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Abstract: Numerous methods have been used in the spatial prediction of soil salinity. However, the
most suitable method is still unknown in arid irrigation regions. In this paper, 78 locations were
sampled in salt-affected land caused by irrigation in an arid area in northern China. The geostatistical
characteristics of the soil pH, Sodium Adsorption Ratio (SAR), Total Salt Content (TSC), and Soil
Organic Matter (SOM) of the surface (0–20 cm) and subsurface (20–40 cm) layers were analyzed.
The abilities of the Inverse Distance Weighting (IDW), Ordinary Kriging (OK), and CoKriging (CK)
interpolation methods were compared, and the Root Mean Square Error (RMSE) was used to justify
the results of the methods. The results showed that the spatial distributions of the soil properties
obtained using the different interpolation methods were similar. However, the surface layer exhibits
more spatial heterogeneity than the subsurface layer. Based on the RSME, the nugget/sill value and
range significantly affected which method was the most suitable. Lower nugget/sill values and
lower ranges can be fitted using the IDW method, but higher nugget/sill values and higher ranges
can be fitted using the OK method. These results provide a valuable reference for the prediction of
soil salinity.

Keywords: geostatistics; interpolation; kriging; inverse distance weighting; sodium adsorption ratio

1. Introduction

Soil salinization is one of the most serious land degradation types, limiting agricultural
productivity worldwide [1,2]. Higher soil salinity always results in a high osmotic pressure
between the plants and soil, which leads to water loss from the plants [3]. Most crops are
sensitive to soil salinity [1]. The soil salinity is mainly affected by the following factors:
(1) the application of water (mainly in agriculture) containing salts; (2) the weathering of the
primary and secondary minerals in the soil; (3) the decay of organic matter in the soil; and
(4) instability of the underground water table [4]. Soil salinization always influences the soil
pH, Sodium Adsorption Ratio (SAR), Soil Organic Matter (SOM), and other properties [5].
For example, soil salinity has been found to be negatively correlated with pH (p < 0.001);
that is, lower pH soils tend to be more saline than higher pH soils [6]. In addition to pH,
higher soil salinity is always accompanied by higher sodium contents [7]. Sodium ions can
cause instability of soil aggregates, followed by dispersion of clay particles, which results
in the clogging of soil pores. The adsorption of sodium by the soil is expressed by the SAR
of the solution [8], and a higher SAR always results in a higher crop growth limitation. Soil
salinity also has a significant negative impact on the SOM. This is due to the decreased
plant production and/or alteration of the community composition, which changes the
quality and quantity of the SOM and increases the decomposition rate [9].
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Knowledge of the spatial distribution of soil salinity helps obtain information for land
reclamation or restoration [10], in making effective site-specific management decisions [3],
and in ecological and agricultural management [11]. In addition, it can provide guidelines
for irrigation and the application of gypsum and other chemicals [10]. For soils with high
salinity, more infiltration water is needed to enable salt leaching. Moreover, the application
of gypsum should be increased. The soil salinity may always have a considerable nugget
effect [12]. In addition to soil salinity, soil pH may also have a significant spatial dependence.
However, the soil pH variation has been found to be lower than the other soil properties,
and it increases slightly with soil depth [3]. The SAR is calculated from the Na+, Mg2+,
and Ca2+ contents, and it is considered a more appropriate property for determining soil
alkalization than a single cation concentration [13]. Knowing the spatial distribution of the
SAR is also important for land reclamation and agricultural development [14]. Knowing
the spatial distribution of the SOM is crucial for crop growth. Studies have shown that the
SOM in saline soils tends to be low and has high spatial variability.

Geostatistical analysis can be applied in decision-making regarding environmental
monitoring, remediation, land management, and planning [4]. Many interpolation methods
have been used for the spatial prediction of soil salinity, including the Inverse Distance
Weighting (IDW), Ordinary Kriging (OK), and CoKriging (CK) methods. The IDW assumes
that the soil properties of a point are the weighted average of the measured values within
the neighborhood, and the weights are inversely related to the distances between the
prediction location and the sampled locations [15]. Ordinary kriging is a geostatistical
method that is widely used for spatial interpolation. The OK method recognizes and
models spatial variables using anisotropies, declustering, and unbiasedness, and it also
computes the minimized estimation variance (also known as the kriging variance) [16].
Compared to the IDW and OK methods, the CK method considers the distance between
the observed variable values and the predicted variable values and the spatial correlation
between one variable and another more frequently sampled variable [17]. The accuracies
of these methods have been compared in different areas and used in predicting different
variables. For soil pH and electrical conductivity (EC) in coastal agricultural areas in
northern Iran, the OK method had a smaller error than the IDW method for both soil
properties in the different soil layers [18]. For pH, EC, and SOM in crop farmland located
in the Shire of Wickepin, Australia, the OK method performed best for pH in the topsoil,
and the lognormal ordinary kriging method performed best for EC in the topsoil. The IDW
method had the greatest accuracy for subsoil pH [19]. For EC, pH, SAR, and other soil
properties in a reclaimed area of the Behera Governorate of Egypt, the IDW method had a
higher prediction efficiency than the kriging method [20]. For the soil EC in a representative
rural community located in the western part of Biskra, Algeria, the CK method performed
better than the OK method, with RMSE values of 0.92 and 1.53, respectively [21]. As can
be seen, the most suitable method for the spatial prediction of soil salinity and the related
indexes is still under debate, and further study is needed in specific regions.

The Hetao Irrigation District is a typical arid irrigation region, and it is very important
to the agricultural development of Inner Mongolia, a region in northern China. It is one
of China’s three largest irrigation districts and is an important food supply base [22]. The
precipitation in this area is much lower than the crop water requirement. Irrigation is neces-
sary for agriculture in this area. More than 75% of the basin is irrigated using Yellow River
water. The average water diversion from the Yellow River is about 5.165 billion m3/year
(from 1980 to 2000), which accounts for about 1/10 of the annual discharge of the Yel-
low River [23,24]. Long-term irrigation has resulted in salinization, which is becoming
increasingly serious [25]. Knowing the spatial distribution of the soil salinity is crucial to
precise fertilization and irrigation. The method most commonly used to study the spatial
distribution of soil salinity is remote sensing [22,26]. However, the remote sense method
mainly focuses on large-scale areas. Understanding the spatiotemporal characteristics of
soil salinity is necessary for both large regions and the field scale. The spatial distributions
of the soil salinity and crop canopy coverage are consistent at the field scale [27]. Thus,
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the field scale prediction of soil salinity may be more helpful for farmers when planning
fertilization and irrigation. A detailed understanding of the spatiotemporal variability
of soil salinity is helpful in agriculture regionalization at the regional scale. For example,
where to plant salt tolerance crops and plant high yield crops without salt tolerance.

This study aims to compare the abilities of the different spatial interpolation methods
to predict the spatial distributions of the soil salinity and related soil properties and to
analyze their spatial distributions in the arid irrigation region, northern China.

2. Materials and Methods
2.1. Site Description

The study area is located in the eastern part of the Hetao Irrigation District, northern
China (Figure 1). It has a typical arid climate, with low precipitation and very high evapo-
transpiration. The annual precipitation is about 130–350 mm, and the annual temperature
is about 5.6–7.4 ◦C [22]. The soil type is solonchak, according to World Reference Base for
Soil Resources. The soil texture is clay loam with sand, silt, and clay contents of 24.11%,
43.60%, and 32.29%. The underground water table is high due to the frequent irrigation
conducted every year. The average amount of irrigation water derived from the Yellow
River every year is about 30–40 cm. The total dissolved salt in the Yellow River is about
0.5%. Thus, a great deal of salt has been added to the irrigated fields every year through
irrigation. However, the drainage system is low compared to the irrigation system, i.e.,
only 10%. Thus, high irrigation and low drainage is a serious problem in the study area.
The study area is next to Ulansuhai Lake, a drainage lake in the Hetao Irrigation District.
Therefore, the water table in the study area is low and only varies by 0.5–1.5 m throughout
the year. This has resulted in significant salinization in the area.

Figure 1. Locations of the study area and sampling points. The number beside the point is the
sampling ID.

2.2. Soil Sampling and Laboratory Measurements

From the study field site (size in ha), soil bag samples from the topsoil (0–20 cm)
and the subsoil (20–40 cm) at 78 sampling points were taken (Figure 1), which adds up
to 156 soil bag samples. Then, they were taken to the laboratory and were air-dried and
ground in preparation for analysis. The soil properties, including the pH, Na+, Ca2+, Mg2+,
total salt content (TSC), SOM, sand content, silt content, and clay content, were measured.
The pH was measured using a pH meter (Sartorius PB10). The Na+ content was measured
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using a flame photometer, and the Ca2+ and Mg2+ contents were measured via ethylene
diamine tetraacetic complexometric acid titration [28]. The SOM was measured using
the oxidation of the potassium dichromate external heating method [29]. The SAR was
calculated using the Na+, Ca2+, and Mg2+ contents and the following formula, in which
the unit of the ion concentrations is mmol L−1 [13]. Soils with SARs of greater than 12,
exchangeable sodium percentages (ESPs) of greater than 15, and EC values of greater than
5 pose a very high hazard to plant growth [7].

SAR =
Na+√

Ca2++Mg2+

2

(1)

2.3. Geostatistical Analysis and Interpolation Methods
2.3.1. Semivariance Modeling

Semivariance modeling is widely used in geostatistical analysis. In soil science, the
soil properties are always considered to be regionalized variables. The semivariance (γ(h))
of a considered soil property can be calculated as follows [30]:

γ(h) =
1

2N(h) ∑N(h)
i=1 [Z(xi)− Z(xi + h)]2, (2)

where N(h) is the pair of points with lag distance h; Z(i) is the value of the considered
property at point xi, and Z(xi + h) is the value of the property at a point a distance h away
from point xi.

Soil is a continuous spatial variable, and the semivariogram of a soil property is a
continuous function. However, the semivariance is always calculated from a series of
soil samples that contain discontinuities. Thus, the semivariance of these points can be
simulated using curves, and the equation used for the curve fitting is called the theoretical
model of the semivariogram. The commonly used models are the spherical model, the
exponential model, and the Gaussian model:

γ(h) =

{
C0 + C

(
3h
2a −

h3

a3

)
0 ≤ h ≤ a

C0 + C h ≥ a
(3)

γ(h) = C0 + C
(

1− e−
h
a

)
(4)

γ(h) = C0 + C
(

1− e−
h2

a2

)
(5)

where γ(h) is the semivariance; h is the lag distance; C0 is the nugget, and C is the sill.
C0/(C0 + C) can reflect the degree of spatial dependence. The spatial dependence is divided
into strong (C0/(C0 + C) < 25%), moderate (25% ≤ C0/(C0 + C ≤ 75%), and weak (C0/(C0
+ C) > 75%) dependence [31]. The simulation is done in professional geostatistical software
(GS + 9.0). The software simulated the data with all three models and compared the R2 of
them. The best model is chosen with the highest R2 value.

2.3.2. Inverse Distance Weighting Interpolation

The IDW method is a widely used, straightforward, noncomputational interpola-
tion method. The predicted value (Pj) for location j is calculated based on the distance
weight [15].

Pj = ∑n
i=1 λiOi. (6)

where Oi is the observed value at location i; and λi is the weight, which can be calculated as

λi = d−αij /
n

∑
i=1

d−αij (7)



Agronomy 2021, 11, 1535 5 of 17

In this equation, dij is the distance between i and j; and α is a specified value, which is
always larger than 1 and is always taken to be 2 [32]. As can be seen, points closer to the
target location have greater weights.

2.3.3. Ordinary Kriging Interpolation

Ordinary kriging is a widely used interpolation method, which can be used to obtain
an optimal, linear, and unbiased prediction for a nonsampled point based on the values
of neighboring sample points. The OK method assigns weights to these points based on
their distances from the point being estimated and the spatial variability structure, and the
formula is as follows [21,33]:

Z(x0) = ∑n
i=1 wiZ(xi). (8)

In this equation, Z(x0) is the predicted value; and wi is the weight for ith observation
value Z(i). To obtain an optimal and unbiased prediction, the sum of the weights must be
equal to 1, and the estimation or kriging variance is minimized.

2.3.4. Cokriging Interpolation

In the IDW and OK predictions, the only parameter used to determine the weight is
the distance. Variables that have spatial relationships with two or more variables can be
predicted using the cokriging method:

Zu(b) = ∑V
I ∑n

i=1 wiIZI(xi) (9)

In this equation, Zu(b) is the predicted variable u; and V is the number of related
variables. N is the number of pairs of points. wiI is the weight of the Ith variable at point i,
and ZI(xi) is the observed matrix value for the Ith variable at point i. To obtain an optimal
and unbiased prediction, the sum of the weights of the predicted properties must be 1, and
that of the other properties must be 0 [33]:

∑n
i=1 wiZ(xi) =

{
1 I = u
0 I 6= u

(10)

In addition, the estimation or the cokriging variance should be minimized. In this
study, soil texture (sand content, silt content, or clay content) was selected as the covariance
in the cokriging prediction. This is mainly because the soil texture forms the basis of the
soil structure and strongly affects the leaching of salt [14].

2.4. Validation of the Different Interpolation Methods

A total of 78 points were sampled in the study area. Thirty of them were selected as
validation data, and the other 48 points were used as interpolation data. The IDW, ordinary
kriging, and cokriging methods were used to predict the TSC, pH, LogSAR, and SOM
values for both the surface and subsurface layers in ArcMap 10.6. Then, the prediction
maps were converted to raster style, and the predicted values of the validation points were
extracted using the “Extract value to points” tool in ArcMap. Thereafter, the Root Mean
Squared Error (RMSE) of the predicted value for each soil property was calculated as

RMSE =

√
1
m ∑m

i=1

(
yi − yj

)2
(11)

where m is the total number of validation points, yi is the observed value, and yj is the
predicted value. For a given property, the lower the RMSE, the more accurate the method.
The regression analysis of the predicted and observed values were also conducted in SPSS
22.0. A higher coefficient of determination (R2) means more variance was interpreted using
the predicted method.
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3. Results
3.1. Statistical Analysis and Data Distribution of the Studied Soil Properties

The mean TSC values are 16.4 g/kg and 13.42 g/kg for the surface and subsurface
soil layers, respectively (Table 1). The TSC of the surface soil layer is significantly higher
than that of the subsurface soil layer. However, the coefficients of variation (CVs) for
the soil layers are similar. The TSC is significantly higher in the surface layer than in the
subsurface layer. The SAR and SOM are also significantly higher in the surface layer than
in the subsurface layer. The CVs are also similar for the two layers, both of which indicate
moderate variation. Unlike these properties, pH has both similar mean values and CVs
for the two soil layers. Moreover, the CVs indicate weak variation. The surface layer’s
sand, silt, and clay contents were 22.99%, 45.58%, and 31.43%. However, they were 25.27%,
41.02%, and 33.70% for the subsurface layer. Although the sand, silt, and clay contents all
exhibit moderate variation, the variations in the silt contents of both layers are close to
being weak. The data for the soil properties exhibit normal distributions, except for SAR for
both layers and the sand content of the subsurface layer, which obey normal distributions
after log transformation (Table 2).

Table 1. Statistical analysis of the soil salinity and other properties for the different layers.

Index Layer Min Max Mean SD CV

TSC 0–20 cm 5.33 35.75 16.40 a 6.22 0.38
(g/kg) 20–40 cm 5.52 28.54 13.42 b 5.10 0.38

pH 0–20 cm 8.23 8.89 8.51 a 0.17 0.02
20–40 cm 8.01 9.00 8.57 a 0.21 0.03

SAR 0–20 cm 24.44 100.79 55.64 a 16.63 0.30
20–40 cm 25.86 100.17 49.79 b 16.76 0.34

SOM 0–20 cm 6.08 23.50 14.19 a 3.38 0.24
(g/kg) 20–40 cm 7.46 21.89 13.08 b 2.92 0.22
Sand 0–20 cm 6.45 39.49 22.99 a 7.90 0.34
(%) 20–40 cm 10.12 41.34 25.27 a 7.84 0.31
Silt 0–20 cm 34.53 60.30 45.58 a 5.73 0.13
(%) 20–40 cm 32.63 54.24 41.02 b 5.34 0.13

Clay 0–20 cm 7.36 50.68 31.43 a 10.54 0.34
(%) 20–40 cm 5.27 48.02 33.70 b 10.46 0.31

CV–coefficients of variation, SD–standard deviation, SAR–sodium adsorption ratio, TSC–total salt concentration, SOM–soil organic matter.
The letter after the mean value means the difference is significant at 0.05 level.

Table 2. Kolmogorov-Smirnov test for the data distribution.

Soil Layer TSC pH LogSAR SOM Sand Silt Clay

0–20 cm 0.196 0.533 0.2 * 0.2 0.2 0.2 0.2
20–40 cm 0.067 0.2 0.2 * 0.2 0.08 * 0.2 0.06

* means the data were transformed using a logarithmic transformation.

3.2. Geostatistical Analysis of the Soil Salinity and Related Soil Properties

The considered soil properties exhibit a clear nugget effect, except for the pH of
the surface layer, SAR of the surface layer, and the SOM in both layers (Figure 2). The
exponential model best fits the TSC for the surface layer and the subsurface layer’s spherical
model. The nugget/sill values for the surface and subsurface soil layers are 11.76% and
36.12%, respectively (Table 3). This suggests a strong spatial dependence for the surface
layer but a moderate spatial dependence for the subsurface layer. The range for the surface
layer (170.4 m) is much smaller than that for the subsurface layer (291.7 m). R2 of the
subsurface layer (0.81) is higher than the surface layer (0.62). For the other soil properties,
the values for the surface layer are best fitted by the spherical model and those of the
subsurface layer by the exponential model.
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Figure 2. Semivariagrams for the considered soil properties. (a)Total salt concentration (TSC) for 0–20 cm, (b) TSC for
20–40 cm, (c) pH for 0–20 cm, (d) pH for pH 20–40 cm, (e) Sodium adsorption ratio (SAR) for 0–20 cm, (f) SAR for 20–40 cm,
(g) Soil organic matter (SOM) for 0–20 cm, and (h) SOM for 20–40 cm.
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Table 3. Geostatistical analysis of the considered soil properties.

Index Soil Layer Model C0 C0 + C C0/(C0 + C) (%) Range (m) R2

TSC 0–20 cm Exponential 4.7000 39.95 11.76 170.4 0.62
20–40 cm Spherical 11.0000 30.45 36.12 291.7 0.81

pH 0–20 cm Spherical 0.0001 0.0319 0.31 107.3 0.56
20–40 cm Exponential 0.0253 0.0792 31.94 2645.1 0.62

LogSAR 0–20 cm Gaussian 0.0000 0.0143 0.14 95.3 0.34
20–40 cm Exponential 0.0087 0.0220 43.95 469.8 0.77

SOM 0–20 cm Spherical 0.0100 9.81 0.10 98.3 0.48
20–40 cm Exponential 0.0100 7.73 0.13 127.2 0.14

LogSAR means the SAR has been transferred to a normal distribution using a log transformation, C0–nugget value, and C–sill value.

Moreover, the nugget/sill values for the pH and SAR for the surface layer are much
higher (moderate spatial dependence) than those for the subsurface layer (strong spatial
dependence). However, for the SOM, both layers exhibit a strong spatial dependence. The
ranges of the pH, SAR, and SOM values for the surface layer are much higher than those
for the subsurface layer, indicating a longer spatial correlation for the subsurface layer.

3.3. Correlations between Soil Salinity and Other Soil Properties

In the surface layer, the TSC was significantly negatively correlated with the pH and
the clay content, but it was very significantly positively correlated with the silt content
at the p < 0.01 level (Table 4). The TSC was significantly correlated with LogSAR at the
p < 0.05 level. No significant correlations were found between the TSC and the SOM and
sand content. The subsurface layer exhibits very similar correlations between the TSC
and other soil properties. However, the correlation coefficients were higher than those for
the surface layer, especially for the pH and LogSAR. The other soil properties exhibited
significant pair correlations, especially with soil texture. The silt and clay contents were
significantly correlated with the TSC and pH in both the surface and subsurface layers. The
SOM was significantly correlated with the sand content in the surface layer and correlated
with the sand content and clay content in the subsurface layer. Although the soil texture
was not significantly correlated with LogSAR, the correlation between the clay content and
LogSAR for the surface layer was significant at the p < 0.1 level. Therefore, the soil texture,
which exhibits significant correlations with the considered soil properties, was input as a
covariable in the CoKriging prediction.

Table 4. The correlation matrix of the considered soil properties.

Soil Layer Index Parameter TSC pH SOM Log SAR Sand Silt Clay

0–20 cm TSC R 1 −0.297 ** 0.14 0.314 ** 0.175 0.397 ** −0.362 **
p 0.008 0.221 0.005 0.125 0 0.001

pH R 1 0.105 0.517 ** −0.205 −0.337 ** 0.350 **
p 0.362 0 0.072 0.003 0.002

SOM R 1 0.029 −0.311 ** 0.08 0.195
p 0.798 0.006 0.484 0.087

Log SAR R 1 −0.164 −0.085 0.175
p 0.152 0.461 0.125

Sand R 1 0.088 −0.824 **
p 0.445 0

Silt R 1 −0.637 **
p 0

Clay R 1
p
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Table 4. Cont.

Soil Layer Index Parameter TSC pH SOM Log SAR Sand Silt Clay

20–40 cm TSC R 1 −0.521 ** 0.041 0.466 ** 0.173 0.405 ** −0.378 **
p 0 0.724 0 0.13 0 0.008

pH R 1 0.288 * 0.153 −0.317 ** −0.275 * 0.452 **
p 0.011 0.181 0.005 0.015 0.001

SOM R 1 0.200 −0.365 ** −0.007 0.305 **
p 0.079 0.001 0.951 0.035

Log SAR R 1 −0.177 0.036 0.133
p 0.120 0.752 0.244

Sand R 1 −0.078 −0.882 **
p 0.5 0

Silt R 1 −0.615 **
p 0

Clay R 1
p

* means the correlation is significant at the 0.5 level, and ** means the correlation is significant at the 0.01 level.

3.4. Spatial Distributions of the Soil Salinity and Other Soil Properties Predicted Using the
Different Methods

The general trends of the spatial distributions of the soil properties obtained using
the different methods were similar. However, the IDW method showed a clearer patch
than the other methods (Figures 3–6). The cokriging method was the most homogeneous
compared to the other two interpolation methods. For the TSC of the surface layer, all
methods produced higher value zones in the north and south and a lower value zone in the
middle of the study area (Figure 3). The higher and lower value zones are clearer for the
subsurface layer than for the surface layer. The higher value zone is mainly located in the
central-north and southwest areas, but the lower value zone is located in the southeastern
part of the study area. The pH values exhibited a different spatial distribution than the
TSC, mainly decreasing from southeast to northwest (Figure 4).

Figure 3. Spatial prediction of the TSC in the different soil layers obtained using different methods. The (a–c) mean the
inverse distance weighting (IDW), ordinary Kriging (OK), and CoKriging (CK) methods for 0–10 cm. The (d–f) mean the
IDW, Kriging, and CoKriging methods for 10–20 cm.
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Figure 4. Spatial prediction of the pH in the different soil layers obtained using different methods. The (a–c) mean the IDW,
OK, and CK methods for 0–10 cm. The (d–f) mean the IDW, OK, and CK methods for 10–20 cm.

Figure 5. Spatial prediction of the SAR in the different soil layers obtained using different methods. The (a–c) mean the
IDW, OK, and CK methods for 0–10 cm. The (d–f) mean the IDW, OK, and CK methods for 10–20 cm.
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Figure 6. Spatial prediction of the SOM in the different soil layers obtained using different methods. The (a–c) mean the
IDW, OK, and CK methods for 0–10 cm. The (d–f) mean the IDW, OK, and CK methods for 10–20 cm.

Moreover, the two soil layers exhibit similar spatial distributions. The spatial dis-
tribution of the SAR firstly increases and then decreases from west to east. The highest
value zones appear in the middle part for the surface layer and in the southeast part for the
subsurface layer (Figure 5). The SOM showed a similar trend with the pH value. However,
SOM exhibits different spatial distributions in the two layers (Figure 6). The higher value
zone is mainly located in the northeast for the surface layer, but in the subsurface layer, the
higher value zone is mainly located in the southwest.

3.5. Comparison of the Different Prediction Methods

For the TSC of the surface layer, the cokriging method performed the best, but the
kriging method performed the best (Table 5). For the pH and SAR of the surface layer
and the SOM in both layers, the IDW method performed the best. For the pH and SAR
of the subsurface layer, the kriging and cokriging performed the best, respectively. The
scatter plot shows that the TSC for both layers, the pH for the subsurface layer, and the
SOM for the surface layer exhibited a more decentralized trend (Figure 7), indicating the
larger uncertainty of the prediction.

Table 5. RMSEs of the different methods used to predict the soil properties.

Index Soil Layers IDW OK CK Best Method

TSC 0–20 cm 4.78 5.08 4.68 CoKriging
20–40 cm 4.96 4.95 5.10 Kriging

pH 0–20 cm 0.16 0.17 0.18 IDW
20–40 cm 0.18 0.17 0.19 Kriging

Log SAR 0–20 cm 0.13 0.15 0.14 IDW
20–40 cm 0.11 0.10 0.13 Kriging

SOM 0–20 cm 2.63 2.74 2.72 IDW
20–40 cm 2.58 2.65 2.62 IDW
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Figure 7. Cont.
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Figure 7. Plots of predicted values vs. observed values of the considered properties obtained using different interpolation
methods. (a) TSC for 0–20 cm, (b) TSC for 20–40 cm, (c) pH for 0–20 cm, (d) pH for pH 20–40 cm, (e) SAR for 0–20 cm,
(f) SAR for 20–40 cm, (g) SOM for 0–20 cm, and (h) SOM for 20–40 cm. The black line is the y = x line.

4. Discussion
4.1. Soils Salinity of the Different Soil Layers and Its Correlation with the Other Properties

The soil salinity is usually higher for the surface soil layer than for the subsurface layer,
especially for secondary salinization (or man-made soil salinization). Our study area’s TSC
of the surface layer is 16.40 g/kg, significantly higher than that of the subsurface layer
(13.42 g/kg) (Table 1). The same phenomenon was observed in a study in a reclaimed area
of the Behera Governorate of Egypt. The concentrations of the main ions were higher in the
surface layer than in the subsurface layer [20]. Still, the studied soil depths were different
than those used in our study. In the Igdir Plain (Turkey), researchers have also found a
decrease in EC with depth in the soil profile [3]. Another study found that the EC was
higher in the surface layer than in the deeper layers, and the deeper layers did not exhibit
significant differences [34]. In Xinjiang Province, northern China, the EC values in the
surface soil layer (0–10 cm) were found to be significantly higher than at the 10–20 cm and
20–30 cm soil layers [35]. The general trend indicated salt aggregation in the surface soil.
This was mainly caused by shallow underground saline water, which moved up through
the soil due to capillary action and evaporation [10]. When the saline water reached the
soil surface, the water evaporated into the air, and the salt was left behind in the soil. The
soil salinity exhibited a moderate variation in our study. The soil EC was also found to
exhibit a moderate variation (CV of EC was 47.4%) in the southeastern part of Algeria [21]
and in the Manas River watershed in northern China (CV of EC was 33.1–63.0%) [10], but
their CV values were higher than those in our study (Table 1). Another study reported a
strong variation (CVs of 1.31–1.57) in the different soil layers [35]. The CVs of the different
EC datasets may also differ. For example, in the coastal agricultural areas of northern Iran,
the CV of the 0–50 cm layer was 56.7%, indicating moderate variation, but it was 114.7% for
the 50–100 cm layer (strong variation). In our study, the variation in the two layers was the
same. This may be caused by the higher sampling thickness (20 cm). Therefore, a thinner
sample should be conducted in future studies.

Soil salinity can exhibit a positive [21] or negative [36] correlation with pH, but the
correlation is generally not significant. In our study, a significant negative correlation was
found between TSC and pH in both soil layers. This was mainly caused by the fact that the
main cation in the soil in our study area is sodium. When the TSC decreases, the sodium ion
concentration mainly decreased. This caused the proportion of divalent cations (Ca2+ and
Mg2+) to increase. In addition, the proportion of bicarbonate in the anions increased, while
that of sulfate decreased. This caused an increase in the soil pH [37]. The soil salinity is
positively correlated with the SAR in our study area (Table 3), and similar results have been
found in other studies [6,7,10]. This indicated that soil salinity might increase soil alkalinity.
A previous study found that saline soils are characterized by relatively high SAR values
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(7.31–52.10), which are significantly higher than those of non-saline soils (2.66–9.53) [5].
The SAR values in our study were much higher than the values in their study, indicating
more severe soil alkalinity. The soil texture had a significant influence on the soil salinity,
and it may predominantly control the soil salinity distribution. The silt content had a
significant positive correlation with soil salinity, but the sand content had a significant
negative correlation with soil salinity [38]. Another study reported a significant positive
correlation between soil salt content and sand content, but it was negatively correlated with
the clay content [14]. We found that the TSC is significantly positively correlated with the
silt content, but it is significantly negatively correlated with the clay content (Table 4). This
may be because the capillary force is higher in silt, which may increase the accumulation of
salt on the surface. However, the capillary force is lower in clay soils, so salt accumulation
on the surface may be low.

4.2. Geostatistical Characteristic of Soil Salinity in the Arid Irrigation Region in Northern China

The semivariance of the salinity of the surface soil is fitted best by the exponential
model, but the subsurface soil is fitted best by the spherical model (Table 3). A previous
study reported different results and showed that the spherical model was best for the
surface soil layer and the exponential model was best for the subsurface soil layer [3].
Studies have also reported that all of the soil profile layers are fitted best by the spherical
model [4,18]. These different results may be caused by different sampling times and
sampling strategies. The nugget effect increases with soil depth, although both of the
layers in our study exhibit a moderate spatial dependence. One study reported that the
surface layer has a strong spatial dependence, but the bottom layer has a moderate spatial
dependence [18]. Other results indicate that, in general, the nugget/sill value decreases
with soil depth [39]. The spatial dependence of soil salinity is different in different regions
and at different times, affecting the spatial distribution predicted using the kriging method.
Except for the TSC, all of the other soil properties showed a lower nugget effect for the
surface soil layer than for the subsurface soil layer. In addition, the nugget/silt value was
much lower for the surface layer. This indicates that the spatial dependence of the soil
properties was higher in the surface soil layer.

4.3. The Best Method for Predicting Soil Salinity in the Arid Irrigation Distinct

Many researchers have evaluated the performances of the different interpolation meth-
ods. The results almost always differ. In a newly reclaimed area in the southern part of the
Behera Governorate of Egypt, the IDW method outperformed the other methods, including
the ordinary kriging, regression kriging, and cokriging methods [20]. In the agricultural
coastal areas of northern Iran, the OK method had the minimum error compared with
the IDW and conditional simulations methods [18]. In the southern part of the Arkansas
River Basin in Colorado, USA, the performances of the different geostatistical models were
as follows: ordinary kriging > regression kriging > cokriging [40]. In other words, the
applicability of the spatial prediction methods to a specific soil in a specific region are still
unknown. In our study area, different methods were found to be optimal for the different
soil properties and soil layers (Table 5). We found that the optimal methods are closely
related to the relationship between the nugget/sill value and the range of the considered
soil properties values (Figure 8). The soil properties with lower nugget/sill values and
smaller ranges are best predicted using the IDW method. The soil properties with interme-
diate nugget/sill values and value ranges are best predicted using the CK method. The soil
properties with higher nugget/sill values and larger ranges are best predicted using the
OK method. This may be caused by the different calculation methods used by the different
prediction methods. The kriging method is a function of the statistical stationarity, while
the IDW is a function of the distance between the sampling points [32]. When both the
nugget/sill value and the range are lower, the property has a strong spatial dependence in
a short distance. This condition may be more in accord with the assumptions of the IDW
method.
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Figure 8. The relationship between range and nugget/sill value for different methods. Four points
are in the IDW circle, including pH for the surface layer, SAR for the subsurface layer, and SOM for
both layers. One point is in the CK circle, including TSC for the surface layer. The other three points
are in the OK circle, including TSC for the subsurface layer, pH for the subsurface layer, and SAR for
the subsurface layer.

5. Conclusions

The average TSCs were 16.40 g/kg and 13.42 g/kg for the surface (0–20 cm) and
subsurface (20–40 cm) soil layers in a typical piece of salt-affected land in the arid irrigation
region, northern China. In addition, the SAR was also extremely high, i.e., 55.64 for the
surface soil and 49.79 for the subsurface soil layers. This suggests that both soil salinization
and alkalization are serious problems in this area. Compared to the other soil properties,
the TSC and SAR have higher CV values, indicating a higher variance in the soil salinity
and alkalinity. The nugget/sill values of the TSC are 11.76% and 36.12% for the surface
and subsurface soil layers, respectively. This indicates that the soil salinity has a moderate
spatial dependence. The TSC is significantly correlated with the soil texture (mainly
the silt and clay contents), but the LogSAR is not correlated with the soil texture. This
indicates that the soil texture may more easily influence the soil salinity. The general
trends of the prediction maps of the considered soil properties obtained using the three
different methods (IDW, OK, and CK) are similar. However, the OK and CK methods
produced more homogeneous results than the IDW method. The RMSEs of the different
methods showed that the TSC was predicted best using the cokriging (surface) and kriging
(subsurface) methods. The pH and SAR were predicted best using the IDW (surface) and
kriging (subsurface) methods, and the SOM was predicted best using the IDW (both layers)
method. This may be determined by both the nugget/sill values and value ranges of the
predicted properties. Lower nugget/sill values and smaller ranges may be fitted best using
the IDW method, while higher nugget/sill values and larger ranges may be fitted best
using the OK method. These results provide a powerful basis for the spatial prediction
of soil salinity and provide useful information for irrigation, fertilization, and other land
management measures.
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