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Abstract: Production of plants under artificial light conditions is an innovative and smart concept to
grow food year-round in any location. However, pre-basic seed potato production in the greenhouse
from LED pre-treated seedlings under an aeroponic system is a new and creative idea. Therefore,
the objective of the study was to optimize the effect of LED pre-treatment and determine the best
LED spectral composition on growth performance and tuberization of potato plants. Potato variety
‘Golden King’ was treated under 9 LED light spectra for 30 days—L1 (natural light), L2, (R:B),
L3 (R:B:G), L4 (R:B:FR), L5 (R:B:G:FR), L6 (R:B:G:FR:UV), L7 (R:B:FR:UV), L8 (R:B:W:FR), and L9
(R:B:W:FR:UV) under 300 µmol m−2 s−1 photosynthetic photon flux density (PPFD), 23/15 ◦C
(day/night) temperature, and 70% relative humidity. The study revealed that growth characteristics
and tuber number for plants were increased most by the light spectrum L4 (R:B:FR). Furthermore,
photosynthetic pigments increased in L4, L7, and L8, while TSC and sucrose accumulated more in L1
treatment. In contrast, higher seed tuber fresh weight was recorded in L8, L9, L4, and L7. Overall, it
can be concluded that potato seedlings pre-treated with the L4 (R:B:FR) LED spectral composition
performed best for growth, establishment, and tuberization.

Keywords: pre-basic seed potato; LED pre-treatment; growth performance; tuberization; Golden King

1. Introduction

Potato (Solanum tuberosum L.) is one of the most valuable crops in the world, yielding
400 million tons per year [1]. Globally, it is the fourth most important food crop after wheat,
rice, and maize, and second in South Korea. With a high source of carbohydrates, proteins,
vitamins, and minerals, potato is currently cultivated in over 100 countries and feeds more
than a billion people [2]. Hence, enhancing the productivity of this root crop may be a key
tool in fulfilling the nutritional requirement and the demand for profuse quality seed for
breeding purposes.

Currently, in vitro potato plantlets or microtubers from aseptic cultural conditions
produce the early generation virus-free pre-basic seed potatoes or potato minitubers.
Pre-basic seeds are the nucleus, and breeders seed, or propagating materials, grown in
in vitro aseptic culture conditions under strict management in aeroponics or a controlled
greenhouse system [3,4]. Potato seed tubers are usually grown in high densities in the
greenhouse using various substrates and open fields [2]. Currently, a variety of techniques
for producing potato minituber seed have been investigated, including soilless aeroponic,
hydroponic [5], and deep-water culture systems [6]. Potato pre-basic seed tuber production
in greenhouse conditions is comparatively a new idea where seed tubers can be produced
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year-round by ignoring seasonal obligations [7]. Following the creation of a plant factory, a
controlled condition for plant growth in a simulated environment is developed and used
to continue their phenotypic durability and enhanced yield [8].

Light is the primary source of energy that can bring change in several compositions
in plants depending on spectral quality, intensity, compositions, duration, and direction.
These processes may come from stressful or nonstressful events on plants generated by
light irradiation and its interaction with species and cultivars in growth and establishment
procedures [9,10]. Plants can change their responses to future stressors when stressed,
contributing to the concept of ‘stress memory’ [11–13]. As an adaptive mechanism, stress
memory can increase resistance to stress factors, but it may also compromise aspects of the
overall efficiency of the plant [14].

It has previously been stated that, of the total light obtained by plants from natural
sunlight, 90 percent is absorbed as B and R light [15]. It has been stated that controlling light
quality and quantity can improve crop yield and quality by regulating the phytochrome
photostationary level, changing the ratio of active phytochrome to total phytochrome [16],
stimulating photoreceptors [17], and stimulating enzymatic activity [16–18]. According
to previous research, red and blue light are the most powerful light bands that drive
photosynthesis and stimulate plant signaling, respectively, and speed up the accumulation
of secondary metabolites. It has also been confirmed that red and blue light enhances
stomatal conductance activity more than other spectral regions [19], where blue light is
more effective than red light to open stomata [20]. Our previous research also detected
that the combination of red, blue, and white light is the best for potato pre-basic seed tuber
production in plant factory conditions [7]. In contrast, green light is beneficial for photo-
synthesis and plant development, meaning that it should be used in the plant cultivation
process. For instance, it is more efficient than red light in driving leaf photosynthesis and
its photosynthetic quantum yield [15]. Green light stimulates the same physiological and
developmental responses in plants as red and blue light, and it interacts with other spectral
responses in a complex way [21,22].

Pre-sowing seed treatment affects sprout rates and seedling development, which
in turn affects harvest yield, nutrient content, and sunlight absorption ability [23–25].
Physical treatment approaches have the benefit of maintaining yield while still being
healthy for the climate, which is what drew us initially to this research subject. Plant
photosynthesis primarily depends on sunlight, which also has a significant impact on plant
growth and development [26]. Previous research has shown that poor lighting or shade can
substantially impact plant growth and development, as well as reduce plant production
and quality [27]. Plants use red light to accumulate carbohydrates and nutrients, red and
blue in the photosynthesis process, synthesis of anthocyanins and polyphenols, blue and
UV for accumulating pigments such as carotenoids and biomass [28]. It was also suggested
that the R:FR ratio can alter the signaling pathway of the plant by regulating the blue and
UV light photoreceptors, which may affect plant growth, development, physio-biochemical
process, and root architecture [29].

For this reason, pre-treatment of potato in vitro seedlings under different light spectral
bands may be a vital tool for plant growth and produce pre-basic seed potato production
in the fall season. Therefore, the objective of the study was to optimize the effect of LED
pre-treatment and find the best LED spectral composition for the growth performance of
potato plants and to increase the number of tubers.

2. Materials and Methods
2.1. Plantlet Production and Growth Conditions

Professor Young-Seok Lim at Kangwon National University, breeder of this variety,
provided ’Golden King‘ (also called as love gold valley and V48) potato (Solanum tuberosum L.)
for the experiments. The mother plant was multiplicated through in vitro processes under
artificial white LED light (Bisol LED Light Co., Seoul, Korea) with photosynthetic photon
flux density (PPFD) of 100 µmol m−2 s−1 in an aseptic condition (MS medium 4.41 g/L;
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sucrose, 30 g/L; Agar 8 g/L, pH 5.6–5.8) in plastic culture vessel (8 cm × 12 cm; SPL Life
Sciences Co. Ltd., Pocheon-si, Korea), where 10 plantlets/vessel were used for 30 days.
The photoperiod, relative humidity (RH), and in vitro growth room temperature were
16/8 (day/night), 70%, and 25 ◦C. The 30-day-old plantlets were directly transplanted to
the aeroponic bed under the light chamber, where plant-to-plant distance and row-to-row
distance was 12 cm.

2.2. Plant Factory and Light-Emitting Diode (LED) Settings

The virus-free plantlets (tested by ISK 20001/0025, Agdia, Inc., Elkhart, IN, USA; Figure 1)
were transplanted (fall season 2020) to the steel-made chamber 80 cm × 60 cm × 80 cm
equipped with different LED light (Bisol LED Light Co., Seoul, Korea) combination (Table 1)
for thirty days. The photosynthetic photon flux density (PPFD) and temperature of the
chamber were 300 µmol m−2 s−1, 16 h (6 a.m. to 10 p.m.), 18 to 27 ◦C, respectively.
After that, the seedlings were moved to the natural light condition under the same aero-
ponic system and other environmental conditions inside the greenhouse, where they grew
to harvesting.

Figure 1. Potato virus Y (PVY) testing of the seedlings.

Table 1. Light spectrum ratios for potato production in the aeroponic system.

Spectrum Combinations Ratio (%) Intensity
(µmol m−2 s−1) Code Name

Natural Light * L1
R:B 80:20 **

300

L2
R:B:G 70:20:10 L3
R:B:FR 70:20:10 L4

R:B:G:FR 60:20:10:10 L5
R:B:G:FR:UV 50:20:10:10:10 L6

R:B:FR:UV 60:20:10:10 L7
R:B:W:FR: 50:20:20:10 L8

R:B:W:FR:UV 40:20:20:10:10 L9
* W, white; R, red (660 nm); B, blue (450 nm); FR; far-red (730 nm); G, green (520 nm); UVA, ultraviolet A (340 nm).
** The PG200N handheld spectral PAR meter (UPRtek, 165 Vogt 21, Aachen 52072, Germany) was used to set the
light ratio and intensity.

2.3. Aeroponic System

An aluminum frame with extended foam tray panels forming dark root growth cham-
bers was used to create an advanced aeroponic system. Precision control of nutrient solution
misting, recovery, and modifications were possible to this advanced irrigation/drainage
system. The nutritive solution (Table 2) was continually pumped from the supply reservoir
based on the treatment used. Solution A and B was stock in tank A and B, respectively,
mixed in a mixing tank and adjusted EC and pH before transfer to supply tank (200 L).
Nutrient solutions were mixed and transferred to the supply tank automatically and subject
to change and cleaning once a week. Plant roots were misted with microsprinklers (Naan-
DanJain Irrigation System, Ltd., Tel Aviv, Israel) for 10 s at a time, with 2 min intervals
between mists, supplying a nutrient solution that was circulated by various pumps in
the tubing network. The residual nutrient solution was returned to the corresponding
reservoirs and recirculated. Throughout the experiment, the quality of the nutrient solution
(EC and pH) was monitored daily. The pH was controlled by using HCl (1 N) and NaOH
(5 M).
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Table 2. Nutrient solution.

Chemical Name
Vegetative Growth Period

(Transplantation to 40th Day)
Tuber Bulking Period

(41th Days to Harvesting Day)

A Tank (50 L) B Tank (50 L) A Tank (50 L) B Tank (50 L)

Ca(NO3)2. 4H2O 1.5 kg 7.66 kg
KNO3 3.79 kg 3.79 kg 3.54 kg 3.54 kg

(NH4)2HPO4 1.6 kg 1.52 kg
MgSO4 4.3 kg 3.68 kg
K2SO4 1.3 kg

Fe-EDTA 460 g 460 g 30.8 g
MnSO4 30.8g
H3BO3 57.2 g 57.2 g
ZnSO4 3.6 g 3.6 g
CuSO4 1.3 g 1.3 g

(NH4)6Mo7O24.4H2O 0.4 g 0.4 g

Solution of Tank A and Tank B were subjected to mixing to maintain an EC range of 1.2–1.7 (dS m−2), pH 6.0.

2.4. Measurement of Plant Growth Characteristics and Seed Tuber Yield

Plants were randomly selected for morpho-physiological and tuber data collection
after 60 and 90 days of growth in the aeroponic system, respectively.

2.5. Analysis of Photosynthetic Pigments of Potato Plants

The photosynthetic pigments of the potato plants, including chlorophyll a (Chl a),
chlorophyll b (Chl b), total chlorophyll (Tch), and carotenoid, were studied. For the photo-
synthetic pigment analysis, three plant samples from each treatment were collected. For
further analysis, the harvested leaves were immediately immersed in liquid nitrogen and
stored at −80 ◦C.

Fresh (500 mg) leaves were macerated (10 mL of 80 percent acetone) using mortar
and pestle and left at room temperature for 15 min to determine photosynthetic pigments.
The extracted material was placed in a tube and centrifuged for 10 min at 5000 rpm. A
spectrophotometer was used to measure the absorbance at 647, 663, and 470 nm (UV-1800
240 V, Shimadzu Corporation, Kyoto, Japan). The photosynthetic pigments were calculated
using the formula proposed by Lichtenthaler [30] and expressed in milligrams per gram of
fresh weight (FW).

Chl a = 12.25 × A663 − 2.79 × A647

Chl b = 21.50 × A647 − 5.10 × A663

Tch = 7.15 × A663 + 18.71 × A647

Car = [(1000 × A470) − (1.82 × Chl a) − (85.02 × Chl b)]/198

2.6. Determination of Total Soluble Carbohydrate (TSC) and Total Soluble Sugar (TSS) Content

TSC and TSS content were extracted and analyzed according to the method mentioned
by Islam et al. [31]. The harvested fresh leaf samples (250 mg) were homogenized in 5 mL
of ethanol (95 percent), then centrifuged for 10 min at 5000 rpm. The process was then
repeated with 70 percent ethanol after extracting the supernatant. Both supernatants were
combined and stored at 4 ◦C.

0.1 mL of the aliquot was diluted with 1 mL anthrone for TSC analysis (200 mg
anthrone mixed with 100 mL of 72 percent sulfuric acid). The mixture was heated for 10 min
at 100 ◦C before being cooled. The TSC was calculated using a glucose standard curve,
with a 625 nm detection wavelength by spectrophotometer (UV-1800 240 V, Shimadzu
Corporation, Kyoto, Japan), and results were expressed in mg/g fresh weight. To analyze
the TSS content, 0.2 mL of the supernatant was combined with 0.1 mL of KOH (30%)
and heated for 10 min at 100 ◦C. After allowing the mixture to cool to room temperature,
3 mL of anthrone (150 mg anthrone in 100 mL 70% sulfuric acid) was added. The samples
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were chilled for ten minutes before being measured at 620 nm wavelength for absorbance
in a spectrophotometer (UV-1800 240 V, Shimadzu Corporation, Kyoto, Japan). The TSS
concentration was computed using the glucose standard curve, and the results were
expressed as µg/g fresh weight.

2.7. Determination of Tuber Yield

Tuber yield data were recorded from each treatment at 90 days of growth of the plants
at greenhouse conditions.

2.8. Statistical Analysis

One-way analysis of variance was conducted using Statistics 10 (Tallahassee, FL, USA),
and all results were expressed as mean ± SD (standard deviation). The least significant
differences (LSD) were calculated to compare the means of different treatments with 5%
level of probability. The OriginLab 10.0 software (OriginLab, Northampton, MA, USA)
was used to perform principal component analysis (PCA).

3. Results
3.1. Effect of LED Light on Plant Morphological Characteristics

Tables 3 and 4 give the growth characteristics of the light pre-treated potato plantlets
grown under the varied LED light spectrum. The results showed that treatment L4 had an
overall positive effect on the most growth characteristics. However, higher stem diameter
was recorded from the treatments L2 and L3. Furthermore, leaf width and leaf length were
found higher in L3 and L9 treatments.

3.2. Effect of LED Light on Tuber Yield and Grading

The variation of tuber number per plant and tuber fresh weight per plant was observed
under different treatments (Figure 2). The highest tuber number was recorded from the
treatment L4 followed by L2 and L3, while higher tuber fresh weight was recorded in L8,
L9, L4, and L7 as well. In addition, L5 and L6 produced both lower numbers and fresh
weight of tuber per plant.

Figure 2. Effect of different LED light on tuber number (A) and tuber fresh weight (B) of potato plants grown under
aeroponic system. Different letters indicate significant differences (p ≤ 0.05) among the treatments within each parameter.
Each value represents the mean ± SD (n = 3). L1 = natural light, L2 = R:B, L3 = R:B:G, L4 = R:B:FR, L5 = R:B:G:FR,
L6= R:B:G:FR:UV, L7 = R:B:FR:UV, L8 = R:B:W:FR, L9 = R:B:W:FR:UV.
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Table 3. Effect of LED lights on morphological traits of potato plants (aerial part) in the aeroponic system.

Treatments Stem Length
(cm)

Stem Diameter
(mm) PFW (g) PDW (g) Branch Number Node Number Leaf Number Leaf Length

(cm)
Leaf Width

(cm)

L1 32 ± 3.26 d 4.5 ± 0.43 cd 13.1 ± 3.08 d 1.36 ± 0.37 cde 4 ± 0.81 b 21 ± 2.44 bc 24.61 ± 3.29 b 15 ± 1.63 cd 10.3 ± 1.12 d
L2 37.66 ± 4.18 cd 6.75 ± 0.95 a 38.93 ± 4.5 bc 2.8 ± 0.43 b 3 ± 0.82 bcd 19 ± 2.94 bcd 17.21 ± 1.69 de 19 ± 1.41 ab 12.6 ± 1.2 bc
L3 46.33 ± 3.09 b 7.02 ± 0.43 a 51.33 ± 11.08 b 3.6 ± 1.08 ab 4.33 ± 0.47 b 24.33 ± 4.78 b 23.3 ± 4.18 bc 22 ± 0.81 a 15.5 ± 0.4 a
L4 56.67 ± 7.4 a 5.33 ± 0.24 bc 67 ± 14.44 a 4.4 ± 1.55 a 7.33 ± 0.94 a 36.33 ± 2.49 a 46 ± 3.25 a 19 ± 0.8 ab 13.16 ± 0.62 bc
L5 32 ± 4.32 d 5.34 ± 0.38 bc 16.46 ± 4.92 d 0.96 ± 0.33 de 2.33 ± 0.47 cd 14.32 ± 1.69 e 14.66 ± 3.08 e 13.3 ± 2.86 d 9.66 ± 1.19 de
L6 40.37 ± 2.49 bc 4 ± 0.21 d 12.86 ± 1.92 d 0.56 ± 0.04 e 1.66 ± 0.47 d 14.23 ± 1.66 e 14.61 ± 2.62 e 12.66 ± 0.47 d 8 ± 0.81 e
L7 46.33 ± 3.68 b 5.06 ± 0.73 c 37.33 ± 4.98 c 2.26 ± 0.44 bcd 2.33 ± 0.41 cd 16 ± 3.26 cde 19.32 ± 2.49 cde 17 ± 0.82 bc 11.6 ± 1.24 cd
L8 44 ± 2.94 bc 6.61 ± 0.35 a 46.66 ± 3.39 bc 3.1 ± 0.37 ab 3.66 ± 0.33 bc 21.23 ± 2.49 bc 19 ± 0.81 cde 19 ± 1.4 ab 13.83 ± 0.62 abc
L9 42 ± 2.44 bc 6.21 ± 0.36 ab 45.33 ± 6.54 bc 2.7 ± 0.32 bc 6 ± 0.83 a 23.31 ± 3.09 b 19.66 ± 1.24 cde 19.6 ± 1.22 ab 14.33 ± 1.21 ab

LSD(0.05) 8.57 0.98 13.23 1.35 1.49 5.96 5.18 3.15 2.24

Different letters indicate significant differences (p ≤ 0.05) among the treatments within each parameter. Each value represents the mean ± SD (n = 3). L1 = natural light, L2 = R:B, L3 = R:B:G, L4 = R:B:FR,
L5 = R:B:G:FR, L6= R:B:G:FR:UV, L7 = R:B:FR:UV, L8 = R:B:W:FR, L9 = R:B:W:FR:UV.

Table 4. Effect of LED lights on morphological traits of potato plants (root and stolon) in the aeroponic system.

Treatments Root Length (cm) RFW (g) RDW (g) Stolon Length (cm) SFW (g) SDW (g)

L1 26.66 ± 2.49 cd 3.04 ± 1.16 e 0.2 ± 0.04 cd 34.66 ± 4.49 bc 2.1 ± 0.35 d 0.1 ± 0.01 de
L2 28.33 ± 2.35 bcd 5.16 ± 0.89 bcde 0.37 ± 0.05 bcd 38 ± 4.32 ab 2.7 ± 0.5 bcd 0.17 ± 0.03 bc
L3 34 ± 2.16 ab 6.8 ± 1.29 abcd 0.54 ± 0.14 ab 34.32 ± 2.62 bc 2.93 ± 0.61 bcd 0.21 ± 0.05 ab
L4 37.21 ± 6.54 a 10.1 ± 3.47 a 0.62 ± 0.29 a 43.61 ± 7.58 a 4.7 ± 0.86 a 0.24 ± 0.04 a
L5 23.61 ± 3.39 d 3.5 ± 1.44 cde 0.13 ± 0.06 d 24 ± 5.09 d 2.2 ± 0.68 cd 0.05 ± 0.01 ef
L6 30 ± 1.63 bcd 3.3 ± 1.52 de 0.12 ± 0.08 cd 27 ± 3.55 cd 1.03 ± 0.49 e 0.02 ± 0.01 f
L7 29 ± 2.16 bcd 7.1 ± 1.75 abc 0.29 ± 0.11 cd 29.3 ± 4.18 bcd 3.2 ± 0.48 bc 0.05 ± 0.02 ef
L8 32 ± 1.63 abc 7 ± 1.43 abc 0.54 ± 0.05 ab 35.66 ± 3.29 abc 2.76 ± 0.4 bcd 0.13 ± 0.02 cd
L9 35 ± 4.08 ab 8.33 ± 1.58 ab 0.42 ± 0.06 abc 33.12 ± 1.24 bc 3.33 ± 0.75 b 0.07 ± 0.01 def

LSD(0.05) 7.02 3.6 0.24 8.97 1.03 0.06

Different letters indicate significant differences (p ≤ 0.05) among the treatments within each parameter. Each value represents the mean ± SD (n = 3). L1 = natural light, L2 = R:B, L3 = R:B:G, L4 = R:B:FR,
L5 = R:B:G:FR, L6= R:B:G:FR:UV, L7 = R:B:FR:UV, L8 = R:B:W:FR, L9 = R:B:W:FR:UV.
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In contrast, Figure 3 represents the number of tubers under three categorized gradings:
small (<3 g), medium (3–5 g), and larger (>5 g). The highest smaller and medium tuber
numbers/plant was recorded in the treatments L2 and L3, respectively. However, the
number of larger (>5 g) tuber was found in the L4 treatment.

Figure 3. Effect of different LED light pre-treatment on potato tuber grading in the aeroponic
system. Different letters indicate significant differences (p ≤ 0.05) among the treatments within each
parameter. Each value represents the mean ± SD (n = 3). L1 = natural light, L2 = R:B, L3 = R:B:G,
L4 = R:B:FR, L5 = R:B:G:FR, L6= R:B:G:FR:UV, L7 = R:B:FR:UV, L8 = R:B:W:FR, L9 = R:B:W:FR:UV.

3.3. Effect of LED Light on Photosynthetic Pigments

Figure 4 illustrated the photosynthetic pigments, for instance, Tch, Chl a, Chl b, and
carotenoid content of the tuber. Although the level of Chl a did not show any significant
difference, higher Chl a and carotenoid were recorded in L4 treatment, whereas Chl b and
Tch content increased significantly in L8 treatment. In contrast, L5 and L6 showed minimal
results for Chl a, Chl b, carotenoid, and Tch content.

Figure 4. Cont.
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Figure 4. Effect of different LED light on Chlorophyll a (A), Chl a; Chlorophyll b (B), Chl b; Carotenoid (C), Car, and
Total chlorophyll (D), Tch of potato plants grown under aeroponic system. Different letters indicate significant differences
(p ≤ 0.05) among the treatments within each parameter. Each value represents the mean ± SD (n = 3). L1 = natural light,
L2 = R:B, L3 = R:B:G, L4 = R:B:FR, L5 = R:B:G:FR, L6= R:B:G:FR:UV, L7 = R:B:FR:UV, L8 = R:B:W:FR, L9 = R:B:W:FR:UV.

3.4. Effect of LED Light on Total Soluble Carbohydrates (TSC) and Total Soluble Sugar Content
(TSS)

The content of TSC and TSS of leaves and tubers is depicted in Figure 5. Each
parameter showed a significant decrease in all treatments compared to the control. Among
them, the minimum results were recorded in L5 and L6 treatments.

Figure 5. Effect of LED light on TSC of leaf (A), TSC of tuber (B), TSS of leaf (C), and TSS of tuber (D) grown under aeroponic
system. Different letters indicate significant differences (p ≤ 0.05) among the treatments within each parameter. Each value
represents the mean ± SD (n = 3). L1 = natural light, L2 = R:B, L3 = R:B:G, L4 = R:B:FR, L5 = R:B:G:FR, L6 = R:B:G:FR:UV,
L7 = R:B:FR:UV, L8 = R:B:W:FR, L9 = R:B:W:FR:UV.
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3.5. The PCA Analysis Revealed the Connection between Treatments and Variables

The PCA analysis aimed to determine the relationship between various parameters
and treatments (Figure 6). The PCA (PC1 and PC2) elements described 79.51% of data
variability. The results showed that the treatments L2, L3 L4, L7, L8, and L9 are associated
with most of the variables related to plant growth characteristics, including tuber number
and tuber fresh weight; among them, the influence of L4 is the most prominent. In contrast,
both L5 and L6 maintained a negative correlation with others. Additionally, the treatment
L1 is highly correlated with TSC and sucrose content in both leaf and tuber. Results also
showed that the photosynthetic pigments are negatively correlated with TSC and sucrose.

Figure 6. Principal component analysis (PCA) representing patterns and associations between treatments. The lines starting
from the central point of the biplots present negative or positive correlations of various light pre-treatment of potato seed
tuber seed production in an aeroponic system in PCA, and their proximity determines the degree of correlation with a
particular procedure. L1 (natural light), L2 (R:B), L3 (R:B:G), L4 (R:B:FR), L5 (R:B:G:FR), L6 (R:B:G:FR:UV), L7 (R:B:FR:UV),
L8 (R:B:W:FR), L9 (R:B:W:FR:UV). Stem L, (stem length); Stem dia, (stem diameter); PFW, (plant fresh weight); Branch N,
(branch number); PDW, (plant dry weight); leaf N, (leaf number); Node N, (node number); Leaf L, (leaf length); Leaf W, (leaf
width); Root L, (root length); RFW, (root fresh weight); RDW, (root dry weight); Stolon L, (stolon length)., SFW, (stolon fresh
weight); SDW, (stolon dry weight); Chl a, (chlorophyll a); Chl b, (chlorophyll b); Tch, (total chlorophyll); Car, (carotenoid);
Leaf TSC, (leaf total soluble carbohydrate); Tuber TSC, (tuber total soluble carbohydrate); Leaf TSS, (leaf total soluble sugar);
Tuber TSS, (tuber total soluble sugar); Tuber N, (tuber number); TFW, (tuber fresh weight); >3 g, (more than 3 g); <3 g, (less
than 3 g); >5 g, (more than 5 g).

4. Discussion

The various combinations of the artificial LED light spectrum have a major effect
on the growth and seed tuber development of potato plants. In our findings, a common
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pattern was observed, the L4 (red + far-red) light combination has a significant impact
on the rapid growth of potato plants (Tables 3 and 4). The optimal dose of red, blue, and
far-red light spectrum for plant growth and development has been the subject of numerous
studies. According to previous reports, the optimal red and blue LED light ratio must be
specified and varied according to plant species. For instance, the best red–blue LED light
combination for cotton, phalaenopsis, banana, and lettuce was observed 50R/50B [32],
80R/20B, 50R/50B [33,34], and 1B/5R, respectively [35]. It was also reported that in vitro
potato plantlets grew faster, with larger stem diameter and higher dry weight when exposed
to 65 percent red + 35 percent blue light [36]. According to a previous study, potato plantlets
grown under monochromatic red light had weak, slender, and small leaves [37]. However,
the current study demonstrated potato plants with elongated stems and high biomass
when grown under the red +blue+ far-red light spectrum (Tables 3 and 4).

UV-A impact on biomass can be either positive or negative [38]. According to a
comparative analysis, UV-A caused a critical (but not significant) increase in dry weight
accumulation in three Arabidopsis thaliana accessions whereas decreases in four others,
according to a comparative analysis of eight different accessions [39]. A distinct effect of UV-
A on plant biomass was also narrated by a previous study [40]. These findings support our
study as UV-included treatments (L6, L7, L8, L9) positively influence biomass production in
plants (Tables 3 and 4). In addition, the leaves become slightly smaller but noticeably thicker
under UV-A exposure, emulating the idea of a ’sunleaf‘ [41]. Photosynthetic pigments
absorb and convert light energy into chemical energy through complex photosynthetic
machinery. This process is stimulated by blue and red light by regulating carotenoid
and chlorophyll biosynthesis [7,37]. It was also discovered that red and far-red light
regulates photosensors that encourage stem elongation, while blue light has the opposite
effect [42,43]. These findings are somewhat close to what we found in our current study.

Furthermore, blue light is responsible for stomatal opening and expands the leaf,
whereas the blue and the red light ratio has long been known to trigger stomatal open-
ing [44], whereas blue light is more effective than red [45]. In the pre-treatment of red, blue,
and far-red light, plant growth was higher under the L4 treatment in the current study
(Tables 3 and 4).

It appears that neither the red/far-red nor the blue/red ratios, but rather the low
blue/far-red ratio, are linked to stomatal movement, [7,43], with a few exceptions—the
potato variety V 48 displayed a similar pattern of response to the different light spectrum.
In comparison to light treatment, L3 (red, blue, and green) and L9 (red, blue, white, far-red,
and UV) treatment played a critical role in broadening potato leaves in our study.

No evidence was found that light affects tuberization [46]; rather, it is controlled
by hormonal signals, especially gibberellins (GA) and cytokinins (CK) [47]. A previous
study found that red light inhibited the initiation of minitubers, which contradicts the
current findings [48]. In the current study, the highest tuber number was obtained in
the L4 treatment; however, the total tuber fresh weight was higher in the L9 treatment.
This may be due to the smaller tuber size, which increases the number of tubers but
reduces their weight. Total fresh weight, on the other hand, was higher in L9 and L8
treatments. In addition, L4 and L7 also had a positive effect on potato fresh weight. Due
to the smaller tuber, the total tuber fresh weight was reduced in L6 and L5 (Figure 2).
Besides, phytochromes, a red and far-red receptors that exist in two forms (Pr and Pfr) can
affect tuberization. Under red light, a conversion of Pr to Pfr occurs, whereas reversion
is observed under far-red irradiation [49]. In the present study, lower tuber number and
tuber weight in the treatments L5 and L6 might be the effect of red and far-red light that
influenced phytochromes, as the involvement of phytochromes in the regulation of potato
tuberization was previously hypothesized [50].

The effect of light spectrum on plant growth can be due in part to the regulation
of phytohormone levels in plants [51], as light quality affects endogenous hormones
in potatoes [52]. It has also been documented that tuber formation is closely linked to
gibberellic acid (GA3) and abscisic acid (ABA), where they play the role of inhibition and
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promotion, respectively [53,54]. GA3 concentrations in grape leaves decreased [55], while
ABA concentrations in cucumber hypocotyls increased as a result of red light [56]. In the
current research, red light aided tuber development, which could be linked to lower levels
of GA3 and higher levels of ABA in the plants.

Overall, the findings showed that the combined spectrum of red, blue, and white had
a major impact on stem elongation, which eventually led to tuber formation. Another
hormone, indole acetic acid (IAA), is thought to improve plant organ sink ability [57].
Red light has been shown to increase IAA concentration in potatoes, thereby promoting
the flow of assimilates into tubers [58]. The rate at which assimilates are assimilated
is also an essential factor in tuber size and weight [59]. For plants growing under the
combined LED blue and red range, increased assimilation rates are efficiently partitioned
into underground tubers. That could explain why the majority of large microtubers were
discovered in the red–blue spectrum [16,58,60]. These findings partially support our current
study (Figures 2 and 3).

The previous studies reported that photosynthesis pigments such as Tch, Chl a, Chl
b, and total carotenoid were significantly increased under the light treatment combined
with red, blue, and white when plant pigments receive a specific light spectrum through
their light-harvesting antenna, where chlorophyll and carotenoid pigments absorb at
wavelengths of 400–500 nm and 630–680 nm, respectively [7,61]. Based on these findings,
our study also derived similar results as the light treatment L8 (red+blue+white+far-red)
has an increasing trend in Chl b, Tch, and carotenoid content (Figure 4). This is may be due
to the characteristics of the photosynthetic antenna of plant pigments that absorb much
blue light, which acts as a catalytic agent to accumulate pigments such as Chl and Car in
plant leaves [32,62].

The mechanism underlying UV stimulatory effects on plant biomass accumulation
was not established in this research. However, several mechanisms have been suggested in
the literature, including the enhancement of UV effects on photosynthesis and the activation
of photoprotective responses [38]. UV-A (340 nm), for example, can boost photosynthesis
rates by up to 10% in Poa annua, Sorghum halepense, and Nerium oleander; similarly stated,
UV-A boosts photosynthetic activity by 12% in Pimelea ligustrina [63]. That study relates
partly to our findings as Chl a, Chl b, Tch, and Car content showed a positive result in
UV-included light treatment (Figure 4). When the red and blue spectrums are mixed, the
photosynthetic pigment, such as Car, is substantially increased relative to other spectrum
combinations [58].

In the L2 treatment, the overall carbohydrate and sucrose content was significantly
higher (Figure 5). Carbohydrates are the plant’s final product of photosynthesis and a
significant parameter [61]. The most powerful light source for accumulating soluble carbo-
hydrates was previously stated to be red light [64]. The accumulation of photosynthetic
products in plants is promoted by red and blue light; however, combined blue and red light
increases these compounds in the plants [65], which supports our study. Blue light irradia-
tion substantially raises the soluble carbohydrate content of Chinese bayberry, including
glucose, fructose, and sucrose, a phenomenon that has also been observed in the strawberry
fruit [61]. Sucrose synthesis is linked to the aggravating behavior of sucrose-phosphate
synthase (SPS) gene expression [66]; according to previous research, blue light plays an
important role in increasing soluble carbohydrate and soluble sugar when combined with
(red + blue) and (red + blue + far-red).

5. Conclusions

The present study demonstrated that potato plant growth, development, and tuber
production are inextricably linked to artificial light pre-treatment when cultivated in the
aeroponics culture system. The growth characteristics and tuber number of plants were
increased most by the light spectrum L4 (R:B:FR). Furthermore, photosynthetic pigments
increased in L4, L7, and L8, while TSC and sucrose accumulated higher in L1 treatment.
On the other hand, higher tuber fresh weight was recorded in L8, L9, L4, and L7. Overall,
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the potato seedlings pre-treated with L4 (R:B:FR) manifested the best results for potato
growth, establishment, and seed tuber yield under aeroponic conditions. These findings
are preliminary discoveries for producing seed tubers under artificial light, and they serve
as a foundation for developing a more artificial LED lighting environment for growing
potato seed tuber under artificial light conditions.
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