotetraploid species Aegilops kotschyi Boiss. and Aegilops variabilis Eig. Russ. J. Genet. 2017, 53, 568–575. [CrossRef]

http://doi.org/10.15835/nsb739592
http://doi.org/10.3389/fpls.2019.01428
http://doi.org/10.3390/plants10030455
http://doi.org/10.1111/j.1365-3040.2009.01956.x
http://www.ncbi.nlm.nih.gov/pubmed/19220786
http://doi.org/10.1093/jxb/err206
http://doi.org/10.3390/ijms22041723
http://doi.org/10.3390/su12145610
http://doi.org/10.3390/agronomy9020044
http://doi.org/10.1186/s12870-017-1133-0
http://www.ncbi.nlm.nih.gov/pubmed/29143602
http://doi.org/10.1007/s10722-005-1145-8
http://doi.org/10.1134/S1022795410070094
http://doi.org/10.1023/A:1008660001263
http://doi.org/10.3923/pjbs.2009.994.1003
http://doi.org/10.1007/s001220100636
http://doi.org/10.3103/S0095452707030085
http://doi.org/10.1186/BF03500884
http://doi.org/10.1007/s10722-006-9143-z
http://doi.org/10.1111/j.1601-5223.2001.00233.x
http://www.ncbi.nlm.nih.gov/pubmed/12152340
http://doi.org/10.1134/S1022795417050040


Agronomy 2021, 11, 1656 23 of 31

70. Medini, M.; Hamza, S.; Rebai, A.; Baum, M. Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild
species by SSR and AFLP markers. Genet. Resour. Crop Evol. 2005, 52, 21–31. [CrossRef]

71. Eslami Farouji, A.; Khodayari, H.; Saeidi, H.; Rahiminejad, R. Genetic diversity of diploid Triticum species in Iran assessed using
inter-retroelement amplified polymorphisms (IRAP) markers. Biologia 2015, 70, 52–60. [CrossRef]

72. Taheri, M.T.; Alavi-Kia, S.S.; Mohammadi, S.A.; Moghaddam Vahed, M. Assessment of genetic diversity and relationships among
Triticum urartu and Triticum boeoticum populations from Iran using IRAP and REMAP markers. Genet. Resour. Crop Evol. 2018, 65,
1867–1878. [CrossRef]

73. Ahmadi, J.; Ourang, S.; Pour-Aboughadareh, A. Evaluation of genetic diversity in Aegilops populations possessing D genome
using SCoT and TRAP markers. Mod. Genet. J. 2019, 14, 219–228.

74. Baranduzi, A.; Sofalian, O.; Asghari Zakaria, R.; Asghari, A.; Skokroop, M. Assessment of genetic diversity in Aegilops species in
North-West of Iran using ISSR marker. YYU J. Agric. Sci. 2013, 23, 66–75.

75. Prazak, R.; Paczos, E. Genetic similarity among Aegilops Kotschyi Boiss. with Triticum aestivum L. hybrid lines. Rom. Agric. Res.
2017, 34, 15–23.

76. Bouziani, M.; Bechkri, S.; Bellil, I.; Khelifi, D. Evaluation of genetic diversity of Algerian Aegilops ventricosa Tausch. using
intersimple sequence repeat (ISSR) markers. World J. Environ. Biosci. 2014, 8, 1–6.

77. Lelley, T.; Stachel, M.; Grausgruber, H.; Vollmann, J. Analysis of relationships between Aegilops tauschii and the D genome of
wheat utilizing microsatellites. Genome 2000, 43, 661–668. [CrossRef] [PubMed]

78. Li, Y.; Fahima, T.; Peng, J.; Roder, M.S.; Kirzhner, V.M.; Korol, A.B.; Nevo, E. Edaphic microsatellite DNA divergence in wild
emmer wheat, Triticum dicoccoides, at a microsite: Tabigha, Israel. Theor. Appl. Genet. 2000, 101, 1029–1038. [CrossRef]

79. Aghaee-Sarbarzeh, M.; Singh, H.; Dhaliwal, H.S. A microsatellite marker linked to leaf rust resistance transferred from Aegilops
triuncialis into hexaploid wheat. Plant Breed. 2001, 120, 259–261. [CrossRef]

80. Arabbeigi, M.; Arzani, A.; Majidi, M.M.; Kiani, R.; Tabatabaei, B.E.S.; Habibi, F. Salinity tolerance of Aegilops cylindrica genotypes
collected from hypersaline shores of Uremia Salt Lake using physiological traits and SSR markers. Acta Physiol. Plant. 2014, 36,
2243–2251. [CrossRef]

81. Abbasov, M.; Brueggeman, R.; Raupp, J. Genetic diversity of Aegilops L. species from Azerbaijan and Georgia using SSR markers.
Genet. Resour. Crop Evol. 2019, 66, 453–463. [CrossRef]

82. Schneider, A.; Molnar, I.; Molnar-Lang, M. Production and FISH identification of wheat-Aegilops biuncialis addition lines and their
use for the selection of U and M genome-specific molecular (SSR) markers. Acta Agron. Hung. 2010, 58, 151–158. [CrossRef]

83. Saeidi, H.; Rahiminejad, M.; Vallian, S.; Heslop-Harrison, J.S. Biodiversity of diploid D-genome Aegilops tauschii Coss. in Iran
measured using microsatellites. Genet. Resour. Crop Evol. 2006, 53, 1477–1484. [CrossRef]

84. Dudnikov, A.J.; Kawahara, T. Aegilops tauschii: Genetic variation in Iran. Genet. Resour. Crop Evol. 2006, 53, 579–586. [CrossRef]
85. Li, W.; Zhang, D.F.; Wei, Y.M.; Yan, Z.H.; Zheng, Y.L. Genetic diversity of Triticum turgidum L. based on microsatellite markers.

Russ. J. Genet. 2006, 42, 311–316. [CrossRef]
86. Moradkhani, H.; Mehrabi, A.A.; Etminan, A.; Pour-Aboughadareh, A. Molecular diversity and phylogeny of Triticum-Aegilops

species possessing D genome revealed by SSR and ISSR markers. Plant Breed. Seed Sci. 2015, 71, 81–95. [CrossRef]
87. Yamane, K.; Kawahara, T. Size homoplasy and mutational behavior of chloroplast simple sequence repeats (cpSSRs) inferred

from intra- and interspecific variations in four chloroplast regions of diploid and polyploid Triticum and Aegilops species. Genet.
Resour. Crop Evol. 2018, 65, 727–743. [CrossRef]

88. Gandhi, H.T.; Vales, M.I.; Mallory-Smith, C.; Riera-Lizarazu, O. Genetic structure of Aegilops cylindrica Host in its native range
and in the United States of America. Theor. Appl. Genet. 2009, 119, 1013–1025. [CrossRef]

89. Gong, W.; Han, R.; Li, H. Agronomic traits and molecular marker identification of wheat-Aegilops caudata addition lines. Front.
Plant Sci. 2017, 8, 1743. [CrossRef] [PubMed]

90. Urazaliev, R.; Yessimbekova, M.; Mukin, K.; Chirkin, A.; Ismagulova, G. Monitoring of Aegilops L local species genetic diversity of
Kazakhstans flora Vavilovskii Zhurnal Genetikii Selektsii Vavilov. J. Genet. Breed. 2018, 22, 484–490.

91. Yasui, Y.; Nasuda, S.; Matsuoka, Y.; Kawahara, T. The Au family, a novel short interspersed element (SINE) from Aegilops
umbellulata. Theor. Appl. Genet. 2001, 102, 463–470. [CrossRef]

92. Pour-Aboughadareh, A.; Ahmadi, J.; Mehrabi, A.A.; Etminan, A.; Moghaddam, M. Assessment of genetic diversity among
Iranian Triticum germplasm using agro-morphological traits and start codon targeted (SCoT) markers. Cereal Res. Commun. 2017,
45, 574–586. [CrossRef]

93. Pour-Aboughadareh, A.; Ahmadi, J.; Mehrabi, A.A.; Etminan, A.; Moghaddam, M. Insight into the genetic variability analysis
and relationships among some Aegilops and Triticum species, as genome progenitors of bread wheat, using SCoT markers. Plant
Biosyst. 2018, 152, 694–703. [CrossRef]

94. Etminan, A.; Pour-Aboughadareh, A.; Mehrabi, A.A.; Shooshtari, L.; Ahmadi-Rad, A.; Moradkhani, H. Molecular characterization
of the wild relatives of wheat using CAAT-box derived polymorphism. Plant Biosyst. 2019, 153, 398–405. [CrossRef]

95. Pour-Aboughadareh, A.; Etminan, A.; Shooshtari, L.; Maleki-Tabrizi, N. Comparative assessment of SCoT and CBDP markers for
investigation of genetic diversity existing in different Aegilops Species. Agric. Biotechnol. J. 2019, 4, 153–174.

96. Ivanizs, L.; Monostori, I.; Farkas, A. Unlocking the genetic diversity and population structure of a wild gene source of wheat,
Aegilops biuncialis Vis., and its relationship with the heading time. Front. Plant Sci. 2019, 10, 1531. [CrossRef]

http://doi.org/10.1007/s10722-005-0225-0
http://doi.org/10.1515/biolog-2015-0002
http://doi.org/10.1007/s10722-018-0660-3
http://doi.org/10.1139/g00-036
http://www.ncbi.nlm.nih.gov/pubmed/10984179
http://doi.org/10.1007/s001220051577
http://doi.org/10.1046/j.1439-0523.2001.00598.x
http://doi.org/10.1007/s11738-014-1602-0
http://doi.org/10.1007/s10722-018-0725-3
http://doi.org/10.1556/AAgr.58.2010.2.6
http://doi.org/10.1007/s10722-005-7110-8
http://doi.org/10.1007/s10722-004-2681-3
http://doi.org/10.1134/S1022795406030124
http://doi.org/10.1515/plass-2015-0024
http://doi.org/10.1007/s10722-017-0567-4
http://doi.org/10.1007/s00122-009-1105-3
http://doi.org/10.3389/fpls.2017.01743
http://www.ncbi.nlm.nih.gov/pubmed/29075275
http://doi.org/10.1007/s001220051668
http://doi.org/10.1556/0806.45.2017.033
http://doi.org/10.1080/11263504.2017.1320311
http://doi.org/10.1080/11263504.2018.1492993
http://doi.org/10.3389/fpls.2019.01531


Agronomy 2021, 11, 1656 24 of 31

97. Abbasov, M.; Sansaloni, C.P.; Burgueno, J. Genetic diversity analysis using DArTseq and SNP markers in populations of Aegilops
species from Azerbaijan. Genet. Resour. Crop Evol. 2020, 67, 281–291. [CrossRef]

98. Laido, G.; Mangini, G.; Taranto, F. Genetic diversity and population structure of tetraploid wheats (Triticum turgidum L.) estimated
by SSR, DArT and pedigree data. PLoS ONE 2013, 8, e67280. [CrossRef] [PubMed]

99. Gill, B.S. SNPing Aegilops tauschii genetic diversity and the birthplace of bread wheat. New Phytol. 2013, 198, 641–642. [CrossRef]
[PubMed]

100. Arora, S.; Cheema, J.; Poland, J.; Uauy, C.; Chhuneja, P. Genome-wide association mapping of grain micronutrients concentration
in Aegilops tauschii. Front. Plant Sci. 2019, 10, 54. [CrossRef] [PubMed]

101. Su, Y.; Zou, M.; Zhu, Y.; Han, X.; Li, Y.; Zhang, D.; Li, S. Analysis of population structure and origin in Aegilops tauschii Coss. from
China through SNP markers. Genet. Resour. Crop Evol. 2020, 67, 923–934. [CrossRef]

102. Szabo-Hever, A.; Zhang, Q.; Friesen, T.L.; Zhong, S.; Elias, E.M.; Cai, X.; Jin, Y.; Faris, J.D.; Chao, S.; Xu, S.S. Genetic diversity
and resistance to Fusarium head blight in synthetic hexaploid wheat derived from Aegilops tauschii and diverse Triticum turgidum
subspecies. Front. Plant Sci. 2018, 9, 1829. [CrossRef]

103. Govindaraj, M.; Vetriventhan, M.; Srinivasan, M. Importance of genetic diversity assessment in crop plants and its recent
advances: An overview of its analytical perspectives. Genet. Res. Int. 2015, 2015, 431487. [CrossRef] [PubMed]

104. Zhang, H.; Mittal, N.; Leamy, L.; Barazani, O.; Song, B.H. Back into the wild—Apply untapped genetic diversity of wild relatives
for crop improvement. Evol. Appl. 2016, 10, 5–24. [CrossRef] [PubMed]

105. Budak, H.; Kantar, M.; Yucebilgili Kurtoglu, K. Drought tolerance in modern and wild wheat. Sci. World J. 2013, 2013, 548246.
[CrossRef] [PubMed]

106. Zaharieva, M.; Gaulin, E.; Havaux, M.; Acevedo, E.; Monneveux, P. Drought and heat responses in the wild wheat relative
Aegilops geniculata Roth: Potential interest for wheat improvement. Crop Sci. 2001, 41, 1321–1329. [CrossRef]

107. Baalbaki, R.; Hajj-Hassan, N.; Zurayk, R. Aegilops species from semi-arid areas of Lebanon: Variation in quantitative attributes
under water stress. Crop Sci. 2006, 46, 799–806. [CrossRef]

108. Reynolds, M.P.; Dreccer, F.; Trethowan, R. Drought adaptive traits derived from wheat wild relatives and landraces. J. Exp. Bot.
2007, 58, 177–186. [CrossRef]

109. Khazaei, H.; Monneveux, P.; Hongbo, S.; Mohammady, S. Variation for stomatal characteristics and water use efficiency among
diploid, tetraploid and hexaploid Iranian wheat landraces. Genet. Resour. Crop Evol. 2010, 57, 307–314. [CrossRef]

110. Waines, J.G.; Rafi, M.M.; Ehdaie, B. Yield Components and transpiration efficiency in wild wheats. In Biodiversity and Wheat
Improvement; Damanian, A.B., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 1993.

111. Budak, H.; Hussain, B.; Khan, Z.; Ozturk, N.Z.; Ullah, N. From genetics to functional genomics: Improvement in drought
signaling and tolerance in wheat. Front. Plant Sci. 2015, 6, 1012. [CrossRef]

112. Pour-Aboughadareh, A.; Ahmadi, J.; Mehrabi, A.A.; Etminan, A.; Moghaddam, M.; Siddique, K.H.M. Physiological responses to
drought stress in wild relatives of wheat: Implications for wheat improvement. Acta Physiol. Plant. 2017, 39, 106. [CrossRef]

113. Hossain, M.S.; Dietz, K.-J. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity
stress. Front. Plant Sci. 2016, 7, 548. [CrossRef] [PubMed]

114. Bose, J.; Rodrigo-Moreno, A.; Shabala, S. ROS homeostasis in halophytes in the context salinity stress tolerance. J. Exp. Bot. 2013,
65, 1241–1257. [CrossRef] [PubMed]

115. Ahmadi, J.; Pour-Aboughadareh, A.; Ourang, S.F.; Mehrabi, A.A.; Siddique, K.H.M. Wild relatives of wheat: Aegilops–Triticum
accessions disclose differential antioxidative and physiological responses to water stress. Acta Physiol. Plant. 2018, 40, 90.
[CrossRef]

116. Pour-Aboughadareh, A.; Omidi, M.; Naghavi, M.R.; Etminan, A.; Mehrabi, A.A.; Poczai, P.; Bayat, H. Effect of water deficit stress
on seedling biomass and physio-chemical characteristics in different species of wheat possessing the D genome. Agronomy 2019,
9, 522. [CrossRef]

117. Pour-Aboughadareh, A.; Omidi, M.; Naghavi, M.R.; Etminan, A.; Mehrabi, A.A.; Poczai, P. Wild relatives of wheat respond well
to water deficit stress: A comparative study of antioxidant enzyme activities and their encoding gene expression. Agriculture
2020, 10, 415. [CrossRef]

118. Trachsel, S.; Stamp, P.; Hund, A. Growth of axile and lateral roots of maize: Response to desiccation stress induced by polyethylene
glycol 8000. Maydica 2010, 55, 101–109.

119. Ahmadi, J.; Pour-Aboughadareh, A.; Fabriki Ourang, S.; Mehrabi, A.A.; Siddique, K.H.M. Screening wheat germplasm for
seedling root architectural traits under contrasting water regimes: Potential sources of variability for drought adaptation. Arch.
Agron. Soil Sci. 2018, 64, 1351–1365. [CrossRef]

120. Djanaguiraman, M.; Prasad, P.V.V.; Kumari, J.; Sehgal, S.K.; Friebe, B.; Djalovic, I.; Chen, Y.; Siddique, K.H.M.; Gill, B.S. Alien
chromosome segment from Aegilops speltoides and Dasypyrum villosum increases drought tolerance in wheat via profuse and deep
root system. BMC Plant Biol. 2019, 19, 242. [CrossRef]

121. Pour-Aboughadareh, A.; Mehrvar, M.R.; Sanjani, S.; Amini, A.; Nikkhah-Chamanabad, H.; Asadi, A. Effects of salinity stress on
seedling biomass, physiochemical properties, and grain yield in different breeding wheat genotypes. Acta Physiol. Plant. 2021,
43, 98. [CrossRef]

http://doi.org/10.1007/s10722-019-00866-7
http://doi.org/10.1371/journal.pone.0067280
http://www.ncbi.nlm.nih.gov/pubmed/23826256
http://doi.org/10.1111/nph.12259
http://www.ncbi.nlm.nih.gov/pubmed/23577596
http://doi.org/10.3389/fpls.2019.00054
http://www.ncbi.nlm.nih.gov/pubmed/30792723
http://doi.org/10.1007/s10722-020-00890-y
http://doi.org/10.3389/fpls.2018.01829
http://doi.org/10.1155/2015/431487
http://www.ncbi.nlm.nih.gov/pubmed/25874132
http://doi.org/10.1111/eva.12434
http://www.ncbi.nlm.nih.gov/pubmed/28035232
http://doi.org/10.1155/2013/548246
http://www.ncbi.nlm.nih.gov/pubmed/23766697
http://doi.org/10.2135/cropsci2001.4141321x
http://doi.org/10.2135/cropsci2005.0120
http://doi.org/10.1093/jxb/erl250
http://doi.org/10.1007/s10722-009-9471-x
http://doi.org/10.3389/fpls.2015.01012
http://doi.org/10.1007/s11738-017-2403-z
http://doi.org/10.3389/fpls.2016.00548
http://www.ncbi.nlm.nih.gov/pubmed/27242807
http://doi.org/10.1093/jxb/ert430
http://www.ncbi.nlm.nih.gov/pubmed/24368505
http://doi.org/10.1007/s11738-018-2673-0
http://doi.org/10.3390/agronomy9090522
http://doi.org/10.3390/agriculture10090415
http://doi.org/10.1080/03650340.2018.1432855
http://doi.org/10.1186/s12870-019-1833-8
http://doi.org/10.1007/s11738-021-03265-7


Agronomy 2021, 11, 1656 25 of 31

122. Pour-Aboughadareh, A.; Sanjani, S.; Nikkhah-Chamanabad, H.; Mehrvar, M.R.; Asadi, A.; Amini, A. Identification of salt-tolerant
barley genotypes using multiple-traits index and yield performance at the early growth and maturity stages. Bull. Natl. Res. Cent.
2021, 45, 117. [CrossRef]

123. Arzani, A. Improving salinity tolerance in crop plants: A biotechnological view. Cell. Dev. Biol. Plant 2008, 44, 373–383. [CrossRef]
124. Colmer, T.D.; Flowers, T.J.; Munns, R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 2006, 57, 1059–1078.

[CrossRef]
125. Arzani, A.; Ashraf, A. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit. Rev. Plant Sci.

2016, 35, 146–189. [CrossRef]
126. Rezaei, M.; Arzani, A.; Saeidi, G.; Karami, M. Physiology of salinity tolerance in Bromus danthoniae genotypes originated from

saline and non-saline areas of West Iran. Crop Pasture Sci. 2017, 68, 92–99. [CrossRef]
127. Farooq, S.; Niazi, M.L.K.; Iqbal, N.; Shah, T.M. Salt tolerance potential of wild resources of the tribe Triticeae. II. Screening of

species of genus Aegilops. Plant Soil. 1989, 119, 255–260. [CrossRef]
128. Gorham, J.; Hardy, C.; Jones, R.G.W.; Joppa, L.R.; Law, C.N. Chromosomal location of a K+/Na+ discrimination character in the D

genome of wheat. Theor. Appl. Genet. 1987, 74, 584–588. [CrossRef]
129. Ahmadi, J.; Pour-Aboughadareh, A.; Fabriki Ourang, S.; Khalili, P.; Poczai, P. Unraveling salinity stress responses in ancestral and

neglected wheat species at early growth stage: A baseline for utilization in future wheat improvement programs. Physiol. Mol.
Biol. Plants 2020, 26, 537–549. [CrossRef]

130. Kiani, R.; Arzani, A.; Habibi, F. Physiology of salinity tolerance in Aegilops ylindrica. Acta Physiol. Plant. 2015, 37, 135–145.
[CrossRef]

131. Ahmadi, J.; Pour-Aboughadareh, A.; Fabriki-Ourang, S.; Mehrabi, A.A.; Siddique, K.H.M. Screening wild progenitors of wheat
for salinity stress at early stages of plant growth: Insight into potential sources of variability for salinity adaptation in wheat. Crop
Pasture Sci. 2018, 69, 649–658. [CrossRef]

132. Prasad, P.; Staggenborg, S.; Ristic, Z. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield
processes of crop plants. In Modeling Water Stress Effects on Plant Growth Processes; Ahuja, L., Saseendran, S., Eds.; CROP Science
Society of America: Madison, WI, USA, 2008.

133. Ristic, Z.; Bukovnik, U.; Prasad, P.V.V. Correlation between heat stability of thylakoid membranes and loss of chlorophyll in
winter wheat under heat stress. Crop Sci. 2007, 47, 2067–2073. [CrossRef]

134. Al-Khatib, K.; Paulsen, G.M. Mode of high temperature injury to wheat during grain development. Physiol. Plant. 1984, 61,
363–368. [CrossRef]

135. Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications.
J. Exp. Bot. 2013, 64, 3983–3998. [CrossRef] [PubMed]

136. Clark, A.J.; Landolt, W.; Bucher, J.B.; Strasser, R.J. Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll
fluorescence performance index. Environ. Pollut. 2000, 109, 501–507. [CrossRef]

137. Percival, G.C.; Sheriffs, C.N. Identification of drought-tolerance woody perennials using chlorophyll fluorescence. Arboric. Urban
For. 2002, 28, 215–223.

138. Li, R.H.; Pei-guo, G.; Baum, M.; Grando, S.; Cecccarelli, S. Evaluation of chlorophyll content and fluorescence parameters as
indicators of drought tolerance in barley. Agric. Sci. China 2006, 5, 751–757. [CrossRef]

139. Li, Y.; Song, H.; Xu, Z.; Zhou, G. Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire
leaf lifespan in a maize field. Agric. Water Manag. 2019, 211, 190–201. [CrossRef]

140. Hairat, S.; Khurana, P. Evaluation of Aegilops tauschii and Aegilops speltoides for acquired thermotolerance: Implications in wheat
breeding programmes. Plant Physiol. Biochem. 2015, 95, 65–74. [CrossRef] [PubMed]

141. Pradhan, G.P.; Prasad, P.V.V.; Fritz, A.K.; Kirkhan, M.B.; Gill, B.S. Response of Aegilops species to drought stress during
reproductive stage of development. Funct. Plant Biol. 2012, 39, 51–59. [CrossRef] [PubMed]

142. Cramer, G.R.; Urano, K.; Delrot, S.; Pezzotti, M.; Shinozaki, K. Effects of abiotic stress on plants: A systems biology perspective.
BMC Plant Biol. 2011, 11, 163. [CrossRef] [PubMed]

143. Limin, A.E.; Fowler, D.B. Cold hardiness of some wild relatives of hexaploid wheat. Botany 1981, 59, 572–573.
144. Barashkova, E.A.; Vavilov, N. Physiological-genetic aspects of frost resistance in winter wheat. Relationship of frost hardiness with

genome composition in wheat. In Proceedings of International Symposium: Wheat Breeding—Prospects and Future Approaches;
Institute for Wheat and Sunflower: Albena, Bulgaria, 1991; pp. 379–384.

145. Ehdaie, B.; Waines, J.G. Heat resistance in wild Triticum and Aegilops. J. Genet. Breed. 1992, 46, 221–228.
146. Stankova, P.; Rekika, D.; Zaharieva, M.; Monneveux, P. Improvement of durum wheat for multiple stress tolerance: Potential

interest of Aegilops sp. In Fibre and Cereal Crops Problems; Cotton and Durum Wheat Research Institute: Chirpan, Bulgaria, 1995.
147. Masoomi-Aladizgeh, F.; Aalami, A.; Esfahani, M.; Aghaei, M.J.; Mozaffari, K. Identification of CBF14 and NAC2 genes in Aegilops

tauschii associated with resistance to freezing stress. Appl. Biochem. Biotechnol. 2015, 176, 1059–1070. [CrossRef]
148. Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of plant diseases—A field perspective. Mol. Plant Path. 2017, 19,

1523–1536. [CrossRef]
149. Wellings, C.R. Global status of stripe rust: A review of historical and current threats. Euphytica 2011, 179, 129–141. [CrossRef]
150. Bertholdsson, N.O. Early vigor and allelopathy-Two useful traits for enhancing barley and wheat competitiveness against weeds.

Weed Res. 2005, 45, 94–102. [CrossRef]

http://doi.org/10.1186/s42269-021-00576-0
http://doi.org/10.1007/s11627-008-9157-7
http://doi.org/10.1093/jxb/erj124
http://doi.org/10.1080/07352689.2016.1245056
http://doi.org/10.1071/CP16311
http://doi.org/10.1007/BF02370417
http://doi.org/10.1007/BF00288856
http://doi.org/10.1007/s12298-020-00768-4
http://doi.org/10.1007/s11738-015-1881-0
http://doi.org/10.1071/CP17418
http://doi.org/10.2135/cropsci2006.10.0674
http://doi.org/10.1111/j.1399-3054.1984.tb06341.x
http://doi.org/10.1093/jxb/ert208
http://www.ncbi.nlm.nih.gov/pubmed/23913954
http://doi.org/10.1016/S0269-7491(00)00053-1
http://doi.org/10.1016/S1671-2927(06)60120-X
http://doi.org/10.1016/j.agwat.2018.09.050
http://doi.org/10.1016/j.plaphy.2015.07.009
http://www.ncbi.nlm.nih.gov/pubmed/26188500
http://doi.org/10.1071/FP11171
http://www.ncbi.nlm.nih.gov/pubmed/32480759
http://doi.org/10.1186/1471-2229-11-163
http://www.ncbi.nlm.nih.gov/pubmed/22094046
http://doi.org/10.1007/s12010-015-1629-8
http://doi.org/10.1111/mpp.12618
http://doi.org/10.1007/s10681-011-0360-y
http://doi.org/10.1111/j.1365-3180.2004.00442.x


Agronomy 2021, 11, 1656 26 of 31

151. Jiang, J.; Friebe, B.; Gill, B.S. Recent advances in alien gene transfer in wheat. Euphytica 1994, 73, 199–212. [CrossRef]
152. Friebe, B.; Jiang, J.; Raupp, W.J.; McIntosh, R.A.; Gill, B.S. Characterization of wheat-alien translocations conferring resistance to

diseases and pests: Current status. Euphytica 1996, 91, 59–87. [CrossRef]
153. McIntosh, R.A.; Wellings, C.R.; Park, R.F. Wheat Rusts: An Atlas of Resistance Genes; CSIRO Publishing: Melbourne, Australia, 1995.
154. McIntosh, R.A.; Yamazaki, Y.; Dubcovsky, J.; Rogers, J.; Morris, C.; Appels, R.; Xia, X.C. Catalogue of gene symbols for wheat. In

Proceedings of the 12th International Wheat Genetics Symposium, Yokohama, Japan, 8–10 April 2013.
155. Chhuneja, P.; Kaur, S.; Garg, T.; Ghai, M.; Kaur, S.; Prashar, M.; Bains, N.S.; Goel, R.K.; Keller, B.; Dhaliwal, H.S.; et al. Mapping of

adult plant stripe rust resistance genes in diploid a genome wheat species and their transfer to bread wheat. Theor. Appl. Genet.
2008, 116, 313–324. [CrossRef] [PubMed]

156. Riar, A.K.; Kaur, S.; Dhaliwal, H.S.; Singh, K.; Chhuneja, P. Introgression of a leaf rust resistance gene from Aegilops caudata to
bread wheat. J. Genet. 2012, 91, 155–161. [CrossRef]

157. Kishii, M. An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 2019, 10, 585. [CrossRef]
158. Doussinault, G.; Delibes, A.; Sanchez-Monge, R.; Garcia-Olmedo, F. Transfer of a dominant gene for resistance to eyespot disease

from a wild grass to hexaploid wheat. Nature 1983, 303, 698–700. [CrossRef]
159. McIntosh, R.A. Catalogue of gene symbols for wheat. In Proceedings of the 7th international wheat Genetics Symposium,

Cambridge, UK, 13–19 July 1988.
160. Hsam, S.L.K.; Huang, X.Q.; Ernst, F.; Hartl, L.; Zeller, F.J. Chromosomal location of genes for resistance to powdery mildew in

common wheat (Triticum aestivum L. em Thell.). Alleles at the Pm1 locus. Theor. Appl. Genet. 1998, 96, 1129–1134. [CrossRef]
161. Klindworth, D.L.; Niu, Z.; Chao, S.; Friesen, T.L.; Jin, Y.; Faris, J.D.; Cai, X.; Xu, S. Introgression and characterization of a goatgrass

gene for a high level of resistance to ug99 stem rust in tetraploid wheat. G3 2012, 2, 665–673. [CrossRef]
162. Hsam, S.L.K.; Lapochkina, I.F.; Zeller, F.J. Chromosomal location of genes for resistance to powdery mildew in common wheat

(Triticum aestivum L. em Thell.). gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 2003, 133, 367–370.
[CrossRef]

163. McIntosh, R.A.; Miller, T.E.; Chapman, V. Cytogenetical studies in wheat XII. Lr28 for resistance to Puccinia recondita and Sr34 for
resistance to P. graminis tritici. Z. Pflanzenzucht. Can. Sci. Publ. 1982, 89, 295–306.

164. Petersen, S.; Lyerly, J.H.; Worthington, M.L.; Parks, W.R.; Cowger, C.; Marshall, D.S.; Brown-Guedira, G.; Murphy, J.P. Mapping of
powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theor. Appl. Genet. 2015,
128, 303–312. [CrossRef] [PubMed]

165. Bariana, H.S.; McIntosh, R.A. Cytogenetic studies in wheat. XV. location of rust resistance genes in VPM1 and their genetic
linkage with other disease resistance genes in chromosome 2A. Genome 1993, 36, 476–482. [CrossRef]

166. Donini, P.; Koebner, R.M.; Ceoloni, C. Cytogenetic and molecular mapping of the wheat-Aegilops longissima chromatin
breakpoints in powdery mildew-resistant introgression lines. Theor. Appl. Genet. 1995, 91, 738–743. [CrossRef] [PubMed]

167. Liu, W.; Jin, Y.; Rouse, M.; Friebe, B.; Gill, B.S.; Pumphrey, M.O. Development and characterization of wheat-Ae. searsii
robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor. Appl. Genet. 2011, 122,
1537–1545. [CrossRef] [PubMed]

168. Zeller, F.J.; Kong, L.; Hartl, L.; Mohler, V.; Hsam, S.L.K. Chromosomal location of genes for resistance to powdery mildew in
common wheat (Triticum aestivum L. em Thell.). Gene Pm29 in line Pova. Euphytica 2002, 123, 187–194. [CrossRef]

169. Liu, W.; Rouse, M.; Friebe, B.; Jin, Y.; Gill, B.S.; Pumphrey, M.O. Discovery and molecular mapping of a new gene conferring
resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with
reduced alien chromatin. Chromosome Res. 2011, 19, 669–682. [CrossRef]

170. Liu, W.; Koo, D.H.; Xia, Q.; Li, C.; Bai, F.; Song, Y.; Friebe, B.; Gill, B.S. Homoeologous recombination-based transfer and molecular
cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theor. Appl. Genet. 2017, 130,
841–848. [CrossRef]

171. Sears, E.R. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. In Brook-Haven Symposia in Biology; Brookhaven
National Laboratory, Associated Universities: Champaign, IL, USA, 1956.

172. Lutz, J.; Hsam, S.L.K.; Limpert, E.; Zeller, F.J. Chromosomal location of powdery mildew resistance genes in Triticum aestivum L.
(common wheat) genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 1995, 74, 152–156. [CrossRef]

173. Bansal, M.; Kaur, S.; Dhaliwal, H.S.; Baines, N.S.; Bariana, H.S.; Chhuneja, P.; Bansal, U.K. Mapping of Aegilops umbellulata-derived
leaf rust and stripe rust loci in wheat. Plant Pathol. 2017, 66, 38–44. [CrossRef]

174. Miranda, L.M.; Murphy, J.P.; Marshall, D.; Leath, S. Pm34: A new powdery mildew resistance gene transferred from Aegilops
tauschii Coss. to common wheat (Triticum aestivum L.). Theor. Appl. Genet. 2006, 113, 1497–1504. [CrossRef] [PubMed]

175. Delibes, A.; Romero, D.; Aguaded, S.; Duce, A.; Mena, M.; Lopez-Brana, I.; Andres, M.F.; Martin-Sanchez, J.A.; Garcia-Olmedo, F.
Resistance to the cereal cyst nematode (Heterodera avenae Woll.) transferred from the wild grass Aegilops ventricosa to hexaploid
wheat by a “stepping-stone” procedure. Theor. Appl. Genet. 1993, 87, 402–408. [CrossRef] [PubMed]

176. Jahier, J.; Tanguy, A.M.; Abelard, P.; Rivoal, R. Utilization of deletions to localize a gene for resistance to the cereal cyst nematode,
Heterodera avenae, on an Aegilops ventricosa chromosome. Plant Breed. 1996, 115, 282–284. [CrossRef]

177. Helguera, M.; Khan, I.A.; Dubcovsky, J. Development of PCR markers for the wheat leaf rust gene Lr47. Theor. Appl. Genet. 2000,
101, 625–631. [CrossRef]

http://doi.org/10.1007/BF00036700
http://doi.org/10.1007/BF00035277
http://doi.org/10.1007/s00122-007-0668-0
http://www.ncbi.nlm.nih.gov/pubmed/17989954
http://doi.org/10.1007/s12041-012-0161-7
http://doi.org/10.3389/fpls.2019.00585
http://doi.org/10.1038/303698a0
http://doi.org/10.1007/s001220050848
http://doi.org/10.1534/g3.112.002386
http://doi.org/10.1023/A:1025738513638
http://doi.org/10.1007/s00122-014-2430-8
http://www.ncbi.nlm.nih.gov/pubmed/25425170
http://doi.org/10.1139/g93-065
http://doi.org/10.1007/BF00220952
http://www.ncbi.nlm.nih.gov/pubmed/24169909
http://doi.org/10.1007/s00122-011-1553-4
http://www.ncbi.nlm.nih.gov/pubmed/21347655
http://doi.org/10.1023/A:1014944619304
http://doi.org/10.1007/s10577-011-9226-3
http://doi.org/10.1007/s00122-017-2855-y
http://doi.org/10.1038/hdy.1995.22
http://doi.org/10.1111/ppa.12549
http://doi.org/10.1007/s00122-006-0397-9
http://www.ncbi.nlm.nih.gov/pubmed/16953419
http://doi.org/10.1007/BF01184930
http://www.ncbi.nlm.nih.gov/pubmed/24190269
http://doi.org/10.1111/j.1439-0523.1996.tb00919.x
http://doi.org/10.1007/s001220051524


Agronomy 2021, 11, 1656 27 of 31

178. Ogbonnaya, F.C.; Seah, S.; Delibes, A.; Jahier, J.; Lopez-Brana, I.; Eastwood, R.F.; Lagudah, E.S. Molecular-genetic characterisation
of a new nematode resistance gene in wheat. Theor. Appl. Genet. 2001, 102, 623–629. [CrossRef]

179. Helguera, M.; Vanzetti, L.; Soria, M.; Khan, I.A.; Kolmer, J.; Dubcovsky, J. PCR markers for Triticum speltoides leaf rust resistance
gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci. 2005, 45, 728–734. [CrossRef]

180. Romero, M.D.; Montes, M.J.; Sin, E.; López-Braña, I.; Duce, A.; Martn-Sanchez, J.A. A cereal cyst nematode (Heterodera avenae
Woll.) resistance gene transferred from Aegilops triuncialis to hexaploid wheat. Theor. Appl. Genet. 1998, 96, 1135–1140. [CrossRef]

181. Marais, G.F.; Badenhorst, P.E.; Eksteen, A.; Pretorius, Z.A. Reduction of Aegilops sharonensis chromatin associated with resistance
genes Lr56 and Yr38 in wheat. Euphytica 2010, 171, 15–22. [CrossRef]

182. Barloy, D.; Lemoine, J.; Abelard, P.; Tanguy, A.M.; Rivoal, R.; Jahier, J. Marker-assisted pyramiding of two cereal cyst nematode
resistance genes from Aegilops variabilis in wheat. Mol. Breed. 2007, 20, 31–40. [CrossRef]

183. Marais, G.F.; McCallum, B.; Snyman, J.E.; Pretorius, Z.A.; Marais, A.S. Leaf rust and stripe rust resistance genes Lr54 and Yr37
transferred to wheat from Aegilops kotschyi. Plant Breed. 2005, 124, 538–541. [CrossRef]

184. Yu, M.Q.; Person-Dedrywer, F.; Jahier, J. Resistance to root knot nematode, Meloidogyne naasi (Franklin) transferred from Aegilops
variabilis Eig to bread wheat. Agronomie 1990, 6, 451–456. [CrossRef]

185. Kuraparthy, V.; Chhuneja, P.; Dhaliwal, H.S.; Kaur, S.; Bowden, R.L.; Gill, B.S. Characterization and mapping of cryptic alien
introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor. Appl.
Genet. 2007, 114, 1379–1389. [CrossRef] [PubMed]

186. Williamson, V.M.; Thomas, V.; Ferris, H.; Dubcovsky, J. An Aegilops ventricosa translocation confers resistance against root-knot
nematodes to common wheat. Crop Sci. 2013, 53, 1412–1418. [CrossRef]

187. Kuraparthy, V.; Sood, S.; Guedira, G.B.; Gill, B.S. Development of a PCR assay and marker-assisted transfer of leaf rust resistance
gene Lr58 into adapted winter wheats. Euphytica 2011, 180, 227–234. [CrossRef]

188. Delibes, A.; Del Morala, J.; Martin-Sanchez, J.A.; Mejias, A.; Gallego, M.; Casado, D. Hessian fly-resistance gene transferred from
chromosome 4Mv of Aegilops ventricosa to Triticum aestivum. Theor. Appl. Genet. 1997, 94, 858–864. [CrossRef]

189. Marais, G.F.; Marais, A.S.; McCallum, B.; Pretorius, Z. Transfer of leaf rust and stripe rust resistance genes Lr62 and and Yr42
from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci. 2009, 49, 871–879. [CrossRef]

190. Martin-Sanchez, J.A.; Gomez-Colmenarejo, M.; Del Morel, J.; Sin, E.; Montes, M.J.; Gonzalez-Belinchon, C. A new Hessian fly
resistance gene (H30) transferred from wild grass Aegilops triuncialis to hexaploid wheat. Theor. Appl. Genet. 2003, 106, 1248–1255.
[CrossRef]

191. Marais, G.F.; Wessels, W.G.; Horn, M.; du Toit, F. Association of a stem rust resistance gene (Sr45) and two Russian wheat aphid
resistance genes (Dn5 and Dn7) with mapped structural loci in common wheat. S. Afr. J. Plant Soil 1988, 15, 67–71. [CrossRef]

192. Raupp, W.J.; Amri, A.; Hatchett, J.H.; Gill, B.S.; Wilson, D.L.; Cox, T.S. Chromosomal location of hessian fly-resistance genes H22,
H23, and H24 derived from Tricum tauschii in the D Genome of wheat. J. Hered. 1993, 84, 142–145. [CrossRef]

193. Riley, R.; Chapman, V.; Johnson, R. The incorporation of alien disease resistance to wheat by genetic interference with regulation
of meiotic chromosome synapsis. Genet. Res. Camb. 1968, 12, 199–219. [CrossRef]

194. Friebe, B.; Mukai, Y.; Dhaliwal, H.S.; Martin, T.J.; Gill, B.S. Identification of alien chromatin specifying resistance to wheat streak
mosaic and greenbug in wheat germplasm by C-banding and in situ hybridization. Theor. Appl. Genet. 1991, 81, 381–389.

195. Hollenhorst, M.M.; Joppa, L.R. Chromosomal location of genes for resistance to greenbug in ‘Largo’ and ‘Amigo’ wheats. Crop
Sci. 1993, 23, 91–93. [CrossRef]

196. Thomas, J.B.; Conner, R.I. Resistance to colonization by the wheat curl mite in Aegilops squarrosa and its inheritance after transfer
to common wheat. Crop Sci. 1986, 26, 527–530. [CrossRef]

197. Malik, R.; Brown-Guerdira, G.L.; Smith, C.M.; Harvey, T.L.; Gill, B.S. Genetic mapping of wheat curl mite resistance genes Cmc3
and Cmc4 in common wheat. Crop Sci. 2003, 43, 644–650. [CrossRef]

198. Wan, Y.; Poole, R.L.; Huttly, A.K.; Toscano-Underwood, C.; Feeney, K.; Welham, S.; Mitchell, R.A. Transcriptome analysis of grain
development in hexaploid wheat. BMC Genom. 2008, 99, 121. [CrossRef]

199. Yu, Y.; Zhen, S.; Wang, S.; Wang, Y.; Cao, H.; Zhang, Y.; Yan, Y. Comparative transcriptome analysis of wheat embryo and
endosperm responses to ABA and H2O2 stresses during seed germination. BMC Genom. 2016, 17, 97. [CrossRef]

200. Rangan, P.; Furtado, A.; Henry, R.J. The transcriptome of the developing grain: A resource for understanding seed development
and the molecular control of the functional and nutritional properties of wheat. BMC Genom. 2017, 18, 766. [CrossRef] [PubMed]

201. Kaushik, M.; Rai, S.; Venkadesan, S.; Sinha, S.K.; Mohan, S.; Mandal, P.K. Transcriptome analysis reveals important candidate
genes related to nutrient reservoir, carbohydrate metabolism, and defence proteins during grain development of hexaploid bread
wheat and its diploid progenitors. Genes 2020, 11, 509. [CrossRef]

202. Brenchley, R.; Spannagl, M.; Pfeifer, M.; Barker, G.L.; D’Amore, R.; Allen, A.M.; Kay, S. Analysis of the bread wheat genome using
whole-genome shotgun sequencing. Nature 2012, 491, 705–710. [CrossRef]

203. Guan, Y.; Li, G.; Chu, Z.; Ru, Z.; Jiang, X.; Wen, Z.; Wei, W. Transcriptome analysis reveals important candidate genes involved in
grain-size formation at the stage of grain enlargement in common wheat cultivar “Bainong 4199”. PLoS ONE 2019, 14, e0214149.
[CrossRef] [PubMed]

204. Yang, J.; Wang, M.; Li, W. Reducing expression of a nitrate—Responsive bZIP transcription factor increases grain yield and N use
in wheat. Plant Biotechnol. J. 2019, 17, 1823–1833. [CrossRef] [PubMed]

http://doi.org/10.1007/s001220051689
http://doi.org/10.2135/cropsci2005.0728
http://doi.org/10.1007/s001220050849
http://doi.org/10.1007/s10681-009-9973-9
http://doi.org/10.1007/s11032-006-9070-x
http://doi.org/10.1111/j.1439-0523.2005.01116.x
http://doi.org/10.1051/agro:19900603
http://doi.org/10.1007/s00122-007-0524-2
http://www.ncbi.nlm.nih.gov/pubmed/17356867
http://doi.org/10.2135/cropsci2012.12.0681
http://doi.org/10.1007/s10681-011-0383-4
http://doi.org/10.1007/s001220050487
http://doi.org/10.2135/cropsci2008.06.0317
http://doi.org/10.1007/s00122-002-1182-z
http://doi.org/10.1080/02571862.1998.10635119
http://doi.org/10.1093/oxfordjournals.jhered.a111300
http://doi.org/10.1017/S0016672300011800
http://doi.org/10.2135/cropsci1983.0011183X002300010026x
http://doi.org/10.2135/cropsci1986.0011183X002600030019x
http://doi.org/10.2135/cropsci2003.0644
http://doi.org/10.1186/1471-2164-9-121
http://doi.org/10.1186/s12864-016-2416-9
http://doi.org/10.1186/s12864-017-4154-z
http://www.ncbi.nlm.nih.gov/pubmed/29020946
http://doi.org/10.3390/genes11050509
http://doi.org/10.1038/nature11650
http://doi.org/10.1371/journal.pone.0214149
http://www.ncbi.nlm.nih.gov/pubmed/30908531
http://doi.org/10.1111/pbi.13103
http://www.ncbi.nlm.nih.gov/pubmed/30811829


Agronomy 2021, 11, 1656 28 of 31

205. Bhatta, M.; Morgounov, A.; Belamkar, V.; Baenziger, P.S. Genome-wide association study reveals novel genomic regions for grain
yield and yield-related traits in drought-stressed synthetic hexaploid wheat. Int. J. Mol. Sci. 2018, 19, 3011. [CrossRef]

206. Liu, W.E.I.; Zhihui, W.U.; Yufeng Zhang, D.G. Transcriptome analysis of wheat grain using RNA-Seq. Front. Agric. Sci. Eng. 2015,
11, 214–222.

207. Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [CrossRef]
208. Kucek, L.K.; Veenstra, L.D.; Amnuaycheewa, P.; Sorrells, M.E. A grounded guide to gluten: How modern genotypes and

processing impact wheat sensitivity. Compr. Rev. Food Sci. Food Saf. 2015, 14, 285–302. [CrossRef] [PubMed]
209. Ahmadi, J.; Pour-Aboughadareh, A.; Fabriki-Ourang, S.; Mehrabi, A.A. Molecular detection of glutenin and gliadin genes in the

domesticated and wild relatives of wheat using allele-specific markers. Cereal Res. Commun. 2018, 46, 510–520. [CrossRef]
210. Zhang, N.; Chen, F.; Cui, D. Proteomic analysis of middle and late stages of bread wheat (Triticum aestivum L.) grain development.

Front. Plant Sci. 2015, 6, 735. [CrossRef]
211. Li, Z.; Mouille, G.; Kosar-Hashemi, B.; Rahman, S.; Clarke, B.; Gale, K.R.; Morell, M.K. The structure and expression of the wheat

starch synthase III gene. Motifs in the expressed gene define the lineage of the starch synthase III gene family. Plant Physiol. 2000,
123, 613–624. [CrossRef] [PubMed]

212. Bowles, D.J. Defense-related proteins in higher plants. Annu. Rev. Biochem. 1990, 59, 873–907. [CrossRef]
213. Junker, Y.; Zeissig, S.; Kim, S.J.; Barisani, D.; Wieser, H.; Leffer, D.A.; Kelly, C.P. Wheat amylase trypsin inhibitors drive intestinal

inflammation via activation of toll-like receptor 4. J. Exp. Med. 2012, 209, 2395–2408. [CrossRef]
214. Ziegler, K.; Neumann, J.; Liu, F.; Fröhlich-Nowoisky, J.; Cremer, C.; Saloga, J.; Lucas, K. Nitration of wheat amylase trypsin

inhibitors increases their innate and adaptive immunostimulatory potential in vitro. Front. Immunol. 2018, 9, 3174. [CrossRef]
215. Wielkopolan, B.; Krawczyk, K.; Obrepalska-Steplowska, A. Gene expression of serine and cysteine proteinase inhibitors during

cereal leaf beetle larvae feeding on wheat: The role of insect-associated microorganisms. Arthropod Plant Interact. 2018, 12, 601–612.
[CrossRef]

216. Borrill, P.; Adamski, N.; Uauy, C. Genomics as the key to unlocking the polyploid potential of wheat. New Phytol. 2015, 208,
1008–1022. [CrossRef]

217. Yu, Y.; Zhu, D.; Ma, C.; Cao, H.; Wang, Y.; Xu, Y.; Yan, Y. Transcriptome analysis reveals key differentially expressed genes
involved in wheat grain development. Crop J. 2016, 44, 92–106. [CrossRef]

218. El Baidouri, M.; Murat, F.; Veyssiere, M.; Molinier, M.; Flores, R.; Burlot, L.; Salse, J. Reconciling the evolutionary origin of bread
wheat (Triticum aestivum). New Phytol. 2017, 213, 1477–1486. [CrossRef] [PubMed]

219. Scossa, F.; Laudencia-Chingcuanco, D.; Anderson, O.D.; Vensel, W.H.; Lafiandra, D.; D’Ovidio, R.; Masci, S. Comparative
proteomic and transcriptional profiling of a bread wheat cultivar and its derived transgenic line overexpressing a low molecular
weight glutenin subunit gene in the endosperm. Proteomics 2008, 88, 2948–2966. [CrossRef] [PubMed]

220. Fox, E.F.; Geniza, M.; Hanumappa, M.; Naithani, S.; Sullivan, C.; Preece, J.; Tiwari, V.K.; Elser, J.; Leonard, J.M.; Sage, A. De Novo
transcriptome assembly and analyses of gene expression during photomorphogenesis in diploid wheat Triticum monococcum.
PLoS ONE 2014, 9, e95855. [CrossRef]

221. Appels, R.; Eversole, K.; Feuillet, C.; Keller, B.; Rogers, J.; Stein, N.; Ronen, G. Shifting the limits in wheat research and breeding
using a fully annotated reference genome. Science 2018, 361, eaar7191. [PubMed]

222. Miki, Y.; Yoshida, K.; Mizuno, N.; Nasuda, S.; Sato, K.; Takumi, S. Origin of wheat B-genome chromosomes inferred from RNA
sequencing analysis of leaf transcripts from section Sitopsis species of Aegilops. DNA Res. 2019, 26, 171–182. [CrossRef]

223. Payne, P.I. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu. Rev. Plant Physiol.
1987, 38, 141–153. [CrossRef]

224. Shewry, P.R.; Napier, J.A.; Tatham, A.S. Seed storage proteins: Structures and biosynthesis. Plant Cell 1995, 77, 945.
225. Shewry, P.R.; Halford, N.G. Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot. 2002, 53,

947–958. [CrossRef]
226. Salentijn, E.M.; Esselink, D.G.; Goryunova, S.V.; van der Meer, I.M.; Gilissen, L.J.; Smulders, M.J. Quantitative and qualitative

differences in celiac disease epitopes among durum wheat varieties identified through deep RNA-amplicon sequencing. BMC
Genom. 2013, 14, 905. [CrossRef] [PubMed]

227. Katagiri, M.; Masuda, T.; Tani, F.; Kitabatake, N. Expression and development of wheat proteins during maturation of wheat
kernel and the rheological properties of dough prepared from the flour of mature and immature wheat. Food Sci. Technol. Res.
2011, 17, 111–120. [CrossRef]

228. McMaugh, S.J.; Thistleton, J.L.; Anschaw, E.; Luo, J.; Konik-Rose, C.; Wang, H.; Morell, M.K. Suppression of starch synthase I
expression affects the granule morphology and granule size and fine structure of starch in wheat endosperm. J. Exp. Bot. 2014, 65,
2189–2201. [CrossRef]

229. Huang, M.; Cabrera, A.; Hoffstetter, A.; Griffey, C.; Van Sanford, D.; Costa, J.; Sneller, C. Genomic selection for wheat traits and
trait stability. Theor. Appl. Genet. 2016, 129, 1697–1710. [CrossRef]

230. Tetlow, I.; Emes, M. Starch biosynthesis in the developing endosperms of grasses and cereals. Agronomy 2017, 7, 81. [CrossRef]
231. Stanley, D.; Rejzek, M.; Naested, H.; Smedley, M.; Otero, S.; Fahy, B.; Denyer, K. The role of α-glucosidase in germinating barley

grains. Plant Physiol. 2011, 155, 932–943. [CrossRef]

http://doi.org/10.3390/ijms19103011
http://doi.org/10.1093/jxb/erp058
http://doi.org/10.1111/1541-4337.12129
http://www.ncbi.nlm.nih.gov/pubmed/33401796
http://doi.org/10.1556/0806.46.2018.039
http://doi.org/10.3389/fpls.2015.00735
http://doi.org/10.1104/pp.123.2.613
http://www.ncbi.nlm.nih.gov/pubmed/10859191
http://doi.org/10.1146/annurev.bi.59.070190.004301
http://doi.org/10.1084/jem.20102660
http://doi.org/10.3389/fimmu.2018.03174
http://doi.org/10.1007/s11829-018-9608-y
http://doi.org/10.1111/nph.13533
http://doi.org/10.1016/j.cj.2016.01.006
http://doi.org/10.1111/nph.14113
http://www.ncbi.nlm.nih.gov/pubmed/27551821
http://doi.org/10.1002/pmic.200700861
http://www.ncbi.nlm.nih.gov/pubmed/18655071
http://doi.org/10.1371/journal.pone.0096855
http://www.ncbi.nlm.nih.gov/pubmed/30115783
http://doi.org/10.1093/dnares/dsy047
http://doi.org/10.1146/annurev.pp.38.060187.001041
http://doi.org/10.1093/jexbot/53.370.947
http://doi.org/10.1186/1471-2164-14-905
http://www.ncbi.nlm.nih.gov/pubmed/24354426
http://doi.org/10.3136/fstr.17.111
http://doi.org/10.1093/jxb/eru095
http://doi.org/10.1007/s00122-016-2733-z
http://doi.org/10.3390/agronomy7040081
http://doi.org/10.1104/pp.110.168328


Agronomy 2021, 11, 1656 29 of 31

232. Whan, A.; Dielen, A.S.; Mieog, J.; Bowerman, A.F.; Robinson, H.M.; Byrne, K.; Ral, J.P. Engineering—Amylase levels in wheat
grain suggests a highly sophisticated level of carbohydrate regulation during development. J. Exp. Bot. 2014, 65, 5443–5457.
[CrossRef]

233. Blackig, M.; Corbineau, F.; Grzesikit, M.; Guyi, P.; Come, D. Carbohydrate metabolism in the developing and maturing wheat
embryo in relation to its desiccation tolerance. J. Exp. Bot. 1996, 47, 161–169. [CrossRef]

234. Malik, A.H. Nutrient Uptake, Transport and Translocation in Cereals: Influences of Environmental and Farming Conditions; Swedish
University of Agricultural Sciences: Alnarp, Sweden, 2009.

235. Altpeter, F.; Diaz, I.; McAuslane, H.; Gaddour, K.; Carbonero, P.; Vasil, I.K. Increased insect resistance in transgenic wheat stably
expressing trypsin inhibitor CMe. Mol. Breed. 1999, 5, 53–63. [CrossRef]

236. Florack, D.E.A.; Stiekema, W.J. Thionins: Properties, possible biological roles and mechanisms of action. Plant Mol. Biol. 1994, 26,
25–37. [CrossRef] [PubMed]

237. Plattner, S.; Gruber, C.; Stadlmann, J.; Widmann, S.; Gruber, C.W.; Altmann, F.; Bohlmann, H. Isolation and characterization of a
thionin proprotein-processing enzyme from barley. J. Biol. Chem. 2015, 290, 18056–18067. [CrossRef] [PubMed]

238. Qu, L.J.; Chen, J.; Liu, M.; Pan, N.; Okamoto, H.; Lin, Z.; Zhao, X. Molecular cloning and functional analysis of a novel type of
Bowman-Birk inhibitor gene family in rice. Plant Physiol. 2003, 133, 560–570. [CrossRef] [PubMed]

239. Chilosi, G.; Caruso, C.; Caporale, C.; Leonardi, L.; Bertini, L.; Buzi, A.; Buonocore, V. Antifungal activity of a bowman–birk-type
trypsin inhibitor from wheat kernel. J. Phytopathol. 2000, 148, 477–481. [CrossRef]

240. Tedeschi, F.; Di Maro, A.; Facchiano, A.; Costantini, S.; Chambery, A.; Bruni, N.; Capuzzi, V.; Ficca, A.G.; Poerio, E. Wheat
Subtilisin/Chymotrypsin Inhibitor (WSCI) as a scaffold for novel serine protease inhibitors with a given specificity. Mol. Biosyst.
2012, 8, 3335–3343. [CrossRef]

241. Tundo, S.; Lupi, R.; Lafond, M.; Giardina, T.; Larré, C.; Denery-Papini, S.; Masci, S. Wheat ATI CM3, CM16 and 0.28 allergens
produced in Pichia Pastoris display a different eliciting potential in food allergy to wheat. Plants 2018, 7, 101. [CrossRef]

242. Rauf, K.; Rahman, R.; Saeed, A.; Ali, M.; Noureen, F.; Amir, R.; Gul, A. Next-generation sequencing in bread wheat. In Climate
Change and Food Security with Emphasis on Wheat; Academic Press: Cambridge, MA, USA, 2020.

243. Wang, B.; Sun, Y.F.; Song, N.; Wang, X.J.; Feng, H.; Huang, L.L.; Kang, Z.S. Identification of UV-B-induced microRNAs in wheat.
Genet. Mol. Res. 2013, 12, 4213–4221. [CrossRef]

244. Li, A.; Liu, D.; Wu, J. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid
heterosis in nascent hexaploid wheat. Plant Cell 2014, 26, 1878–1900. [CrossRef]

245. Feng, N.; Song, G.; Guan, J. Transcriptome profiling of wheat inflorescence development from spikelet initiation to floral
patterning identified stage-specific regulatory genes. Plant Physiol. 2017, 174, 1779–1794. [CrossRef]

246. Akhunova, A.R.; Matniyazov, R.T.; Liang, H.; Akhunov, E.D. Homoeolog-specific transcriptional bias in allopolyploid wheat.
BMC Genom. 2010, 11, 505. [CrossRef]

247. Qi, B.; Huang, W.; Zhu, B. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat
(Triticum aestivum) lines. BMC Biol. 2012, 10, 3. [CrossRef] [PubMed]

248. Chelaifa, H.; Chague, V.; Chalabi, S. Prevalence of gene expression additivity in genetically stable wheat allohexaploids. New
Phytol. 2013, 197, 730–736. [CrossRef]

249. Wang, J.; Tian, L.; Lee, H.S. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 2006, 172, 507–517.
[CrossRef] [PubMed]

250. Vaucheret, H. Post-transcriptional small RNA pathways in plants: Mechanisms and regulations. Genes Dev. 2006, 20, 759–771.
[CrossRef]

251. Lu, J.; Zhang, C.; Baulcombe, D.C.; Chen, Z.J. Maternal siRNAs as regulators of parental genome imbalance and gene expression
in endosperm of Arabidopsis seeds. Proc. Natl. Acad. Sci. USA 2012, 109, 5529–5534. [CrossRef] [PubMed]

252. Ha, M.; Kim, E.D.; Chen, Z.J. Duplicate genes increase expression diversity in closely related species and allopolyploids. Proc.
Natl. Acad. Sci. USA 2009, 106, 2295–2300. [CrossRef] [PubMed]

253. Ng, D.W.; Lu, J.; Chen, Z.J. Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility. Curr. Opin. Plant
Biol. 2012, 15, 154–161. [CrossRef] [PubMed]

254. Ng, D.W.; Zhang, C.; Miller, M.; Palmer, G.; Whiteley, M.; Tholl, D.; Chen, Z.J. Cis- and trans-regulation of miR163 and target
genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. Plant Cell 2011, 23,
1729–1740. [CrossRef]

255. Kenan-Eichler, M.; Leshkowitz, D.; Tal, L.; Noor, E.; Melamed-Bessudo, C.; Feldman, M.; Levy, A.A. Wheat hybridization and
polyploidization results in deregulation of small RNAs. Genetics 2011, 188, 263–272. [CrossRef] [PubMed]

256. Chen, Z.J. Genomic and epigenetic insights into the molecular basesofheterosis. Nat. Rev. Genet. 2013, 14, 471–482. [CrossRef]
[PubMed]

257. Ha, M.; Lu, J.; Tian, L. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and
allopolyploids. Proc. Natl. Acad. Sci. USA 2009, 106, 17835–17840. [CrossRef]

258. Grover, C.E.; Gallagher, J.P.; Szadkowski, E.P.; Yoo, M.J.; Flagel, L.E.; Wendel, J.F. Homoeolog expression bias and expression level
dominance in allopolyploids. New Phytol. 2012, 196, 966–971. [CrossRef] [PubMed]

259. Arnaud, D.; Chelaifa, H.; Jahier, J.; Chalhoub, B. Re-programming of gene expression in the genetically stable bread allo-hexaploid
wheat. In Polyploid and Hybrid Genomics; Chen, Z.J., Birchler, J.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013.

http://doi.org/10.1093/jxb/eru299
http://doi.org/10.1093/jxb/47.2.161
http://doi.org/10.1023/A:1009659911798
http://doi.org/10.1007/BF00039517
http://www.ncbi.nlm.nih.gov/pubmed/7948874
http://doi.org/10.1074/jbc.M115.647859
http://www.ncbi.nlm.nih.gov/pubmed/26013828
http://doi.org/10.1104/pp.103.024810
http://www.ncbi.nlm.nih.gov/pubmed/12972663
http://doi.org/10.1046/j.1439-0434.2000.00527.x
http://doi.org/10.1039/c2mb25320h
http://doi.org/10.3390/plants7040101
http://doi.org/10.4238/2013.October.7.7
http://doi.org/10.1105/tpc.114.124388
http://doi.org/10.1104/pp.17.00310
http://doi.org/10.1186/1471-2164-11-505
http://doi.org/10.1186/1741-7007-10-3
http://www.ncbi.nlm.nih.gov/pubmed/22277161
http://doi.org/10.1111/nph.12108
http://doi.org/10.1534/genetics.105.047894
http://www.ncbi.nlm.nih.gov/pubmed/16172500
http://doi.org/10.1101/gad.1410506
http://doi.org/10.1073/pnas.1203094109
http://www.ncbi.nlm.nih.gov/pubmed/22431617
http://doi.org/10.1073/pnas.0807350106
http://www.ncbi.nlm.nih.gov/pubmed/19168631
http://doi.org/10.1016/j.pbi.2012.01.007
http://www.ncbi.nlm.nih.gov/pubmed/22326630
http://doi.org/10.1105/tpc.111.083915
http://doi.org/10.1534/genetics.111.128348
http://www.ncbi.nlm.nih.gov/pubmed/21467573
http://doi.org/10.1038/nrg3503
http://www.ncbi.nlm.nih.gov/pubmed/23752794
http://doi.org/10.1073/pnas.0907003106
http://doi.org/10.1111/j.1469-8137.2012.04365.x
http://www.ncbi.nlm.nih.gov/pubmed/23033870


Agronomy 2021, 11, 1656 30 of 31

260. Han, R.; Jian, C.; Lv, J. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum
aestivum L.). BMC Genom. 2014, 15, 289. [CrossRef] [PubMed]

261. Sinha, S.K.; Rani, M.; Bansal, N.; Gayatri, V.K.; Mandal, P.K. Nitrate starvation induced changes in root system architecture,
carbon:nitrogen metabolism, and miRNA expression in nitrogen-responsive wheat genotypes. Appl. Biochem. Biotechnol. 2015,
177, 1299–1312. [CrossRef]

262. Li, Y.F.; Wei, K.; Wang, M. Identification and temporal expression analysis of conserved and novel MicroRNAs in the leaves of
winter wheat grown in the field. Front. Genet. 2019, 10, 779. [CrossRef] [PubMed]

263. Xin, M.; Wang, Y.; Yao, Y.; Xie, C.; Peng, H.; Ni, Z.; Sun, Q. Diverse set of microRNAs are responsive to powdery mildew infection
and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol. 2010, 10, 123. [CrossRef]

264. Akdogan, G.; Tufekci, E.D.; Uranbey, S.; Unver, T. miRNA-based drought regulation in wheat. Funct. Integr. Genom. 2016, 16,
221–233. [CrossRef]

265. Chen, X.Y.; Yang, Y.; Ran, L.P.; Dong, Z.D.; Zhang, E.J.; Yu, X.R.; Xiong, F. Novel insights into miRNA regulation of storage protein
biosynthesis during wheat caryopsis development under drought stress. Front. Plant Sci. 2017, 8, 1707. [CrossRef] [PubMed]

266. Han, H.; Wang, Q.; Wei, L.; Liang, Y.; Dai, J.; Xia, G.; Liu, S.H. Small RNA and degradome sequencing used to elucidate the basis
of tolerance to salinity and alkalinity in wheat. BMC Plant Biol. 2018, 18, 195. [CrossRef]

267. Ma, X.; Xin, Z.; Wang, Z.; Yang, Q.; Guo, S.; Guo, X.; Cao, L.; Lin, T. Identification and comparative analysis of differentially
expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress. BMC Plant Biol. 2015, 15,
21. [CrossRef] [PubMed]

268. Tang, Z.; Zhang, L.; Xu, C.; Yuan, S.; Zhang, F.; Zheng, Y.; Zhao, C. Uncovering small RNA-mediated responses to cold stress in a
wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol. 2012, 159, 721–738. [CrossRef] [PubMed]

269. Alptekin, B.; Budak, H. Wheat miRNA ancestors: Evident by transcriptome analysis of A, B, and D genome donors. Funct. Integr.
Genom. 2016, 17, 171–187. [CrossRef]

270. Gupta, O.P.; Meena, N.L.; Sharma, I.; Sharma, P. Differential regulation of microRNAs in response to osmotic, salt and cold
stresses in wheat. Mol. Biol. Rep. 2014, 41, 4623–4629. [CrossRef] [PubMed]

271. Chu, Z.; Chen, J.; Xu, H.; Dong, Z.; Chen, F.; Cui, D. Identification and comparative analysis of microRNA in wheat (Triticum
aestivum L.) callus derived from mature and immature embryos during in vitro culture. Front. Plant Sci. 2016, 7, 1302. [CrossRef]

272. Hou, G.; Du, C.; Gao, H. Identification of microRNAs in developing wheat grain that are potentially involved in regulating grain
characteristics and the response to nitrogen levels. BMC Plant Biol. 2020, 20, 87. [CrossRef]

273. Pandey, R.; Joshi, G.; Bhardwaj, A.R.; Agarwal, M.; Katiyar-Agarwal, S. A comprehensive genome-wide study on tissue-specific
and abiotic stress-specific miRNAs in Triticum aestivum. PLoS ONE 2014, 9, e95800. [CrossRef]

274. Kantar, M.; Akpinar, B.A.; Valarik, M.; Lucas, S.J.; Dolezel, J.; Hernandez, P.; Budak, H. Subgenomic analysis of microRNAs in
polyploidy wheat. Funct. Integr. Genom. 2012, 12, 465–479. [CrossRef]

275. Song, G.; Zhang, R.; Zhang, S. Response of microRNAs to cold treatment in the young spikes of common wheat. BMC Genom.
2017, 18, 212. [CrossRef]

276. Sun, F.; Guo, G.; Du, J.; Guo, W.; Peng, H.; Ni, Z.; Sun, Q.; Yao, Y. Whole-genome discovery of miRNAs and their targets in wheat
(Triticum aestivum L.). BMC Plant Biol. 2014, 14, 142. [CrossRef]

277. Zuluaga, D.L.; De Paola, D.; Janni, M.; Curci, P.L.; Sonnante, G. Durum wheat miRNAs in response to nitrogen starvation at the
grain filling stage. PLoS ONE 2017, 12, e0183253. [CrossRef]

278. Liu, H.; Searle, I.R.; Watson-Haigh, N.S.; Baumann, U.; Mather, D.E.; Able, A.J.; Able, J.A. Genome-wide identification of
microRNAs in leaves and the developing head of four durum genotypes during water deficit stress. PLoS ONE 2015, 10, e0142799.
[CrossRef]

279. Liu, H.; Able, A.J.; Able, J.A. Genotypic water-deficit stress responses in durum wheat: Association between physiological traits,
microRNA regulatory modules and yield components. Funct. Plant. Biol. 2017, 44, 538–551. [CrossRef]

280. Liu, H.; Able, A.J.; Able, J.A. Water-deficit responsive microRNAs and their targets in four durum wheat genotypes. Funct. Integr.
Genom. 2017, 17, 237–251. [CrossRef]

281. Fileccia, V.; Bertolini, E.; Ruisi, P. Identification and characterization of durum wheat microRNAs in leaf and root tissues. Funct.
Integr. Genom. 2017, 17, 583–598. [CrossRef]

282. Liu, H.; Able, A.J.; Able, J.A. Small RNAs and their targets are associated with the transgenerational effects of water-deficit stress
in durum wheat. Sci. Rep. 2021, 11, 3613. [CrossRef]

283. Liu, H.; Able, A.J.; Able, J.A. Nitrogen starvation-responsive MicroRNAs are affected by transgenerational stress in durum wheat
seedlings. Plants 2021, 10, 826. [CrossRef] [PubMed]

284. Feng, K.; Nie, X.; Cui, L.; Deng, P.; Wang, M.; Song, W. Genome-wide identification and characterization of salinity stress-
responsive miRNAs in wild emmer wheat (Triticum turgidum ssp. dicoccoides). Genes 2017, 8, 156. [CrossRef]

285. Akpinar, B.A.; Kantar, M.; Budak, H. Root precursors of microRNAs in wild emmer and modern wheats show major differences
in response to drought stress. Funct. Integr. Genom. 2015, 15, 587–598. [CrossRef] [PubMed]

286. Akpinar, B.A.; Budak, H. Dissecting miRNAs in wheat D genome progenitor, Aegilops tauschii. Front. Plant. Sci. 2016, 4, 606.
[CrossRef] [PubMed]

287. Appels, R.; Eversole, K.; Stein, N. Shifting the limits in wheat research and breeding using a fully an-notated reference genome by
the international wheat genome sequencing consortium. Science 2018, 361, 7191.

http://doi.org/10.1186/1471-2164-15-289
http://www.ncbi.nlm.nih.gov/pubmed/24734873
http://doi.org/10.1007/s12010-015-1815-8
http://doi.org/10.3389/fgene.2019.00779
http://www.ncbi.nlm.nih.gov/pubmed/31552091
http://doi.org/10.1186/1471-2229-10-123
http://doi.org/10.1007/s10142-015-0452-1
http://doi.org/10.3389/fpls.2017.01707
http://www.ncbi.nlm.nih.gov/pubmed/29046684
http://doi.org/10.1186/s12870-018-1415-1
http://doi.org/10.1186/s12870-015-0413-9
http://www.ncbi.nlm.nih.gov/pubmed/25623724
http://doi.org/10.1104/pp.112.196048
http://www.ncbi.nlm.nih.gov/pubmed/22508932
http://doi.org/10.1007/s10142-016-0487-y
http://doi.org/10.1007/s11033-014-3333-0
http://www.ncbi.nlm.nih.gov/pubmed/24682922
http://doi.org/10.3389/fpls.2016.01302
http://doi.org/10.1186/s12870-020-2296-7
http://doi.org/10.1371/journal.pone.0095800
http://doi.org/10.1007/s10142-012-0285-0
http://doi.org/10.1186/s12864-017-3556-2
http://doi.org/10.1186/1471-2229-14-142
http://doi.org/10.1371/journal.pone.0183253
http://doi.org/10.1371/journal.pone.0142799
http://doi.org/10.1071/FP16294
http://doi.org/10.1007/s10142-016-0515-y
http://doi.org/10.1007/s10142-017-0551-2
http://doi.org/10.1038/s41598-021-83074-7
http://doi.org/10.3390/plants10050826
http://www.ncbi.nlm.nih.gov/pubmed/33919185
http://doi.org/10.3390/genes8060156
http://doi.org/10.1007/s10142-015-0453-0
http://www.ncbi.nlm.nih.gov/pubmed/26174050
http://doi.org/10.3389/fpls.2016.00606
http://www.ncbi.nlm.nih.gov/pubmed/27200073


Agronomy 2021, 11, 1656 31 of 31

288. Hodges, E.; Xuan, Z.; Balija, V. Genome-wide in situ exon capture for selective resequencing. Nature 2007, 39, 1522. [CrossRef]
[PubMed]

289. Morozova, O.; Marra, M.A. Applications of next-generation sequencing technologies in functional genomics. Genomics 2008, 82,
255–264. [CrossRef]

290. Berkman, P.J.; Lai, K.; Lorenc, M.T.; Edwards, D. Next-generation sequencing applications for wheat crop improvement. Am. J.
Bot. 2012, 99, 365–371. [CrossRef]

291. Wang, S.; Wong, D.; Forrest, K. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single
nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [CrossRef]

292. Arora, S.; Singh, N.; Kaur, S.; Bains, N.S.; Uauy, C.; Poland, J.; Chhuneja, P. Genome-wide association study of grain architecture
in wild wheat Aegilops tauschii. Front. Plant Sci. 2017, 8, 886. [CrossRef]

293. Clavijo, B.J.; Venturini, L.; Schudoma, C. An improved assembly and annotation of the allohexaploid wheat genome identifies
complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 2017, 27,
885–896. [CrossRef]

294. Mooney, E.H.; Mcgraw, J.B. Effects of self-pollination and outcrossing with cultivated plants in small natural populations of
American ginseng, Panax quinquefolius. Am. J. Bot. 2007, 94, 1677–1687. [CrossRef]

295. Lozada, D.N.; Mason, R.E.; Babar, M.A. Association mapping reveals loci associated with multiple traits that affect grain yield
and adaptation in soft winter wheat. Euphytica 2017, 213, 1–15. [CrossRef]

296. Sukumaran, S.; Reynolds, M.P.; Sansaloni, C. Genome-wide association analyses identify QTL hotspots for yield and component
traits in durum wheat grown under yield potential, drought, and heat stress environments. Front. Plant Sci. 2018, 9, 81. [CrossRef]
[PubMed]

297. Qin, P.; Lin, Y.; Hu, Y. Genome-wide association study of drought-related resistance traits in Aegilops tauschii. Genet. Mol. Biol.
2016, 39, 398–407. [CrossRef]

298. Mehrabi, A.A.; Pour-Aboughadareh, A.; Mansouri, S.; Hosseini, A. Genome-wide association analysis of root system architecture
features and agronomic traits in durum wheat. Mol. Breed. 2020, 40, 55. [CrossRef]

http://doi.org/10.1038/ng.2007.42
http://www.ncbi.nlm.nih.gov/pubmed/17982454
http://doi.org/10.1016/j.ygeno.2008.07.001
http://doi.org/10.3732/ajb.1100309
http://doi.org/10.1111/pbi.12183
http://doi.org/10.3389/fpls.2017.00886
http://doi.org/10.1101/gr.217117.116
http://doi.org/10.3732/ajb.94.10.1677
http://doi.org/10.1007/s10681-017-2005-2
http://doi.org/10.3389/fpls.2018.00081
http://www.ncbi.nlm.nih.gov/pubmed/29467776
http://doi.org/10.1590/1678-4685-GMB-2015-0232
http://doi.org/10.1007/s11032-020-01136-6

	Introduction 
	The Trend of Bread-Wheat Evolution 
	Levels of Genetic Diversity in Wheat Germplasm 
	Phenotypic Diversity 
	Plant Genetic Resources and Molecular Diversity 

	Potential of Wild Relatives for Use in Wheat Breeding Programs 
	Drought 
	Salinity 
	High Temperature 
	Low Temperature 
	Biotic Stresses 

	Transcriptome Analysis Uncovers Hidden Information about the Benefits of Wild Relative Potentials 
	Grain Development Related Proteins 
	Nutrient Reservoir 
	Carbohydrate Metabolism 
	Defense Proteins during Grain Development 
	Carbohydrate and Protein Related Transcripts 
	Carbohydrate Biosynthesis Genes 
	Defense Proteins 


	Dynamic Wheat Transcriptome and Small RNA in Wild Relatives of Wheat under Abiotic Stresses 
	Next-Generation Sequencing in Bread Wheat 
	Concluding Remarks 
	References

