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Abstract: Use of compost is a common agricultural practice. It improves soil fertility by adding
nutrients and plant growth promoting (PGP) microorganisms. The role of bacterial-fungal interactions
for compost-driven fertilization, however, is still poorly understood. In this study, we investigated
whether putative PGP bacteria associate to and disperse along mycelia of fungal isolates. A ‘Fungal
highway column system’ was used to isolate and characterize fungal—bacterial couples derived
from commercial compost (C), non-composted bulk soil (BS) and rhizosphere soil with compost
application (RSC). Bacterial-fungal couples were identified by 16S and 18S rRNA gene sequencing
and isolated bacteria were tested for representative PGP traits. Couples of fungi and associated
migrator bacteria were isolated from C and RSC only. They included the fungal genera Aspergillus,
Mucor, Ulocladium, Rhizopus and Syncephalastrum, and the bacterial genera Rhodococcus, Bacillus,
Pseudomonas, Agrobacterium, Glutamicibacter and Microbacterium. Many of migrator bacteria in RSC
and C showed PGP traits (e.g., tryptophane—induced auxin synthesis or phytate mineralizing
activity) suggesting that fungi contained in C and RSC allow for dispersal of putative PGP bacteria.
Next to being provider of nutrients, compost may therefore be source for PGP bacteria and fungal
mycelia serving as networks for their efficient dispersal.

Keywords: bacteria-fungi interactions; compost; bacterial dispersion; plant growth-promoting
bacteria; rhizosphere soil

1. Introduction

Compost is considered as an inexpensive and eco-friendly organic fertilizer. Applied
to soil it helps to reduce the quantity of chemical fertilizers, to improve soil structure, and
to counteract soil erosion and degradation [1]. In agriculture, there is further an increasing
need for sustainable ecofriendly soil fertilization strategies. Efforts should be made to
develop new bio-technological processes based on the co-inoculation of bacterial-fungal
consortia with weathering abilities to enable the efficient utilization of natural phosphate
rocks as alternative to phosphate fertilizers. In this regard, there is a growing interest
in certified high-quality compost biofertilizers. Compost is a source of a large number
and diversity of beneficial microorganisms, both bacteria and fungi that can be used as
inoculum in agroecosystems [2]. Thus, to know the structure of microbial community as
well as the functional capacity of bacterial-fungal interactions (BFI) contained in compost
is pivotal if compost shall be applied as an inoculum in agricultural soils, degraded natural
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ecosystems or for the bioremediaton of contaminated soils [3]. Up to date a considerable
diversity of bacterial species have been isolated from compost. Compost bacteria can act
as biocontrol of phytopathogens [4,5], establish symbioses with different fungal genera or
form beneficial associations with soil microorganisms [6,7]. As example, bacterial genera
Rhizobium and Rhodococcus are often found in symbiosis with fungal genus Piriformospora [8].
Although numerous studies on compost bacteria and fungi have been published, there are
only few studies of direct BFI in compost.

BFI are widespread in nature [7] including parasitism, competence, symbiosis, mutu-
alism and commensalism in soil [9–11]. Knowledge on and targeted management of fungal
interactions with beneficial plant-growth promoting (PGP) bacteria hence can be key to
promote soil health, fertility, and high crop yields [2]. If compost shall be used as source
microorganisms it is needed that its microbiome can effectively establish and disperse in
the soil to where it is applied. Unlike fungi, PGP bacteria do not spread well in air-filled
soil, as their dispersal in the soil depends on waterborne transport and/or the presence of
continuous water films [12]. In contrast, the fractal network of fungal mycelia can easily
explore the soil space and grow in both water-and air-filled spaces [13] because of their
ability to overcome air-water interfaces by hydrophobin secretion [14]. In the mycosphere
(i.e., the area surrounded and affected by mycelia) [15] and even inside of fungal hyphae,
bacteria may find suitable ecological niches in terms of pH, nutrient and water content,
and even a possible mean for dispersion in soil [7,15,16].

Bacterial dispersal along mycelia of filamentous fungi (also termed as ‘fungal high-
ways’ [17] has received increasing attention, e.g., for the clean-up of contaminated soil [17,18],
the functioning of the oxalate-carbonate pathway [19] or in cheese production [20]. Mycelia
thereby constitute a fractal network allowing for bacterial dispersal and increased accessibility
of nutrient sources [15,21]. While recent work describes the effect of arbuscular mycorrhizal
fungal effects on bacterial transport and organic phosphorus mineralization of organic
phosphorus [22] or the colonization of legume roots by a symbiotic nitrogen-fixing bac-
terium [23], effects of compost derived fungi on spread of PGP microorganisms remains
unknown. In this study, we investigated whether putative PGP bacteria associate to and
disperse along mycelia of fungal isolates derived from compost.

2. Material and Methods
2.1. Compost (C)

Commercial compost (Biofert®; Rosario Co.; Santiago de Chile, Chile) was produced
from agro-industrial wastes, mainly consisting of residues from horticulture, food industry
and municipal pruning in compliance with Chilean environmental and agricultural reg-
ulations (NCh 2880:2015; ISO 9001:2008). The composting process is carried out by pile
tumbling technique, which takes approximately one year, until the compost reaches the
required grade of stability and maturity. Samples of approximately 500 g were aseptically
taken from 12 recently packed Bio-fert® bags. Then, the samples were combined forming
4 composite samples containing material from 3 bags; all the composite samples were
transported on ice and stored at (4 ◦C) prior to treatment. The composite samples were
processed in the 3 and 5 days following the sampling.

2.2. Rhizosphere Soil with Compost Application (RSC)

Soil samples were taken from the rhizosphere of a grape plants (Vitis vinifera L.) with
a historical Biofert® compost application (>seven years), located in San Esteban, Valparaiso
Region, in central Chile (32◦48′4.49′′ S, 70◦34′54.2′′ W). Samples of approximately 500 g
were aseptically taken from 12 different grape plants (planting distance 3.5 × 2.5 m);
samples were then combined to 4 composite samples containing material from 3 plants. As
control, composite bulk soil (BS) samples were also taken from grapes crop in area without
historical Biofert® compost application. The soil samples were collected between 20 and
40 cm of depth, always looking for the greatest presence of root system of the grape plant.
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All the composite samples were transported on ice and stored at (4 ◦C) prior to treatment.
The samples were processed in the 3 and 5 days following the sampling.

2.3. Chemical Properties Analysis of Compost and Soil Samples

As reference, the chemical properties was measured in representative composite
samples (C, RSC and BS). The pH was measured in a suspension of 1:2.5 (w/w) soil and
deionized water suspensions. Available phosphorus (POlsen) was extracted using the
bicarbonate method and analyzed using the molybdate-blue method [24]. Exchangeable
cations (K, Ca, Mg, and Na) were extracted with 1 M ammonium acetate at pH 7.0 and
analyzed using flame atomic adsorption spectrophotometry (FAAS) [25] and exchangeable
aluminum was extracted with 1 M KCl and also analyzed by FAAS [26]. In addition,
inorganic nitrogen (N) extracted with 2 M KCl and NO3-N was determined by the Devarda
alloy distillation method [27] and organic matter (OM) contents were estimated by wet
digestion [28].

2.4. DNA—Based Profiles of Bacterial Community in Compost and Soil Samples

The profile of total bacterial community was addressed by denaturing gradient gel
electrophoresis (DGGE) using bacterial 16S rRNA and fungal 18S rRNA as gene targets
for bacteria and fungi, respectively. Total DNA was extracted from 0.5 g of C, RSC and
BS samples (in quadruplicate) by using Soil DNA Isolation Kit (Qiagen, Hilden, USA)
according to manufacturer instructions. For bacterial community, 16S rRNA genes (regions
V6–V8) were amplified by touchdown PCR with primer set EUBf933-GC (5′-GCA CAA
GCG GTG GAG CAT GTG GCG CCC GCC GCG CGC GGC GGG CGG GGC GGG GGC
ACG GGG G-3′) and EUBr1387 (5′-GCC CGG GAA CGT ATT CAC CG-3′) [29]. For fungal
community, 18S rRNA genes (regions 18S rDNA 400–600 bp) were amplified by nested
PCR, initially with primer set EF4 (5′-GTA AAA GTC CTG GTT CCC C-3′) and Fun5
(5′-GGA AGG GRT GTA TTT ATT AG-3′), followed by a second PCR with primer set EF4
and NS2-GC (5′-GGC TGC TGG CAC CAG ACT TGC CGC CCG CCG CGC GCG GCG
GGC GGG GCG GGG GCA CGG G-3′) [30].

DGGE runs were performed using the DCodeTM universal mutation detection system
(Bio-Rad Laboratories Inc., Hercules, CA, USA) and the gels were stained with SYBR Gold
(Thermo Fisher Scientific Inc., Waltham, MA, USA) for 30 min and photographed on a
UV transilluminator (GelDoc—It TS2 Imager, UVP, Analytik Jena GmbH, Jena, Germany).
Clustering of DGGE banding profiles using a dendrogram was carried out with CLIQS 1D
Pro software (TotalLab Ltd., Newcastle-Upon-Tyne, UK; http://totallab.com/; accessed on
31 May 2021).

2.5. Community Level Physiological Profile of Bacterial Community in Compost and Soil Samples

In order to elucidate the profile of functional potential of microbial communities
present in samples of compost and soils, the community-level physiological profile (CLPP)
was determined in triplicate using 96-well Biolog EcoPlatesTM (Biolog Inc., Hayward, CA,
USA) containing 31 different carbon sources. Briefly, microbial cells were dislodged from
1.5 g of sample by shaking in 15 mL of phosphate saline buffer solution on an orbital shaker
at 25 ◦C, and then diluted by a factor of 1000 and filtered with a qualitative filter paper
(11 µm pore size; Whatman plc, Maidstone, UK) to remove impurities. One hundred µL of
the filtered suspension were added to each wells in the microplate and incubated at 25 ◦C
in the dark. Color development in the wells was measured at 590 nm with a Multiskan™
GO Microplate Spectrophotometer (ThermoFisher Scientific, Hercules, CA, USA) every day
for one week. Samples for statistical analyses were selected using the average well color
development (AWCD) method [31], at time points where average OD590 values across
plate wells was calculate.

http://totallab.com/


Agronomy 2021, 11, 1567 4 of 18

2.6. Isolation of Fungi and Associated Bacteria Dispersing along Their Hyphae

To determine the motility and dispersion of bacterial cells along fungal hyphae in
compost and soil samples, fungal highway column system (FHCS) methodology was
used [32,33]. The FHCS is built with sterile plastic materials and permits the growth of
fungal mycelia from a substrate (here: RSC, C, and BS) toward a culture medium (here:
potato dextrose agar; PDA). Mycelia thereby cross an air-filled volume that is filled with
glass beads that only can be passed by migrator bacteria if they disperse along fungal
hyphae (Figure 1). Firstly, one kg of either C, RSC or BS was placed in previously alcohol-
and UV sterilized plastic boxes (30 × 25 cm), and subsequently, 30 FHCS per box were
placed, 3 negative controls (FHCS completely closed), 3 FHCS without glass beads inside,
in order to determine if fungi are capable of growing in air-filled space, and 24 FHCS
for isolation of fungi and their associated bacteria. At each sampling time (7, 14, 21 and
28 days after placement), 6 FHCS were removed and sacrificed for further analysis. The
PDA medium from FHCS was removed from the FHCS and pieces of it transferred on two
Petri dishes containing either Luria-Bertani (LB) or PDA agar media. This procedure was
carried out in two ways: first placing an undisturbed PDA fragment on the culture media,
and second inoculating 100 uL of a suspension of microorganism prepared by washing the
other PDA fragment with saline solution (NaCl 0.9%), to disaggregate the microorganisms
colonizing the target culture medium, in order to isolate the highest variety of bacteria.
Inoculated plates were incubated at 25◦ for 3 days for bacteria and 10 days for fungi and
those showing microbial growth were used to isolate bacterial and fungal strains. Fungal
isolates were maintained in PDA—containing Petri dishes and their ability to mineralize
Na-phytate (C6H18P6O24·12Na·xH2O) and solubilize Ca-phosphate [Ca3(PO4)2] on agar
plates was tested [34]. Meanwhile the hyphae-associated bacterial isolates were obtained
and purified on agar LB plates by streaking and stored at −80 ◦C in 7:3 LB: glycerol (v/v).

Then, chromosomal DNA of purified fungal and bacterial isolates was extracted
by using UltraClean Microbial DNA Isolation Kit (Qiagen, Hilden, Germany) and DNA
extracts were sent to Scientific and Technological Bioresource Nucleus (https://bioren.ufro.
cl/) for partial sequencing of 18S and 16S rRNA genes. For bacteria, primer set 1492R
(5′-TAC GGY TAC CTT GTT ACG ACT T-3′) and 27F (5′-AGA GTT TGA TCC TGG CTC
AG3′) were used [29], while for fungi, three different primer sets were used: NS1 (5′-GTA
GTC ATA TGC TTG TCT C-3′) and NS24 (5′-AAA CCT TGT TAC GAC TTT TA-3′); ITS1
(5′-CTT GGT CAT TTA GAG GAA GTA A-3′) and ITS4 (5′-TCC TCC GCT TAT TG TAT
GC-3′); and NS1 (5′-GTA GTC ATA TGC TTG TCT C-3′) and NS8 (5′-TCC GCA GGT TCA
CCT ACG GA-3′) [30] in order to improve the accuracy of identification. The sequences
were then used to determine the taxonomic affiliation of isolates by comparison with those
deposited in GenBank by Blastn tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi; accessed
on 31 May 2021). Those bacterial strains isolated from the same fungi and showing similar
taxonomic affiliation were treated as clones, and only one clone was reported.

The sequences obtained in this study were deposited in the GenBank under accession
numbers MW624352 to MW624370 for 18S rRNA gene, and MW624337 to MW624351 for
16S rRNA gene.

https://bioren.ufro.cl/
https://bioren.ufro.cl/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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BacLight Bacterial Viability Kits that allow distinguish live and dead bacteria provide a 
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Figure 1. (a). Schematic of fungal highway column systems (FCHS) used to the isolation of fungal and their hyphae-
associated bacterial strains from compost (C), rhizosphere soil with compost application (RSC) and bulk soil (BS) samples.
PDA: potato dextrose agar; LB: Luria Bertani agar. (b). Schematic of experimental workflow for isolation and identification
of microorganisms from different samples using FCHS.

2.7. Analysis of Bacterial Dispersal along Mycelia

The dispersion of bacterial cells along fungal hyphae was also confirmed by micro-
scopic observation. To achieve a better observation of the hypha, isloted fungi were grown
in Petri dishes and glass slides, both coated with thin layers of PDA culture medium, and
observed directly in optical microscope (Olympus BX-41, Tokyo, Japan) at 400× magni-
fication. Additionally, those preparations were also observed in Fluorescent Cell Imager
ZOE TM (Bio-Rad Laboratories, Hercules, CA, USA) after staining with LIVE/DEAD®

BacLight Bacterial Viability Kits that allow distinguish live and dead bacteria provide a
two-color fluorescence assay of mixtures of green-fluorescent nucleic acid stain for living
bacterial and the red-fluorescent nucleic acid stain, propidium iodide for dead bacteria.
This staining allowed to better visualize bacteria associated to fungal hyphae and determine
their viability.

2.8. Screening of Representative Plant Growth-Promoting Traits in Dispersed Bacterial Isolates

Bacterial isolates showing dispersal along the hyphae were tested for representative
PGP traits as follows:

• The production of tryptophan—induced auxin was determined by colorimetrically
at 530 nm using Salkowski’s reagent [35]. The bacterial isolates were incubated on a
gyratory shaker (120 rpm) at 30 ◦C for 3 days in LB broth and LB broth supplemented
with tryptophan (1 mg mL−1) as auxin precursor. After incubation, bacterial cells were
centrifuged (850× g, at 4 ◦C for 10 min) and 1 mL of the supernatant was collected
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and mixed with 2 mL of Salkowski’s reagent [36] and incubated for 30 min at room
temperature. Standard solution of pure indole acetic acid (Sigma-Aldrich, St. Louis,
MO, USA) was used as a positive control. Results are presented qualitatively as
positive/negative.

• 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) activity was measured fol-
lowing the methodology reported by Penrose and Glick [37]. Briefly, bacterial strains
were inoculated in 5 mL tubes containing DF minimum salts medium containing 4.0 g
of KH2PO4, 6.0 g of Na2HPO4, 0.2 g of MgSO4·7H2O, 2.0 g of glucose, 2.0 g of gluconic
acid and 2.0 g citric acid and trace element: 1 mg of FeSO4·7H2O, 10 µg of H3BO3,
11.19 µg of MnSO4·H2O, 124.6 g of µg ZnSO4·7H2O, 78.22 µg of CuSO4·5H2O, 10 µg
of MoO3, pH 7.2, and 2.0 g (NH4)2SO4 as nitrogen source. Cultures were incubated
for 48 h at 28 ◦C. Aliquots (0.1 mL) of each culture were inoculated in tubes contain-
ing DF medium supplemented with 3.0 mM of ACC as unique nitrogen source and
incubated for 48 h at 28 ◦C [38]. Finally, for determining ACCD activity, the amount
of α-ketobutyrate produced as ACCD degrades ACC was measured spectrophotomet-
rically in a microplate reader at 540 nm wavelength. An α-ketobutyrate calibration
curve in the range from 0.1 to 1.0 µmol was used. Results are presented qualitatively
as ACCD positive/negative.

• The ability of bacterial isolates and their associated fungi to mineralize phytate and/or
solubilize phosphate was evaluated using the phytate screening medium and National
Botanical Research Institute’s phosphate growth medium as reported by Jorquera et al.
(2008) [34]. The P sources used in the media were Na-phytate (C6H18P6O24·2Na·xH2O)
and Ca-phosphate [Ca3(PO4)2] analytical grade (pH = 7.0). After incubation at 30 ◦C
for 4 days, the appearance of clear zones around the colonies were considered as a
positive result the capacity of phytate mineralization and phosphate solubilization.
Results are presented qualitatively as positive/negative.

2.9. Statistical Analyses

Based on the matrix obtained from the banding profiles on DGGE gels, differences
between bacterial communities were calculated by similarity profile analysis (SIMPROF
test) with Bray-Curtis similarity index, 5% significance level, and 0.1 stress values [39]
and visualized by nonmetric multidimensional scaling (NMDS) analysis using Primer 6
software (Primer-E Ltd., Auckland, New Zealand; http://www.primer-e.com/; accessed
on 31 May 2021).

Based on the matrix obtained from the results of CLPP, differences between bacterial
communities were calculated by similarity profile analysis (SIMPROF test) with Bray-
Curtis similarity index, 5% significance level, and 0.1 stress values [39], and visualized by
nonmetric multidimensional scaling (NMDS) analysis using Primer 6 software.

3. Results
3.1. Chemical Properties of Compost and Soil Samples

Differences in chemical properties among representative C, RSC and BS samples were
observed (Table 1). Compost contained higher P, K, Ca, Na, and organic matter (OM) levels
than B soil. Higher values of extractable potassium (K) and exchangeable cations were
observed in C sample whereas RSC sample showed higher values of nitrogen (N). Samples
of C and RSC showed similar values of extractable phosphorus (P) and organic matter, but
higher to the value observed in BS samples. In contrast, higher values of pH were observed
in BS and RSC samples (pH ≈ 7.2) as compared to C (pH ≈ 6.8).

http://www.primer-e.com/
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Table 1. Chemical properties of representative composite samples of compost (C), rhizosphere soil
with compost application (RSC) and bulk soil (BS).

Sample C RSC BS

N (mg kg−1) 14.40 20.00 16.00
P (mg kg−1) 342.00 360.00 75.00
K (mg kg−1) 4086.00 856.00 1114.00

pH 6.83 7.21 7.28
Organic matter (%) 17.50 17.00 4.00

K (cmol(+) kg−1) 10.45 2.19 2.85
Na (cmol(+) kg−1) 28.75 0.40 0.42
Ca (cmol(+) kg−1) 36.95 29.55 21.24
Mg(cmol(+) kg−1) 7.25 4.60 3.30
Al (cmol(+) kg−1) 0.01 0.01 0.01

Al saturation (%) a 0.01 0.03 0.04
CEC (cmol(+) kg−1) 83.41 36.75 27.82

Σ Bases (cmol(+) kg−1) 83.40 36.74 27.81
a Calculated as (Al × 100)/CEC, where CEC = cation exchange capacity (i.e., Σ [K, Ca, Mg, Na, and Al].

3.2. DNA-Based Profiles of Bacterial and Fungal Communities in Compost and Soil Samples

16S rRNA DGGE based analysis comparison of C, RSC and BS showed distinct bacte-
rial communities as visualized by dendrogram and NMDS analyses (Figure 2a,b). NMDS
analyses showed three clusters with a clear separation among the bacterial communities at
50% similarity level. Furthermore, highest homogeneity in replicate samples (80% similar-
ity) in C samples as compared to RSC and B was found. Similar results were observed in
fungal communities banding profiles obtained from DGGE analysis using 18S rRNA gene
as target (Figure 2c,d). Significant differences in fungal communities were also observed
between C, RSC and BS samples, where a higher homogeneity was visualized in each
sample and a higher separation (70% similarity) between C samples relative to RSC and BS.

3.3. Community Level Physiological Profiles of Bacterial Communities in Compost and
Soil Samples

The CLPP analysis showed microbial communities in C and RSC of similar metabolic
capacity. Both microbial communities were able to catabolize 30 different carbon sources
present in the Biolog EcoPlatesTM (Figure 3a). Microbial communities in RSC samples
consumed the 30 carbon sources in 48 h of incubation, whereas microbial communities
in BS samples consumed a maximum of 19 carbon sources at 120 h of incubation. C and
RSC samples showed a higher metabolic diversity as compared to BS samples. While e.g.,
Tween 40, Tween 80, and D-cellobiose were efficiently consumed by C, RSC, and BS micro-
bial communities, 4-hydroxybenzoic acid, L-arginine, L-threonine, and L-phenylalanine
were not consumed by C and BS microbial communities.

Visualization of CLPP with a dendrogram and NMDS analysis (Figure 3b,c) showed
three clusters. One cluster with a similarity of 80% was formed by samples of RSC and C
from 72 to 168 h of incubation. A second cluster was formed by a lower similarity (60%),
including samples of BS (96–168 h incubation) and samples of C (24–48 h incubation) and
RSC (48 h incubation). The third cluster with an 80% of similarity was exclusively formed
by samples of BS from 24 to 72 h of incubation.
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(RSC) and bulk soil (BS) (n = 4) revealed by DGGE using 16S rRNA gene as target. (b) Non-metric multidimensional scaling
(NMDS) of bacterial community compositions revealed by DGGE using 16S rRNA gene as target. (c) Dendrogram of fungal
community compositions in samples of C, RSC and BS (n = 4) revealed by DGGE using 18S rRNA gene as target. (d) NMDS
of fungal community compositions revealed by DGGE using 18S rRNA gene as target.
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3.4. Characterization of Bacteria Dispersing along Fungal Hyphae

A total of 19 fungi and 10 taxonomically different bacterial isolates were obtained
from C and RSC samples by FHCS. No fungi were isolated from BS samples.

Based on partial sequencing of the 18S rRNA genes, the fungal isolates showing
hyphae-associated bacteria were identified as members of the Aspergillus, Mucor, Ulocladium,
Rhizopus and Syncephalastrum genera (Table 2). All of them (except Ulocladium sp. 2H),
showed phytate-mineralizing or phosphate-solubilising capability on agar plates. In
contrast, fungal isolates identified as Stereum, Miladina, Aspergillus, Penicillium, Rhizopus,
Chaetomium and Lichtheimia genera did not show hyphae-associated bacteria (Table 3).

Based on partial sequencing of 16S rRNA gene, the isolated bacteria able to disperse
along the fungal hyphae in FHCS were identified as members of Rhodococcus, Bacillus,
Pseudomonas, Agrobacterium, Glutamicibacter and Microbacterium genera (Table 4). Isolates
belonging to Rhodococcus and Microbacterium genera were exclusively isolated from C
samples, while Pseudomonas was found in RSC samples only. Isolates belonging to the
genera Bacillus were obtained from both C and RSC samples. Interestingly, Pseudomonas
isolates were found associated only with the mycelium of the genus Mucor; while acti-
nobacteria (Rhodococcus, Glutamicibacter and Microbacterium) were isolated in association
with the mycelium of the genus Aspergillus. On the other hand, the strains of genus Bacillus
(B. subtilis, B. amyloliquefaciens and B. cereus) were found associated with a variety of fungal
genera, such as Ulocladium, Rhizopus, Syncephalastrum and Aspergillus.

Table 2. Taxonomic assignment of fungal isolates with hyphae-associated bacteria using fungal highway column system (FHCS)
selection and isolation approach. C and RSC refer to compost and rhizosphere soil with compost application, respectively.

Origin Isolate Taxonomic Group a Closest Relatives of Cloned
Sequences (Accession No.)

Similarity
(%) b

Accession
No.

C 1H Ascomycota, Eurotiales,
Aspergillaceae, Aspergillus Aspergillus versicolor (AB008411) 99 MW624352

C 2H Ascomycota; Pleosporales;
Pleosporaceae; Alternaria Ulocladium botrytis (UPSC 3539) 96 MW624366

C 3H Mucoromycota, Mucorales,
Rhizopodaceae, Rhizopus

Rhizopus microsporus var.
rhizopodiformis (KM527234) 96 MW624353

RSC 6H
Mucoromycota; Mucorales;

Syncephalastraceae;
Syncephalastrum.

Syncephalastrum monosporum var.
pluriproliferum (AF157161) 97 MW624367

RSC 7H Mucoromycota, Mucorales,
Mucoraceae, Mucor

Mucor circinelloides f. circinelloides
(JF723654) 99 MW624356

RSC 10H Mucoromycota, Mucorales,
Rhizopodaceae, Rhizopus Rhizopus stolonifera (HM152768) 99 MW624359

RSC 11H
Mucoromycota; Mucorales;

Syncephalastraceae;
Syncephalastrum.

Syncephalastrum monosporum var.
pluriproliferum (AF157161) 96 MW624368

C 14H Ascomycota, Eurotiales,
Aspergillaceae, Aspergillus Aspergillus sp. (MH071383) 99 MW624362

RSC 16H Ascomycota, Eurotiales,
Aspergillaceae, Aspergillus Aspergillus sp. (MH071383) 99 MW624364

RSC 17H Mucoromycota, Mucorales,
Mucoraceae, Mucor

Mucor circinelloides f. circinelloides
(JF723654) 96 MW624365

a The taxonomic assignment is based on sequence analysis by Blastn of GenBank database from NCBI (https://www.ncbi.nlm.nih.gov/;
accessed on 31 May 2021). It is given the phylum as well as the lowest predictable phylogenetic rank. b Based on partial sequencing of 18S
rRNA gene and comparison with those present in GenBank by using Blastn tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi; accessed on 31
May 2021).

https://www.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 3. Taxonomic assignment of fungal isolates which did not showed associated bacteria, using the fungal highway
column system (FHCS) selection and isolation approach. C and RSC refer to compost and rhizosphere soil with compost
application, respectively.

Origin Isolate Taxonomic Group a Closest Relatives of Cloned
Sequences (Accession No.)

Similarity
(%) b

Accession
No.

C 4H Basidiomycota, Russulales,
Stereaceae, Stereum Stereum ostrea (AF082856) 94 MW624354

C 5H Ascomycota, Pezizales,
Pyronemataceae, Miladina Miladina lecithina (DQ646538) 98 MW624355

RSC 8H Ascomycota, Eurotiales,
Aspergillaceae, Aspergillus Aspergillus flavus (MH549645) 97 MW624357

RSC 9H Ascomycota, Eurotiales,
Aspergillaceae, Penicillium Penicillium sp. (KX457676) 100 MW624358

RSC 12H Mucoromycota, Mucorales,
Rhizopodaceae, Rhizopus

Rhizopus stolonifer var. lyococcos
(AB250172) 99 MW624360

C 13H Ascomycota, Sordariales,
Chaetomiaceae Uncultured soil fungus (AB534487) 98 MW624361

C 15H Ascomycota, Sordariales,
Chaetomiaceae, Chaetomium Chaetomium sp. (EU826480) 96 MW624363

RSC 18H Ascomycota; Eurotiales;
Aspergillaceae; Aspergillus Aspergillus niger (AN0512) 97 MW624369

RSC 19H Mucoromycota; Mucorales;
Lichtheimiaceae; Lichtheimia. Lichtheimia corymbifera (D98070902) 96 MW624370

a The taxonomic assignment is based on sequence analysis by Blastn of GenBank database from NCBI (https://www.ncbi.nlm.nih.gov/;
accessed on 31 May 2021). It is given the phylum as well as the lowest predictable phylogenetic rank. b Based on partial sequencing of 18S
rRNA gene and comparison with those present in GenBank by using Blastn tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi; accessed on 31
May 2021).

Table 4. Taxonomic assignment of bacterial isolates dispersing along of fungal hyphae (host) to the target agar in fungal
highway column systems (FHCS). C and RSC refer to compost and rhizosphere soil with compost application, respectively.

Origin Fungal
Host Isolate Taxonomic Group a Closest Relatives of Cloned

Sequences (Accession No.)
Similarity

(%) b
Accession

No.

C 1H 13B Actinobacteria, Corynebacteriales,
Nocardiaceae, Rhodococcus Rhodococcus sp. (KY020326) 99 MW624337

C 2H 14B Firmicutes, Bacillales, Bacillaceae,
Bacillus Bacillus subtilis (KR780412) 98 MW624338

15B Firmicutes, Bacillales, Bacillaceae,
Bacillus

Bacillus amyloliquefaciens
(MH114081) 96 MW624339

C 3H 16B Firmicutes, Bacillales, Bacillaceae,
Bacillus Bacillus subtilis (MW148431) 97 MW624340

RSC 6H 17B Firmicutes, Bacillales, Bacillaceae,
Bacillus Bacillus sp. (MH571551) 95 MW624341

RSC 7H 18B Proteobacteria, Pseudomonales,
Pseudomonadaceae, Pseudomonas Pseudomonas sp. (LC420182) 97 MW624342

RSC 10H 25B Proteobacteria, Alphaproteobacteria,
Rhizobiales, Agrobacterium

Agrobacterium tumefaciens
(KF465835) 98 MW624344

RSC 11H 26B Firmicutes, Bacillales, Bacillaceae,
Bacillus

Bacillus amyloliquefaciens
(KX058503) 98 MW624345

https://www.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 4. Cont.

Origin Fungal
Host Isolate Taxonomic Group a Closest Relatives of Cloned

Sequences (Accession No.)
Similarity

(%) b
Accession

No.

C 14H 37B Actinobacteria, Micrococcales,
Micrococcaceae, Glutamicibacter.

Glutamicibacter arilaitensis
(MK424282.1) 95 MW624351

29B Actinobacteria, Micrococcales,
Microbacteriaceae, Microbacterium Microbacterium sp. (HQ418229) 99 MW624348

RSC 16H 30B Firmicutes, Bacillales, Bacillaceae,
Bacillus Bacillus cereus (FJ393296) 95 MW624349

RSC 17H 32B Proteobacteria, Pseudomonales,
Pseudomonadaceae, Pseudomonas Pseudomonas sp. (JQ977069) 96 MW624350

a The taxonomic assignment is based on sequence analysis by blastn of GenBank database from NCBI (https://www.ncbi.nlm.nih.gov/;
accessed on 31 May 2021). It is given the phylum as well as the lowest predictable phylogenetic rank. b Based on partial sequencing of 16S
rRNA gene and comparison with those present in GenBank by using Blastn tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi; accessed on 31
May 2021).

Fungal-bacteria associations and bacterial dispersal along hyphae were further con-
firmed by optical microscopy (Figure 4; Video S1).
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Figure 4. Optical microscopy photograph (magnification: 400×) showing the association of green-
stained bacterial cells in the liquid layer from hyphae of the fungus contained in the commercial
compost and grown on agar plate. Bacterial cells on hyphae are indicated by arrows and they can
also be visualized a video in the Supplementary Video S1.

3.5. Screening of Representative Plant Growth-Promoting Traits in Selected Bacterial Isolates

PGP traits of seven bacterial isolates able to disperse along the fungal hyphae were
studied (Table 5). All isolates were able to produce tryptophan-induced auxin, while only
three isolates (Pseudomonas sp. 18B and 32B, Glutamicibacter sp. 37B) exhibited ACCD
activity. Four isolates (Bacillus sp. 15B, Pseudomonas sp. 18B and 32B, and Rhodococcus sp.
13B) enabled phytate-mineralization. However, no phosphate-solubilizing activity was
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observed in any of the bacterial isolates, while two fungal strains, both from Aspergillus
genus, did showed this capability.

Table 5. Screening of representative plant growth-promoting traits in selected bacterial isolates
dispersed along of fungal hyphae.

Isolate Code Source TIA ACCD PM PS

Rhodococcus sp. 13B C + − + −
Bacillus sp. 15B C + − + −

Pseudomonas sp. 18B RSC + + + −
Glutamicibacter sp. 37B C + + - −
Microbacterium sp. 29B C + − - −

Bacillus sp. 30B RSC + − - −
Pseudomonas sp. 32B RSC + + + −

TIA: tryptophan-induced auxin; ACCD: 1-aminocyclopropane-1-carboxylic acid deaminase activity; PM: phytate-
mineralizing activity; PS: phosphate-solubilizing activity.

4. Discussion
4.1. Microbial Community Composition and Metabolic Activity in C, BS, and RSC

Applying a previously described approach [32,33,40] fungi were isolated from C, RSC
and BS and searched for putative PGP bacteria able to disperse along their mycelia. Prior
to isolation of the bacterial fungal couples, we characterized the C, RSC, and BS substrata
used as inoculum source. BS, RSC and C samples showed distinct differences in their
chemical properties (Table 1) with C and RSC exhibiting significantly higher nutrient and
OM contents than BS. Not surprisingly, this is in accordance to earlier studies revealing
that continuous application of compost induce changes in physical, chemical and microbial
traits of agricultural soils [41–43]. Observed differences between BS and RSC may however
also be driven by grapevine rhizosphere effects, as plants root typically release organic
compounds (e.g., aminoacids, sugars, or organic acids) that may select for rhizosphere-
specific microbial communities [44–47]. This may explain the more efficient use of amino
acids (e.g., L-arginine, L-threonine and L-phenylalanine), carbohydrates (e.g., D-cellobiose
and xylose) and organic acids (4-hydroxybenzoic, malic acid and galacturonic acid) by RSC
than by BS microbial communities in Biolog® assays. Similar CLPP of C and RSC microbial
communities may be explained selective expression of similar catabolic functions [48],
and/or a functional redundancy of different taxonomic groups in highly diverse RSC and
C microbial communities [49].

4.2. Isolation of Fungi and Associated Migrator Bacteria

RSC and C samples allowed successful isolation bacterial-fungal associations and
bacteria dispersing along mycelia, respectively (Tables 2 and 4). This finding suggests that
RSC and C, likely due to their favorable chemical and physical characteristics (Table 1) allow
for manifold bacterial-fungal interfaces [50]. The high content of lignocellulosic material in
plant derived compost favors growth of saprotrophic mycelial fungi, which, by exerting
selective pressure, also allow for targeted bacterial communities in their hyphosphere.
Aerobic degradation of cellulose and lignin is widespread among compost decomposing
fungi (e.g., such as Aspergillus and Mucor [51,52]) while cellulose degradation by soil
bacterial species such as Bacillus, or Pseudomonas (i.e., genera also found in our study) have
been described [53]. In contrast, fungi were not isolated from BS samples. The absence
of fungal growth may be related to low abundance of fast-growing saprotrophic fungi
(which typically colonize FHCS [54]) or the fact that FHCS did not provide the appropiate
conditions to the colonization and growth of native fungi contained in BS, which was
characterized by lower contents of P and organic matter according to Table 1. However,
the reasons for which fungi were not isolated from BS are still unclear.

Different ecological relations (e.g., mutualism and antagonism) are established in the
bacterial-fungal interface [9–11]. In particular, knowledge of beneficial bacteria-fungi inter-
actions is highly relevant as they can be exploited to improve soil fertility and crop yields.
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For instance, the ability of bacteria to disperse through soil via mycelial networks represents
a mechanism that can provide a great thrust to their ecological competence, as it allows
them to reach new ressources which confer novel ecological opportunities [7,11,16,55]. As
an example, genera Bacillus and Pseudomonas are commonly present in bacterial commu-
nity added to soil with compost application [4,56–58] however these bacteria often fail
to colonize the plant rhizosphere as they fail to compete with the native microbial com-
munity due to insufficient access to immobilized ressources pores or poor displacement
capability in vadose environments [59]. Filamentous compost fungi such as Aspergillus
and Mucor may play a fundamental role [51,52] as conduits for efficient colonization of
roots and soil habitats or the access to soil nutrients [7,18]. For instance, co-inoculation of
biocontrol bacteria Pseudomonas fluorescens with arbuscular mycorrhizal Glomus mosseae
demonstrated that P. fluorescens enabled better mycorrhizal colonization of roots of basil
(Ocimum basilicum L.) [60].

As migrators along hyphae, bacteria of the genera Bacillus, Pseudomonas, Microbac-
terium, Glutamicibacter and Rhodococcus were isolated. Members of Bacillus and Pseudomonas
have been found in rhizosphere soil amended with compost and are known as PGP bacte-
ria in compost and other organic amendments [56–58,61]. Six out of 10 bacterial isolates
belonged to genus Bacillus and associated to hyphae of Ulocladium, Rhizopus, Syncephalas-
trum and Aspergillus. Members of genus Bacillus (e.g., B. subtilis and B. amyloliquefaciens)
are widely studied and proposed as biocontrol agents for several phytopathogenic fungi,
such as Fusarium oxysporum, Ralstonia solanacearum, Rhizoctonia solani and Alternaria tenuis-
sima [57,61]. On the other hand, there are previous reports of beneficial associations between
strains of B. subtilis and fungi of the genus Aspergillus, where co-inoculation of both mi-
croorganisms leads to a more efficient biodegradation of contaminants in the soil [62], as
well as the stimulation of the synthesis of compounds with pharmaceutical application in
the fungus [63]. Also, strains of the genus Bacillus (B. subtilis, B. amyloliquefaciens and B.
cereus) and genus of fungi Ulocadium are commonly used in the manufacture of commercial
products to control the pathogenic fungus Botrytis cinerea [64,65]. However, we could not
find in these studies reference to formulations of products that included the co-inoculation
of both (Bacillus and Ulocladium); taking into account that this fungus can be an effective
means for dispersal of these bacteria, it could be expected that a formulation that contains
both microorganisms could act more efficiently.

Two bacterial isolates belonged to genus Pseudomonas and associated with Mucor sp.
derived from RSC. Member of genus Pseudomonas (e.g., P. fluorescens and P. chlororaphis) are
likewise known as biocontrol agents of phytopathogenic fungi, such as Rosellinia necatrix
and Pythium aphanidermatum [4,66]. Recent studies using Pseudomonas (P. fluorescens and P.
protegens) showed potential inhibition of mycelial growth and spore fungal germination of
several fungal genera including the Mucor genus [67,68], however the Pseudomonas strain
isolated in our study did not show evidence of affecting the growth and germination of
this fungus.

The isolates belonging to genera Rhodococcus, Agrobacterium, Glutamicibacter and
Microbacterium associated with genus Aspergillus and Rhizopus. Microbacterium hu-
mic and Microbacterium agarici have previously been isolated from the fungi Agaricus
blazei [69], whereas Glutamicibacter arilaitensis has been described to associate with Peni-
cillium [70] and to significantly improve the mycelial growth of edible mushroom Pleurotus
florida [71]. Bacteria of the genus Rhodococcus sp. have been isolated from a wide variety
of enviroments, including soils and composts [72,73] and have been found dispersing
along the mycelia of the oomycete Pythium ultimum [40]. Finally, a recent study has also
reported the association of Agrobacterium with the fungal mutualist Piriformospora indica
(Basidiomycota), establishing a tripartite symbiosis (Sebacinalean) with a broad range of
plants [8].
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4.3. PGP Traits of Bacteria Dispersing along Fungal Mycelia

Anaylsis of putative PGP traits of migrator bacteria revealed that all bacterial isolates
were able to synthetise tryptophan-induced auxins (Table 5). Most of PBP bacteria are able
to synthesize auxins (e.g., indole-3-acetic acid [IAA]) that stimulate growth and division of
plant cells [74]. Particularly, bacteria belonging to the genera Pseudomonas and Bacillus are
commonly reported for their ability to produce and thereby increase IAA levels in stems and
leaves of grapvine plants [75]. Three of our isolates (Pseudomonas spp. and Glutamicibacter
sp.) moreover exhibited ACCD activity; i.e., a trait associated to the promotion of plant
growth and reduction of plant stress, resp. [76]. ACCD activity has been described for both
bacterial groups, including isolates from compost and organic amendments [77]. Although
we couldn’t observe ACCD activity in our Bacillus sp. isolates, other studies reported
on vermicompost-derived Bacillus sp. isolates able to express ACCD activity [78]. Not
surprisingly we observed phytase activity in isolates of the genera Rhodococcus, Bacillus and
Pseudomonas as phytate is one of the main organic phosphorus forms in compost and plant-
derived residues. Phytase activity has been described for the genera Bacillus, Burkholderia,
Enterobacter, Pseudomonas, and Staphylococcus [79]. Although members of Pseudomonas and
Bacillus have been described as phosphate solubilizers [78] none of our isolates capable
of solubilizing inorganic phosphates. This may be due to the hypothesiszed prevalence
of phytate in compost and RSC. Recent studies e.g., have shown that long-term chemical
fertilization combined with organic materials can modify the phoD gene expression pattern
in soil bacterial communities [80]; nevertheless, our finding requires further study since
the fungi associated with these bacteria showed both phosphate-solubilizing and phytate-
mineralizing capabilities. Taking into account that most fungal bacterial associsations are
known to share nutrients such as phosphorus [22], it seems reasonable to assume that such
phenomenon may also occur in the bacterial-fungal associations of this study.

5. Practical Relevance

Our data show that bacteria exibiting PGP traits dispersed along mycelia of fungi
presente in compost and RSC. Mycelia-mediated dispersal may allow them to reach plant
roots and other PGP microhabitats. Next to being a cheap and readily available fertilizer,
compost facilitates the inoculation of complex and adapted bacterial-fungal consortia and
their efficient spreading even in vadose environments such as water unsaturated soil. The
fractal network of fungal mycelia however has the ability to overcome air-water interfaces
and builds a suitable scaffold (‘fungal highway’ [17]) for efficient dispersion in soil. Such
phenomenon may be particularly useful in case compost is solely placed onto agricultural
land without further mixing with soil. Inoculation of single isolates with efficient PGP
traits often fails, as such strains often fail to compete with soil microbiota leading to poor
survival efficiency and root colonization [81]. Furthermore, bioaugmented PGP bacteria
typically do not spread well in air-filled and dry soil, as their dispersal and access to
nutrients in the soil depends on waterbone transport and/or the presence of continuous
water films [12]. The high functional and taxonomic diversity of compost in conjunction
with its elevated water holding capacity makes compost an interesting seedbank of PGP
bacteria and selfpromoted dispersal thereof by mycelial transport [22].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11081567/s1, Video S1: Bacterial cells moving on hyphae of the fungus contained in
the commercial compost.
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