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Abstract: Climate change is one of the greatest challenges in Kyrgyzstan. There have been negative
spillover effects in agriculture. This study aims to assess the climate change impacts on cropland
suitability in Kyrgyzstan. We used the random forest algorithm to develop a model that captures the
effects of multiple climate and environment factors at a spatial resolution of 1 km2. The model was
then applied in the scenario analysis for an understanding of how climate change affects cropland
distribution. The potential high-quality cropland was found to be included in existing croplands,
while the remaining were distributed around the Chu-Talas valley, the Issyk-kul area, and the Fergana
valley. These potential high-quality croplands comprise grasslands (47.1%) and croplands (43.7%). In
the future, the potential high-quality cropland exhibited inland trends at the periphery of original
cropland category, with grassland and cropland as the primary land components. Due to climate
change, potential high-quality cropland is expected to gradually reduce from the 2050s to the 2070s,
exhibiting the largest reduction in potential high-quality areas for the Representative Concentration
Pathway 8.5 scenario. Therefore, the short- and long-term adaptation strategies are needed for
prioritizing the croplands to ensure food security and agricultural resilience.

Keywords: cropland suitability; random forest model; scenario analysis; climate change adapta-
tion; Kyrgyzstan

1. Introduction

Climate change is one of the greatest challenges in Kyrgyzstan, which is reported to
be the third most vulnerable country in Eastern Europe and Central Asia, mainly owing to
the climate-sensitive agricultural system and lack of adaptive capacity [1]. Kyrgyzstan is
threatened with glacier melting and a lack of freshwater balance, which are accelerated by
global warming. Moreover, the country has been suffering from aridity and drought in
its mountain pastures in recent years, which are triggered by frequent extreme heat and
abnormal rainfall events [2]. According to the simulated climate scenarios in a neighboring
country, maize yield is projected to be decrease in current maize-producing areas under
climate change, but future yield can be increased with the irrigation and planting adaptation
strategies [3].
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To combat climate change, Kyrgyzstan has submitted National Communications to the
United Nations Framework Convention on Climate Change (UNFCCC) in 2017, presenting
therein the importance of agricultural roles in the country and the uncompromising neces-
sity of a proactive approach to agricultural resilience. According to reports, agriculture has
improved the economics of the country by producing 1/5 of its gross domestic product
(GDP). However, unstable crop yields have caused decreases in food provision, causing
it to fluctuate each year. The periods of late spring, early autumn, and high temperature
preclude stable cultivation [4]. It has been reported that the economic damage in terms of
water resource and agriculture, determined by estimating the amount of economic losses
in the absence of appropriate adaptation efforts, has reached approximately 788 million
USD, accounting for 64% of total economic damage to the country. Thus, it is necessary for
Kyrgyzstan to evaluate cultivation suitability and suggest climate adaptation strategies
focusing on land sustainability and ecological impacts in the agricultural sector [5].

Agricultural adaptation is proposed in the national policy document, “Priority Di-
rections for Climate Change Adaptation (PDCCA)”. In this document, the government
approved priority measurements in the agricultural sector, such as the improvement of
agricultural infrastructure for better adaptation to the negative impacts of climate change.
The improvement of agricultural infrastructure implies the rehabilitation of the existing
and construction of new water management facilities and planting of forest plantations to
combat coastal erosion [6]. For example, the recently published draft of the State Irrigation
Development Program (2017–2026) is aimed at solving the problem of the efficient use of
water resources. The program aims to provide new irrigated land for rural residents to
grow agricultural products, improve the socio-economic situation of the regions, and solve
issues of food security. The program will allow for the allocation of about 850 million USD
to introduce 65,500 hectares of irrigated land, increase the water supply on 51,000 hectares,
9500 hectares to be transferred from pumping irrigation to gravity irrigation, and 50,000
hectares to improve ameliorative condition [7].

Although improvements to agricultural infrastructure are considered as the one of
the most common approaches for cropland management, many agricultural households in
Kyrgyzstan do not frequently employ sustainable land management technologies, com-
pared that 60% of the agricultural households in neighboring countries use sustainable
land management technologies such as integrated soil fertility management, drip irrigation,
and the use of portable chutes in sloping areas [8]. There is no doubt that sustainable land
management like the integrated soil fertility management and irrigation techniques should
be applied in Kyrgyzstan.

In terms of land use condition, crops are cultivated mostly in the valley and foothill
regions. Pastures account for more than half the area of the land, followed by the arable
lands and hayfields. This land use modality was formed by a consequence of transition
time from the Soviet Union. The ways of land use have been changed mainly from sheep
production, into crop production during transition time. Kyrgyzstan in crop production
has made an enormous accomplishment, expanding wheat area from 250 to 550 thousand
hectares by 1997 and increased in share of dry beans production in the market [9,10].
Contrarily, the livestock industry has long remained a neglected sector, and faced the
trouble to improve rangeland management, so it is reported that the integrated crop and
livestock production need to be established [11].

Considering that agriculture is a climate-sensitive sector, and varies with adaptive
policies and land use strategies, it is significant to determine priority areas for applying
adaptive policies and effective strategies. To identify the priority areas, we used random
forest model (RF), which is known as an ensemble-learning algorithm for classification and
regression. In addition, it generates many individual decision trees on randomly selected
bootstrap samples with low bias and variance [12,13]. The RF algorithm has been used
extensively, such as in remote sensing, ecology, and climate change studies [14,15]. A
previous study proposed the habitat suitability of Pinus sylvestris using several machine
learning techniques [16]. Moreover, the maximum entropy and RF models have been
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applied in a previous study to predict the spatial distribution of the probability of forest
fires [17].

Hence, this study aims to identify potential high-quality croplands based on the
present high-quality cropland and suggest potential high-quality croplands for the future
by using the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios for the
2050s and 2070s, respectively, and then prioritize target areas for applying short- and long-
term adaptation strategies. The study used the random forest model of machine learning
that enables us to analyze potential high-quality croplands and spatial distributions in the
future by using different time scales [18].

2. Materials and Methods
2.1. Research Area

The research area is Kyrgyzstan, located in Central Asia between latitudes of 39
and 44◦ N and longitudes of 69 and 81◦ E (Figure 1). The country comprises an area
of approximately 200,048 km2. The climate of Kyrgyzstan is regionally heterogeneous.
The landscapes of Kyrgyzstan can be grouped into four climate zones [19]. The valley
sub-mountain zone is characterized by a hot summer, snowless and temperate winters,
and almost zero precipitation. The mountain zone is temperate with warm summers as
well as cold and snowy winters. The high-mountain zone is cooler in the summer and has
relatively cold and snowless winters, with temperatures ranging from below 0 to 16 ◦C.
The nival belt zone has a polar climate and is covered with snowfields and glaciers [20].
According to the Köppen climate classification, cold in winter, dry and hot in summer
(Dsa), and cold arid, steppe, and cold climate (Bsk) are the most prevalent characteristics of
these aforementioned climate zones [21].
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Figure 1. Map of the study area with the locations of Central Asia and Köppen climate classification of Kyrgyzstan.

Geographically, the highest peak is 7439 m in the Kakshaal-Too range, where the
shared border with China is located, consisting of glacial and sub-glacial areas. On the
contrary, the lowest point is 132 m above sea level, which is located along the Kara Darya
River in the Fergana Valley [22]. There is a high percentage of grassland, accounting
for approximately 56% (112,013 km2) of the total land area, and bareland, which covers
13.1% (26,268 km2); moreover, the croplands, snowy terrain, and forests comprise 8.1%
(16,188 km2), 9.9% (191,843 km2), and 4.6% (9272 km2), respectively, and the other lands
account for 8.3% (16,482 km2) of the total land area, as estimated by the 2010 Global Land
Cover data at a 30-m resolution. For this study, Kyrgyzstan was divided into a grid with a
spatial resolution of 1 km2.
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2.2. Data
2.2.1. Time-Series NDVI Data

The satellite-derived vegetation indices have been widely used for crop monitoring
and yield estimate in previous research [23,24]. To be specific, the normalized difference
vegetation index (NDVI) has been proven to be strong correlations with wheat, paddy
rice, and corn [25]. The main crops in Kyrgyzstan are spring wheat, winter wheat, and
maize. According to the crop calendar, each crop actively sows, grows, and is harvested
throughout the year. For winter wheat, it is sown from the end of August to the beginning
of October and grew from October through May. Winter wheat harvested from June to the
beginning of August [26].

Thus, the NDVI time series data from the National Oceanic and Atmospheric Asso-
ciation satellite data has been used in this study for detecting high-quality cropland [27].
Satellite time series of the MODIS NDVI 16-day global 250-m data covering the period from
2014 to 2018 were requested from the University of Natural Resources and Applied Life
Sciences (BOKU) (http://ivfl-info.boku.ac.at (accessed on 7 August 2020)). The monthly
NDVI products from 2014 to 2018 were rebuilt based on the maximum value using a cell
statistic tool in ArcGIS, since MODIS vegetation indices produced on 16-day intervals,
having at least 2 tiles of NDVI image in the month [28,29]. Annual maximum NDVIs (2014
to 2018) were masked by the extent of the Kyrgyzstan boundary, respectively. In this study,
we created maximum cropland’s NDVI via annual maximum NDVIs (2014–2018) to use as
a proxy of agricultural productivity.

2.2.2. Climate Data

We listed climate and environmental variables to understand the impact of climate
change on cropland suitability that have high possibilities of determining cropland [30].
The climate variables were set up 19 climate data and 5 indexes that have been proven to
have an influence on agriculture (Table 1). These 19 climatic data were obtained from the
climatologies at a high resolution for the earth’s land surface areas (CHELSA) dataset at a
30-arcsec resolution to ensure the accuracy of climatological data, and these were generated
based mainly on the monthly average temperature and precipitation, as gathered from
meteorological stations for the 34-year period from 1979 to 2013, and interpolated in relation
to the global surface [31]. In addition to climate variables, we generated 5 additional indexes
with regard to the extent of data availability based on the above climate data, as used
widely in previous studies. To project future cropland suitability, considering the climate in
the future, we compared two cases based on the two different climate scenarios, RCP4.5 and
RCP8.5. The future climate data was obtained from the CHELSA dataset, which employed
the HadGEM2-AO model under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios. The
simulation periods were 2041 to 2060 (2050s) and 2061 to 2080 (2070s), respectively.

Table 1. List of all climate and environmental variables.

Climate Variables Enviornmental Variables

Bio1, Annual Mean Temperature (◦C) Bio13, Precipitation of Wettest Month (mm) Slope

Bio2, Mean Diurnal Range (◦C) Bio14, Precipitation of Driest Month (mm) Topographic Wetness Index (TWI)

Bio3, Isothermality (◦C) Bio15, Precipitation Seasonality (mm) Ecological Land Units (ELU)

Bio4, Temperature Seasonality (◦C) Bio16, Precipitation of Wettest Quarter (mm)

Bio5, Max Temperature of Warmest Month (◦C) Bio17, Precipitation of Driest Quarter (mm)

Bio6, Min Temperature of Coldest Month (◦C) Bio18, Precipitation of Warmest Quarter (mm)

Bio7, Temperature Annual Range (◦C) Bio19, Precipitation of Coldest Quarter (mm)

Bio8, Mean Temperature of Wettest Quarter (◦C) PEI, Precipitation Effectiveness Index

http://ivfl-info.boku.ac.at
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Table 1. Cont.

Climate Variables Enviornmental Variables

Bio9, Mean Temperature of Driest Quarter (◦C) Warmth Index (WI)

Bio10, Mean Temperature of Warmest Quarter (◦C) Aridity Index (AI)

Bio11, Mean Temperature of Coldest Quarter (◦C) Climate Moisture Index (CMI)

Bio12, Annual Precipitation (mm) Evapotranspiration Index (PET)

2.2.3. Environmental Data

With regard to the environmental variables, 3 variables were used in this study: Slope,
Topographic Wetness Index (TWI), and Ecological Land Units (ELUs). Slope and TWI were
drawn from the Digital Elevation Model (DEM) accessed from the 30-m SRTM website
(http://dwtkns.com/srtm30m/ (accessed on 9 June 2020)), which qualified topographic
control on hydrological processes [32]. The ELUs were obtained from global ecosystem data
in the United States Geological Survey (https://www.usgs.gov (accessed on 30 June 2020))
developed by Sayrem R in 2014; it presents distinct bioclimates, landforms, lithologies, and
land covers, and it has been widely used in several studies for the purposes of classifying
ecosystem regions [33,34], determining vegetation patterns [35,36], and establishing a
national ecological framework [37]. As edaphic factors, slope, and TWI have been used
in previous studies for predicting soil types [38,39]. Furthermore, ELUs were used to
restrictively reflect the soil moisture data for the model due to the lack of high-resolution
soil moisture data in the target country. In terms of predictions for the future, this study
assumed that the environmental variables would default when current climate is replaced
by climate scenarios.

2.3. Method
2.3.1. Classification of High-Quality Croplands

In this study, we classified high-quality croplands to be used as the labeled data for the
random forest model. High-quality croplands refer to areas where agricultural productivity
is relatively higher than other areas [40,41]. To identify the high-quality croplands from
annual maximum NDVIs (2014–2018), we performed the following cell analysis. First the
2010 Global Land Cover data was used to define the extent of land use category in the
Kyrgyzstan, which was accessed from their website (http://www.globallandcover.com
(accessed on 16 September 2019)). Land cover maps were resampled from a 30-m to 250-m
resolution to match with the spatial resolution of NDVI. Second, the extent of cropland were
masked from the annual maximum NDVIs, respectively. Thereafter, annual cropland’s
NDVI was generated from 2014 to 2018. Third, we established the maximum cropland’s
NDVI by analyzing the annual cropland’s NDVI based on the maximum value throughout
cell statistics analysis. However, the overlapping of the forest edge near the cropland was
unavoidable due to the resolution gaps between annual maximum NDVIs (250 m) and
land cover map (30 m). To avoid overestimation, the forest edges were removed from
the maximum cropland’s NDVI [42]. As for other land classes like grassland, shrubland,
wetland, water, Tundra, urban, bareland, and snow, the NDVI value of these classes are
lower than cropland. The impacts of these classes were removed while analyzing cell
statistic based on the maximum value. Finally, the maximum cropland’s NDVI were
created without the impact of the forest, which becomes a universal set (U) for classifying
high-quality croplands. To classify high-quality croplands (H) as a labeled data, we set the
threshold throughout the universal set (U).

H = {x ∈ U| x is in top 5th percent} (1)

where U is a universal set of the maximum cropland’s NDVI. The number of elements
is 65,196. The maximum cropland’s NDVI was recorded as 0.905, while the minimum
value of was 0.111, and the mean value is approximately 0.661. According to Equation

http://dwtkns.com/srtm30m/
https://www.usgs.gov
http://www.globallandcover.com


Agronomy 2021, 11, 1490 6 of 17

(1), high-quality croplands (H) are the top 5 percent of value of the maximum cropland’s
NDVI (U). Considering the maximum value and minimum value, the upper 5 percent of
the maximum cropland’s NDVI (U) was 0.802. The threshold was set based on two criteria:
To detect the cropland with high agricultural productivity and to ensure sufficient cell
numbers from universal set (U) for modeling the training data. Thus, the high-quality
croplands (H) considered as equal and higher than 0.802. After selecting the values of high-
quality croplands, the raster data transformed as point shapefile to indicate the location of
high-quality cropland with the coordinate of WGS 1984.

2.3.2. Classification of Potential High-Quality Croplands

The potential high-quality croplands refer to the land that has not been converted but
it is suitable to be used as high-quality cropland. In this study, we predict the potential
high-quality cropland based on high-quality croplands using the random forest model.

C =
{

xi
∣∣0 ≤ xi ≤ 1, xi ≤ xj, i < j, i = 1 . . . .n

}
. (2)

In Equation (2), the results of the random forest model could present cropland suit-
ability (C) that range from 0 to 1, where 1 pertains to a high probability of being a potential
high-quality cropland, whereas 0 pertains to not being unsuitable for a cropland. Cropland
suitability is arranged by ascending order. Since it is important to classify where the
potential high-quality croplands will be considered, this study set the thresholds on the
consideration of potential high-quality croplands (P) like Equation (3):

P = {x ∈ C|x is top 10th percent}. (3)

According to Equation (3), the element of potential high-quality croplands is in crop
suitability (C). The thresholds were set as the top 10% in the result of crop suitability.
Considering the normal distribution, the threshold for the potential high-quality croplands
set as 0.94 conservatively. The values exceeding 0.94 are regarded as potential high-quality
croplands, whereas values below 0.94 are considered to be unsuitable for potential high-
quality croplands.

2.3.3. Selecting Climatic and Environmental Variables

With regard to the independent variables, in this study, up to 24 climate variables and
3 environmental variables were listed as shown in Table 1. All climate and environmental
variables feature a spatial resolution of approximately 1 km2 (0.00833◦). We reviewed
previous studies to determine the best-fitting variables in terms of explaining plant growth
and croplands, with low statistical inferences and high model reliabilities. The correlation
analyses were conducted using the statistical program R studio version (3.6.1). In this
study, we excluded climate variables when the correlation coefficient was less than ±0.2
between a dependent variable and 24 independent variables firstly. Secondly, the selected
climate variables conducted inter-correlations analysis to examine multicollinearity be-
tween climate variables. We selected one variable throughout the literature review if the
correlation coefficient is higher than ±0.8. Third, the final selected climate variables were
tested throughout the p-value to determine statistical significance (p < 0.005). The Variance
Inflation Factor (VIF) was also utilized for the purpose of validating multicollinearity issues,
indicating the multicollinearity problem when VIF is above 5 or 10 [43]. We ensure each
variable play an independent role throughout the p-value and VIF test.

In terms of the environmental variable, the slope was extracted from the DEM, while
the TWI was created from the DEM by considering flow direction and accumulation. ELUs
were extracted based on the Kyrgyzstan administrative boundary, using the ArcGIS version
(10.6). The data specification of the environmental variables was adjusted to the climate
variables, such as resolution (approximately 1 km2), data extension (raster image), and
boundaries of the country. Finally, the climatic and environmental data were established in
the form of an image file.
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2.3.4. Random Forest Model for Assessing Potential High-Quality Croplands

The R packages (R core team, Vienna, Austria, http://www.R-project.org, accessed
on 21 July 2021) of “randomForest” were used in this study to identify the potential
high-quality croplands in Kyrgyzstan [44]. The point shapefiles of high-quality cropland
indicate the labeled data for the random forest model, presenting the location of high-
quality cropland with the coordinate of WGS 1984. The model creates decision trees
on the randomly-selected 1500 bootstrap samples from the labeled data of high-quality
croplands to be predicted by each tree, and selects variables from a list shown in Table 1 [45].
These were combined with the 5 climate and 3 environmental dataset, as needed for the
analysis [46]. The absence points were randomly distributed individual points across the
target country in this study. The combined points were routinely partitioned into two
subsets: Training and validation.

Considering the information from the literature regarding these subsets, we found
that 70% of the whole data is common enough for model training, and the rest is often
separated to investigate the accuracy of the models’ predictions [47]. Meanwhile, the model
performance is evaluated by using 30% of testing dataset that was not used for model
training. The predictive performance of the models was evaluated by applying a threshold-
independent method, the receiver operating characteristic (ROC) curve [48]. The area
under the ROC curve (AUC) has been considered to be a quantitative performance metric
that explains the accuracy of a model. The model would be considered to exhibit high
performance when AUC is closer to 1, but it would be indicated to be a weak performance
when the AUC was below 0.5 [49,50]. In terms of analyzing the future potential cropland,
we replaced the current climate dataset into future climate datasets, which were generated
using the RCP 4.5 and RCP 8.5 scenarios for the 2050s and 2070s, respectively. We assumed
that the environmental variables remain unchanged and that identical conditions were be
maintained, as climate change was not an influence on these data.

3. Results and Discussions
3.1. Climate and Environmental Variables for Cropland Suitability Analyses

Among 24 climate variables, 12 uncorrelated variables were excluded resulting from
the Pearson correlation coefficient: r ≤ 0.2 or r ≤ −0.2. The remaining climate variables
were the annual mean temperature (Bio1), isothermality (Bio3), min temperature of coldest
month (Bio6), mean temperature of coldest quarter (Bio11), annual precipitation (Bio12),
precipitation of wettest month (Bio13), precipitation seasonality (Bio15), precipitation of
wettest quarter (Bio16), precipitation of driest quarter (Bio17), precipitation effectiveness
index (PEI), aridity index (AI), and climate moisture index (CMI). Later, the best-fitting
climate variables were sorted out throughout literature reviews and multicollinearity,
wherein the result of Pearson coefficients were greater than 0.8 between the variables
(Pearson correlation coefficient; r ≥ 0.8 or r ≤ −0.8). As a result, the study categorized
5 climate variables and 3 environmental variables. The selected climate variables are
the annual mean temperature (Bio1), isothermality (Bio3), annual precipitation (Bio12),
precipitation of the wettest quarter (Bio16), and AI, while the environmental variables
included slope, TWI, and ELU. As for environmental variables, we excluded it in the
correlation analysis in order to reduce statistical error. The p-value and VIF were employed
to detect whether the selected variables exhibit multicollinearity with each other. As a
result, the selected variables were determined to be statistically significant (p < 0.05), and
multicollinearity was not observed, given that the value of VIF was less than 10. The
best-fitting variables for the running model are delineated, as shown in Table 2.

http://www.R-project.org
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Table 2. Climate and environmental variables.

Type Acronym Full Name y ≥ ±0.2 r ≥ ±0.8 Literature
Review Pr(>|t|) VIF

Climate Bio1 Annual mean
temperature 0.22 r ≥ 0.88 with Bio6 [26,51] <2e−16 2.032

Bio3 Isothermality 0.2 r ≥ 0.86 with Bio6 [52] <2e−16 2.158

Climate Bio12 Annual
precipitation 0.32 r ≥ 0.8 with Bio11,

15,PEI, CMI [53] <2e−16 1.990

Bio16
Precipitation of

Wettest
Quarter

0.37 r ≥ 0.98 with Bio13 [54] < 5.35e−11 2.881

AI Aridity Index −0.28 r ≥ −0.92 with
Bio17 [55,56] <2e−16 1.393

Environ-
ment Slope Slope - - [57] <2e−16 1.422

TWI Topographical
Wetness Index - - [32,57] <2e−16 1.292

ELU Ecological
Land Unit - - [58] < 1.85e−0.5 1.114

3.2. High-Quality Croplands in Kyrgyzstan

The results of high-quality croplands were clustered around the Chu-Talas valley,
Issyk-kul area, and Fergana valley, considering the upper 5 percent of NDVI (Figure 2a).
The high-quality croplands will serve as the labeled data to predict crop suitability. Cli-
matically, the annual mean temperature of suitable cropland in the Chu-Talas valley and
Fergana valley are 8 to 16 degree Celsius, while annual average precipitation of three re-
gions is approximately 410 mm to 730 mm. Environmentally, these areas are prone to water
accumulation and low slopes that are not over 30◦. In addition, areas ecologically located
at the cool semi-dry regions that are relatively not too cold or too hot. The high-quality
croplands distinctively close to urban areas: Bishkek in the Chu-Talas valley, Osh city in
the Fergana valley, and Karakol in the Issyk-kul region.
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3.3. Potential High-Quality Croplands under the Baseline Climate

The results indicate that the potential high-quality croplands are clustered around
the Chu-Talas valley, Issyk-kul area, and Fergana valley, where surrounding areas of
existing croplands are located (Figure 2b). The potential high-quality croplands consisted
of croplands (6817 km2, 42.2%), grasslands (7667 km2, 47.4%), forests (943 km2, 5.8%),
shrublands (306 km2, 1.9%), wetlands (78 km2, 0.5%), water (37 km2, 0.2%), urban areas
(31 km2, 0.2%), and barelands (287 km2, 1.8%). There is no available space for the tundra
and snow areas under the current climate conditions (Table 3). The total area of potential
high-quality cropland is 16,166 km2, including the high-potential cropland within the
cropland category (6817 km2). If these potential high-quality croplands were all converted
to the cropland category, the additional area can be extended up to 4.7% (9349 km2) from
the forests, grasslands, shrublands, wetlands, water, urban areas, and barelands (Figure 3).
The cropland can occupy 12.8% (25,537 km2) of the area of Kyrgyzstan under the land
cover map. This area is approximately 1.5 times greater than the original cropland category
estimated in 2012.

Table 3. Composition of potential high-quality cropland by land use categories.

Land Category
Land Cover Map (2010) Potential High-Quality Cropland

Area (Km2) Area (Km2) Composition (%)

Cropland (A) 16,188 6817 (A) 42.2

Grassland (B) 112,013 7667 (B) 47.4

Other lands (C) 71,848 1681 (C) 10.4

- Forest 9272 943 5.8

- Shrubland 1032 307 1.9

- Wetland 915 78 0.5

- Water 13,993 37 0.2

- Tundra 51 0 0

- Urban 491 31 0.2

- Bareland 26,268 287 1.8

- Snow 19,825 0 0

Subtotal (B + C) 183,861 9349 57.8

Total (A + B + C) 200,048 16,166 100
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3.4. Validation and Model Performance for Predicting Potential High-Quality Cropland

To examine the accuracy of the model’s prediction by the AUC, the validation subset
from the high-quality cropland dataset, which was 30% of the dataset, was used. This study
exhibited a statistically excellent performance in predicting the most suitable cropland
distribution. A total of 95% of the high-quality cropland from the validation set are detected
throughout ROC curve, indicating an excellent performance in terms of estimating potential
high-quality croplands across the study area. In addition, the results of the RF models
indicate the importance of each input variable in relation to the potential high-quality
cropland. Annual mean temperature (Bio1) and ELU reveal important variables of the
random forest model. A higher score of a variable implies that the variable is more
significant. To verify the model performance and original cropland, thresholds were
applied (Figure 4). According to conservative thresholds (≥0.94), the predicted potential
high-quality cropland was consistent with the cropland designated by the land cover map
of Kyrgyzstan (approximately 43.7%), while the predicted potential high-quality cropland
was consistent with the original cropland (approximately 30.5%) when this study attempts
to set secondary thresholds less conservatively, which refer to the lower 1% of the normal
distribution (≥0.74). We classified as mismatched areas when the original cropland does
even belong to the lower 1% of the predicted cropland. This mismatch (25.8%) could have
been caused by several factors. One possible reason of this mismatch between high-quality
cropland and original is the fact that many rural households had small rain-fed plots on
steep slopes, which were unequally accessible by land after the land reform process during
the collapse of the Soviet Union [59]. This is according to statistical performance and
comparison between the predicted cropland and existing cropland. The RF model are
reasonable for estimating future suitable cropland [60].
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3.5. Random Forest Model for Potential High-Quality Cropland under the RCP4.5 and
RCP8.5 Scenarios

In the RCP4.5 and 8.5 scenarios, potential high-quality croplands tend to expand
inland along the periphery of cropland however, it was difficult to detect high-quality
croplands in the 2070s under both scenarios (Figure 5). The primary difference between
these two scenarios is the possibility of agricultural activities until 2070s. Generally, the
areas show the downward trend. In this study, we identified the area and change in land
use proportion of high-quality cropland between the baseline climate and RCP scenarios
(Table 4). We categorized three parts as ‘cropland remaining potential high-quality cropland
(CC)’, ‘potential high-quality cropland within grassland category (GC)’, and ‘potential
high-quality cropland within other lands category (OC)’. Other lands, here, included forest,
shrubland, wetland, water, tundra, urban, bareland, and snow which are all land use
proportion except for cropland and grassland. The areas of potential high-quality cropland
headed for a sharp decline from 3731.7 km2 in the 2050s to 1793.7 km2 in the 2070s under
RCP4.5 scenarios, and the areas of it continually show reduction trends until the 2070s
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(914.5 km2) of the RCP8.5 scenarios by climate change (Table 4). The changes in land use
proportion of potential high-quality cropland for future climate change in the 2050s and
2070s across RCP4.5 and RCP8.5 scenarios can be compared with the land use proportion of
it for the baseline climate in Table 4. For the RCP4.5 scenario, compared to the proportion
of potential high-quality cropland under the baseline climate, the change in CC proportion
fall −12.1% and −15.9% in the 2050s and 2070s under the RCP4.5 scenarios, while the
change in GC proportion is as opposed to the one within CC, showing an increasing trend
throughout the RCP4.5 scenario. Furthermore, the proportion of OC has an increase by 1.5%
in the 2050s and has a slight decrease by −0.3% in the 2070s. For the RCP8.5 scenario, the
CC proportion has a slight increase of 4.0% during the 2050s, but it plunges in the 2070s by
−30.4%, while the GC proportion dramatic increases in the 2070s by 30.7%. The proportion
of OC drops by half in the 2050s (−5.2%) and continues to decline by −3.0% until 2070.
In 2070, of the RCP8.5 scenario, potential high-quality cropland is the largest proportion
from the grassland category. Most potential high-quality croplands will be located at the
grassland category, which can possibly be changed into croplands in the 2070s.
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Table 4. Land use shares of potential high-quality (H-Q) cropland by different scenarios.

Scenario Baseline Under the RCP4.5 Scenario

Period P.H-QCropland (A) 2050 (B1) 2070 (B2)

A. Area Prop B1 Area Prop 1 ∆B1 B2 Area Prop ∆B2

Unit Km2 % Km2 % Km2 %

CC 6817.5 42.2 1119.2 30.1 −12.1 471.20 26.3 −15.9

GC 7667.5 47.4 2153.1 58.0 10.6 1142.1 63.7 16.3

OC 1681.0 10.4 441.3 11.9 1.5 180.4 10.1 −0.3

Total 16,165.9 100 3713.7 100 1793.7 100 -

Scenario Baseline Under the RCP8.5 Scenario

Period P.H-QCropland (A) 2050 (B3) 2070 (B4)

A. Area Prop B3 Area Prop ∆B3 B4 Area B4 ∆B4

Unit Km2 % Km2 % Km2 %

CC 6817.5 42.2 828.5 46.2 4.0 107.6 11.8 −30.4

GC 7667.5 47.4 871.5 48.6 1.2 714.7 78.1 30.7

OC 1681.0 10.4 93.7 5.2 −5.2 92.3 10.1 −0.3

16,165.9 100 1793.7 100 - 914.5 100 -

P.H-Q cropland—potential high-quality cropland; prop. (%)—proportion; CC—cropland remaining potential high-quality cropland;
GC—potential high-quality cropland within grassland category; OC—potential high-quality cropland within other lands category (OC),
where other lands is sum of all land use proportion except cropland and grassland’s one. 1 ∆Bi = Bi −A (〉 = 1, 2, 3, 4).
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3.6. Agricultural Adaptation Strategy for Land-Use Purpose

Kyrgyzstan has been warned regarding the impact of climate change on food inse-
curity and other environmental issues [61,62]. According to the household food security
assessment conducted by the World Food Programme in March 2013, it is estimated that
24% of households suffer from food insecurity. Thus, the government of Kyrgyzstan has
adopted national policy and listed ways of improving agricultural infrastructure for land
resource management and agricultural adaptation, including integrated soil fertility man-
agement, irrigation techniques like drip irrigation, and the use of portable chutes in sloping
areas [8]. In terms of agricultural adaptation strategy on enhancing food security, it is im-
portant to determine priority areas (Figure 6). The irrigation system can be firstly repaired
in low-quality croplands. Although almost 93% of freshwater has been used for agricul-
tural purposes throughout the irrigation channels, more than half of cropland (56.3%)
are low-quality croplands. This is attributed to the mismanagement or misallocation of
croplands with climatic factors [63]. In addition, in determining additional croplands,
there are other options for the adaptation strategy by considering the type of land use.
Grassland to cropland can be one approach since Kyrgyzstan has experienced considerable
reductions in cropped areas and corresponding increases in grasslands, which result from
the discontinuation of rain-fed crop production by land reform after the dissolution of
the Soviet Union [8]. Another approach is to extend croplands by reverting the barelands
to cropland. It is necessary to assign the land use purpose and manage the barelands
accordingly, because these can undergo further degradation when abandoned [64].
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3.7. Agricultural Adaptation Strategy against Climate Change

The threats of climate change far outweigh the opportunities in agriculture, consid-
ering the short- and long-term impacts [65]. Cooler regions appear to benefit, i.e., an
increase in the temperature of arable areas [66], whereas the receding glaciers pose threats
for irrigation-dependent agriculture in both short- and long-term considerations [55]. In
Kyrgyzstan, such as those in cooler regions, climate change may temporarily pose op-
portunities due to the suitable temperatures. However, croplands are expected to be
irreclaimably decreased in the far future. The size of the cropland dramatically decreases
in the 2070s under the RCP8.5 scenario, and the increased temperatures pose a deadly
threat to general crop growth during flowering [57]. The relationship between temperature
change and crop yield can be observed in other Asian countries, where it is argued that an
increase of 1 ◦C during wheat growing season reduces the wheat yields by approximately
3–10% [67]. This scientific evidence reinforces the future scenarios. Thus, it is inevitable to
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establish the agricultural adaptation strategy against climate change based on the climatic
and environmental conditions.

In this sense, it is necessary to identify the target croplands for the appropriate imple-
mentation of agricultural resilience policies. In terms of efficiency and sustainability, an
agricultural adaptation strategy should be adopted in certain regions that possess climatic–
environmental potential high-quality croplands and in areas with cropland that remain
as potentially high-quality croplands even under the RCP4.5 and 8.5 scenarios. There are
few regions that satisfy these abovementioned conditions. These priority regions pave the
pathway for the future as potential areas where policies for agricultural resilience can be
enabled and established according to different periods and scenarios. The best-fit regions,
where high-quality croplands remain as potential high-quality croplands until the 2050s
and 2070s, are shown in Figure 7.
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3.8. Implications of Proactive Policies on Food Security and Agricultural Resilience

The proactive policies on food security and agricultural resilience have implications
on achieving global goals. Kyrgyzstan has achieved Goal 1 of the Millennium Development
Goals (MDGs), which is to halve the extreme poverty level and to halve the proportion
of people who suffer from malnourishment [68]. Although the country has reached and
exceeded its target extreme poverty level, the level of poverty remains significant, even
though the poverty line used in Kyrgyzstan is considerably low. Kyrgyzstan has made
the transition from the MDGs to the SDGs. However, the country still faces significant
challenges in its pursuit of zero hunger [69]. Although the zero hunger indicator in Goal
2 has steadily declined since 2000, 6.5% of the population has still been suffering from
hunger in 2016, and 12.9% of children under 5 years of age had stunted growth in 2014
(SDG country profile assessed on 14 May 2020). According to the government resolution,
48% of the population living in Jalal-Abad oblast were struggling with securing sufficient
food, followed by people living in Osh Oblast (38%) and Batken Oblast (38%) [6]. Therefore,
the proactive approach on food security and agricultural resilience needs to be coherent
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with policies in relation to global goals by reinforcing equality vis-à-vis climate changes.
Moreover, the short- and long-term policies should highlight the implementation of SDGs
by considering vulnerable groups, given that the goal of zero hunger is clearly aimed at
the poor as well as the people subjected to vulnerable situations [70].

4. Conclusions

Kyrgyzstan is a vulnerable country to climate change impacts, especially in the agri-
cultural sector. This study aims to determine the potential high-quality cropland and future
potential high-quality cropland using the random forest model, to establish agricultural
adaptation policies. In terms of training data, maximum cropland’s NDVI were used for
representing high-quality croplands, while five climate variables and three environmental
variables throughout the correlation coefficient and multicollinearity were selected during
the regression analyses. In analyzing the potential high-quality cropland, present climate
data were analyzed; in terms of future high-quality cropland, different future climate
data were utilized: Near future (2050s) and far future (2070s) in the RCP4.5 and RCP8.5
scenarios, respectively. This was done under the assumption that there will be no changes
in environmental variables. The study determined that potential high-quality croplands
(9349 km2) from the forests, grasslands, shrublands, wetlands, water, urban areas, and
barelands. There potential croplands are clustered around three main regions: The Chu-
Talas valley, Fergana valley, and Issyk-kul area. The cropland category can be extended by
1.5 times compared to 2012, if all potential high-quality croplands converted to the cropland
category. However, these potential high-quality croplands are expected to expand toward
the inland in the future, by potentially changing land use from grasslands to croplands. The
proportion of potential high-quality cropland was determined to gradually decrease due
to climate change. However, the portion of high-quality croplands is expected to increase
in grasslands, indicating that original croplands may not need as much agricultural activ-
ities compared to the past. Agricultural adaptation strategies are necessary, considering
potential high-quality croplands. Agricultural infrastructure should be improved with
targeting low-quality croplands and high-quality areas within grasslands. Taking action
against climate change, agricultural resilience can be applied across the target areas where
potential high-quality croplands as well as future high-quality cropland are both satisfied.
These proactive agricultural policies on food security and overall resilience must be geared
toward achieving zero hunger among vulnerable groups.

Author Contributions: Writing, S.P.; methodology, C.-H.L. and S.J.K.; validation, S.-E.C. and E.I.;
formal analysis, S.-D.L.; supervision, W.-K.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Korea Agency for Infrastructure Technology Advancement
(KAIA), grant funded by the Ministry of Land, Infrastructure, and Transport, grant number 20UMRG-
B158194-01.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. ReferencesUnited Nations Development Programme (UNDP). Climate Change Adaptation in Europe and Central Asia; Istanbul

Regional Hub, Regional Bureau for Europe and the CIS: Istanbul, Turkey, 2018.
2. Edenhofer, O. Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2015; Volume 3.
3. Saddique, Q.; Cai, H.; Xu, J.; Ajaz, A.; He, J.; Yu, Q.; Wang, Y.; Chen, H.; Khan, M.L.; Liu, D.L.; et al. Analyzing adaptation

strategies for maize production under future climate change in Guanzhong Plain, China. Mitig. Adapt. Strat. Glob. Chang. 2020,
25, 1523–1543. [CrossRef]

http://doi.org/10.1007/s11027-020-09935-0


Agronomy 2021, 11, 1490 15 of 17

4. United Nations Framework Convention on Climate Change (UNFCCC). Third National Communication of the Kyrgyz Republic
Under the UN Framework Convention on Climate Change 2016, Retrieved from Bishikek; UNFCCC: Bonn, Germany, 2016.

5. Liu, W.; Liu, L.; Gao, J. Adapting to climate change: Gaps and strategies for Central Asia. Mitig. Adapt. Strat. Glob. Chang. 2020,
25, 1439–1459. [CrossRef]

6. Priority Directions for Adaptation to Climate Change (PDACC). Priority Directions for Adaptation to Climate Change in the Kyrgyz
Republic K; PDACC: Palm Desert, CA, USA, 2013.

7. Climate Investment Program (CIP). Operational Management and Access Framework towards Climate Finance in the Kyrgyz Republic K;
Ministry of Justice of the Kyrgyz Republic: Bishkek, Kyrgyzstan, 2017. (In Kirghiz)

8. Goldewijk, K.K. Estimating global land use change over the past 300 years: The HYDE Database. Glob. Biogeochem. Cycles 2001,
15, 417–433. [CrossRef]

9. Mueller, L.; Suleimenov, M.; Karimov, A.; Qadir, M.; Saparov, A.; Balgabayev, N.; Helming, K.; Lischeid, G. Land and Water
Resources of Central Asia, Their Utilisation and Ecological Status. In Novel Measurement and Assessment Tools for Monitoring and
Management of Land and Water Resources in Agricultural Landscapes of Central Asia; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 3–59.

10. Hamidov, A.; Helming, K.; Balla, D. Impact of agricultural land use in Central Asia: A review. Agron. Sustain. Dev. 2016, 36, 1–23.
[CrossRef]

11. Suleimenov, M. Trends in the Agriculture of Central Asia and Implications for Rangelands and Croplands. In Novel Measurement
and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 91–105.

12. Perveen, F.; Nagasawa, R.; Uddin, M.I.; Delowar, H.K. Crop land suitability analysis using a multicriteria evaluation and GIS
approach. In Proceedings of the 5th International Symposium on Digital Earth (ISDE5), Berkeley, CA, USA, 5–9 June 2007.

13. Wang, X.; Lu, C.; Fang, J.; Shen, Y. Implications for development of grain-for-green policy based on cropland suitability evaluation
in desertification-affected north China. Land Use Policy 2007, 24, 417–424. [CrossRef]

14. Lawrence, R.L.; Wood, S.D.; Sheley, R.L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications
(RandomForest). Remote Sens. Environ. 2006, 100, 356–362. [CrossRef]

15. Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in
ecology. Ecology 2007, 88, 2783–2792. [CrossRef] [PubMed]

16. Garzon, M.B.; Blazek, R.; Neteler, M.; De Dios, R.S.; Ollero, H.S.; Furlanello, C. Predicting habitat suitability with machine
learning models: The potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecol. Model. 2006, 197, 383–393. [CrossRef]

17. Kim, S.J.; Lim, C.-H.; Kim, G.S.; Lee, J.; Geiger, T.; Rahmati, O.; Son, Y.; Lee, W.-K. Multi-Temporal Analysis of Forest Fire
Probability Using Socio-Economic and Environmental Variables. Remote Sens. 2019, 11, 86. [CrossRef]

18. Maione, C.; Barbosa, R.M. Recent applications of multivariate data analysis methods in the authentication of rice and the most
analyzed parameters: A review. Crit. Rev. Food Sci. Nutr. 2018, 59, 1868–1879. [CrossRef] [PubMed]

19. Orozumbekov, A.; Musuraliev, T.; Toktoraliev, B.; Kysanov, A.; Shamshiev, B.; Sultangaziev, O. Forest Rehabilitation in Kyrgyzstan.
Keep Asia Green 2009, IV, 131–138.

20. Debata, M.R. Kyrgyzstan: A Profile. Himal. Cent. Asian Stud. 2006, 10, 140.
21. Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate

classification maps at 1-km resolution. Sci. Data 2018, 5, 1–12. [CrossRef] [PubMed]
22. Akimaliev, D.A.; Zaurov, D.E.; Eisenman, S.W. The Geography, Climate and Vegetation of Kyrgyzstan. In Medicinal Plants of

Central Asia: Uzbekistan and Kyrgyzstan; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–3.
23. Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth

and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [CrossRef]
24. Liu, J.; Shang, J.; Qian, B.; Huffman, T.; Zhang, Y.; Dong, T.; Jing, Q.; Martin, T. Crop Yield Estimation Using Time-Series MODIS

Data and the Effects of Cropland Masks in Ontario, Canada. Remote Sens. 2019, 11, 2419. [CrossRef]
25. Huang, J.; Wang, H.; Dai, Q.; Han, D. Analysis of NDVI data for crop identification and yield estimation. IEEE J. Sel. Top. Appl.

Earth Obs. Remote Sens. 2014, 7, 4374–4384. [CrossRef]
26. Food and Agriculture Organization (FAO). Global Information and Early Warning System on Food and Agriculture. GIEWS

Country Brief-Kyrgyzstan 2019. Available online: http://www.fao.org/giews/countrybrief/country.jsp?code=KGZ (accessed on
30 June 2020).

27. Benedetti, R.; Rossini, P. On the use of NDVI profiles as a tool for agricultural statistics: The case study of wheat yield estimate
and forecast in Emilia Romagna. Remote. Sens. Environ. 1993, 45, 311–326. [CrossRef]

28. Hong, S.Y.; Na, S.I.; Lee, K.D.; Kim, Y.S.; Baek, S.C. A Study on Estimating Rice Yield in DPRK Using MODIS NDVI and Rainfall
Data. Korean J. Remote. Sens. 2015, 31, 441–448. [CrossRef]

29. Lim, C.-H.; Ryu, J.; Choi, Y.; Jeon, S.W.; Lee, W.-K. Understanding global PM2. 5 concentrations and their drivers in recent
decades (1998–2016). Environ. Int. 2020, 144, 106011. [CrossRef] [PubMed]

30. Velazco, S.J.E.; Galvao, F.; Villalobos, F.; De Marco Junior, P. Using worldwide edaphic data to model plant species niches: An
assessment at a continental extent. PLoS ONE 2017, 12, e0186025. [CrossRef] [PubMed]

31. Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Peter Linder, H.P.; Kessler, M.
Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 1–20. [CrossRef] [PubMed]

http://doi.org/10.1007/s11027-020-09929-y
http://doi.org/10.1029/1999GB001232
http://doi.org/10.1007/s13593-015-0337-7
http://doi.org/10.1016/j.landusepol.2006.05.005
http://doi.org/10.1016/j.rse.2005.10.014
http://doi.org/10.1890/07-0539.1
http://www.ncbi.nlm.nih.gov/pubmed/18051647
http://doi.org/10.1016/j.ecolmodel.2006.03.015
http://doi.org/10.3390/rs11010086
http://doi.org/10.1080/10408398.2018.1431763
http://www.ncbi.nlm.nih.gov/pubmed/29363991
http://doi.org/10.1038/sdata.2018.214
http://www.ncbi.nlm.nih.gov/pubmed/30375988
http://doi.org/10.1016/j.jhydrol.2020.124905
http://doi.org/10.3390/rs11202419
http://doi.org/10.1109/JSTARS.2014.2334332
http://www.fao.org/giews/countrybrief/country.jsp?code=KGZ
http://doi.org/10.1016/0034-4257(93)90113-C
http://doi.org/10.7780/kjrs.2015.31.5.8
http://doi.org/10.1016/j.envint.2020.106011
http://www.ncbi.nlm.nih.gov/pubmed/32795749
http://doi.org/10.1371/journal.pone.0186025
http://www.ncbi.nlm.nih.gov/pubmed/29049298
http://doi.org/10.1038/sdata.2017.122
http://www.ncbi.nlm.nih.gov/pubmed/28872642


Agronomy 2021, 11, 1490 16 of 17

32. Sörensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on
field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [CrossRef]

33. Bailey, R.G. Delineation of ecosystem regions. Environ. Manag. 1983, 7, 365–373. [CrossRef]
34. Pojar, J.; Klinka, K.; Meidinger, D. Biogeoclimatic ecosystem classification in British Columbia. For. Ecol. Manag. 1987, 22, 119–154.

[CrossRef]
35. Adomou, A. Vegetation Patterns and Environmental Gradients in Benin. Ph.D. Thesis, Wageningen University, Wageningen, The

Netherlands, 2005.
36. Davis, W.F.; Goetz, S. Modeling vegetation pattern using digital terrain data. Landsc. Ecol. 1990, 4, 69–80. [CrossRef]
37. Ecological Stratification Working Group. A National Ecological Framework for Canada; Centre for Land and Biological Resources

Research, Research Branch, Agriculture and Agri-Food Canada, and State of the Environment Directorate; Environment Con-
servation Service, Environment Canada: Ottawa, ON, Canada, 1996; Available online: http://sis.%20agr.%20gc.%20ca/cansis/
publications/ecostrat/intro.%20html#%20report and http://ecozones.%20ca/english; (accessed on 30 June 2020).

38. Moon, K.-H.; Seo, H.H.; Sonn, Y.K.; Song, K.C.; Hyun, H.N. Quantitative Approach of Soil Prediction using Environment Factors
in Jeju Island. Korean J. Soil Sci. Fertil. 2012, 45, 360–369. [CrossRef]

39. Petroselli, A.; Vessella, F.; Cavagnuolo, L.; Piovesan, G.; Schirone, B. Ecological behavior of Quercus suber and Quercus ilex
inferred by topographic wetness index (TWI). Trees 2013, 27, 1201–1215. [CrossRef]

40. Hertel, T.W.; Burke, M.B.; Lobell, D.B. The poverty implications of climate-induced crop yield changes by 2030. Glob. Environ.
Chang. 2010, 20, 577–585. [CrossRef]

41. Khoi, D.D.; Murayama, Y. Delineation of suitable cropland areas using a GIS based multi-criteria evaluation approach in the Tam
Dao National Park Region, Vietnam. Sustainability 2010, 2, 2024–2043. [CrossRef]

42. Sung, W.G.; Lee, D.K.; Jin, Y. Analyzing Difference of Urban Forest Edge Vegetation Condition by Land Cover Types Using
Spatio-temporal Data Fusion Method. J. Environ. Impact Assess. 2018, 27, 279–290.

43. Bryant, F.B.; Yarnold, P.R. Principal-components analysis and exploratory and confirmatory factor analysis. In Reading and
Understanding Multivariate Statistics; American Psychological Association: Washington, DC, USA, 1995.

44. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
45. Rahmati, O.; Pourghasemi, H.R.; Melesse, A.M. Application of GIS-based data driven random forest and maximum entropy

models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena 2016, 137, 360–372. [CrossRef]
46. Arpaci, A.; Malowerschnig, B.; Sass, O.; Vacik, H. Using multi variate data mining techniques for estimating fire susceptibility of

Tyrolean forests. Appl. Geogr. 2014, 53, 258–270. [CrossRef]
47. Pourtaghi, Z.S.; Pourghasemi, H.R.; Rossi, M. Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran.

Environ. Earth Sci. 2015, 73, 1515–1533. [CrossRef]
48. Tien Bui, D.; Le, K.T.T.; Nguyen, V.C.; Le, H.D.; Revhaug, I. Tropical forest fire susceptibility mapping at the Cat Ba National Park

Area, Hai Phong City, Vietnam, using GIS-based kernel logistic regression. Remote Sens. 2016, 8, 347. [CrossRef]
49. Renard, Q.; Pélissier, R.; Ramesh, B.R.; Kodandapani, N. Environmental susceptibility model for predicting forest fire occurrence

in the Western Ghats of India. Int. J. Wildland Fire 2012, 21, 368–379. [CrossRef]
50. Frattini, P.; Crosta, G.; Carrara, A. Techniques for evaluating the performance of landslide susceptibility models. Eng. Geol. 2010,

111, 62–72. [CrossRef]
51. Matuzeviciute, G.M.; Abdykanova, A.; Kume, S.; Nishiaki, Y.; Tabaldiev, K. The effect of geographical margins on cereal grain

size variation: Case study for highlands of Kyrgyzstan. J. Archaeol. Sci. Rep. 2018, 20, 400–410. [CrossRef]
52. Bennett, M.K. A World Map of Foodcrop Climates. Food Res. Inst. Stud. 1960, 1, 285–295.
53. Knoben, W.J.; Woods, R.A.; Freer, J.E. Global bimodal precipitation seasonality: A systematic overview. Int. J. Climatol. 2019, 39,

558–567. [CrossRef]
54. Tomaszewska, M.A.; Nguyen, L.H.; Henebry, G.M. Interannual Variation in Land Surface Phenology: Impacts of Snow Cover Seasonality

and Terrain on the Highland Pastures of the Kyrgyz Republic from 2001 to 2017; AGUFM: Washington, DC, USA, 2019; p. GC21E-1289.
55. Pritchard, H.D. Asia’s glaciers are a regionally important buffer against drought. Nature 2017, 545, 169–174. [CrossRef] [PubMed]
56. Niederer, P.; Bilenko, V.; Ershova, N.; Hurni, H.; Yerokhin, S.; Maselli, D. Tracing glacier wastage in the Northern Tien Shan

(Kyrgyzstan/Central Asia) over the last 40 years. Clim. Chang. 2008, 86, 227–234. [CrossRef]
57. Sommer, R.; Glazirina, M.; Yuldashev, T.; Otarov, A.; Ibraeva, M.; Martynova, L.; Bekenovd, M.; Kholove, B.; Ibragimov, N.;

Kobilov, R.; et al. Impact of climate change on wheat productivity in Central Asia. Agric. Ecosyst. Environ. 2013, 178, 78–99.
[CrossRef]

58. Sayre, R.; Dangermond, J.; Frye, C.; Vaughan, R.; Aniello, P.; Breyer, S.; Cribbs, D.; Hopkins, D.; Nauman, R.; Derrenbacher, W.;
et al. A New Map of Global Ecological Land Units—An Ecophysiographic Stratification Approach; Association of American Geographers:
Washington, DC, USA, 2014; p. 46.

59. Dudwick, N.; Gomart, E.; Marc, A. When Things Fall Apart: Qualitative Studies of Poverty in the Former Soviet Union; The Intemational
Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2003.

60. Lim, C.-H.; Yoo, S.; Choi, Y.; Jeon, S.W.; Son, Y.; Lee, W.-K. Assessing climate change impact on forest habitat suitability and
diversity in the Korean Peninsula. Forests 2018, 9, 259. [CrossRef]

61. Favre, R.; Kurbanova, G.; Dhur, A. Special Report FAO/WFP Crop and Food Security Assessment Mission in Kyrgyzstan; Food and
Agriculture Organization and World Food Programme: Rome, Italy, 2010.

http://doi.org/10.5194/hess-10-101-2006
http://doi.org/10.1007/BF01866919
http://doi.org/10.1016/0378-1127(87)90100-9
http://doi.org/10.1007/BF02573952
http://sis.%20agr.%20gc.%20ca/cansis/publications/ecostrat/intro.%20html#%20report
http://sis.%20agr.%20gc.%20ca/cansis/publications/ecostrat/intro.%20html#%20report
http://ecozones.%20ca/english
http://doi.org/10.7745/KJSSF.2012.45.3.360
http://doi.org/10.1007/s00468-013-0869-x
http://doi.org/10.1016/j.gloenvcha.2010.07.001
http://doi.org/10.3390/su2072024
http://doi.org/10.1016/j.catena.2015.10.010
http://doi.org/10.1016/j.apgeog.2014.05.015
http://doi.org/10.1007/s12665-014-3502-4
http://doi.org/10.3390/rs8040347
http://doi.org/10.1071/WF10109
http://doi.org/10.1016/j.enggeo.2009.12.004
http://doi.org/10.1016/j.jasrep.2018.04.037
http://doi.org/10.1002/joc.5786
http://doi.org/10.1038/nature22062
http://www.ncbi.nlm.nih.gov/pubmed/28492255
http://doi.org/10.1007/s10584-007-9288-6
http://doi.org/10.1016/j.agee.2013.06.011
http://doi.org/10.3390/f9050259


Agronomy 2021, 11, 1490 17 of 17

62. Yang, P.; Cui, C.; Li, L.; Chen, W.; Shi, Y.; Mi, Z.; Guan, D. Carbon emissions in countries that failed to ratify the intended
nationally determined contributions: A case study of Kyrgyzstan. J. Environ. Manag. 2020, 255, 109892. [CrossRef] [PubMed]

63. Sehring, J. Irrigation reform in Kyrgyzstan and Tajikistan. Irrig. Drain. Syst. 2007, 21, 277–290. [CrossRef]
64. Wolfgramm, B.; Shigaeva, J.; Nekushoeva, G.; Bonfoh, B.; Breu, T.M.; Liniger, H.; Maselli, D. Kyrgyz and Tajik Land Use in

Transition: Challenges, Responses and Opportunities. 2010. Available online: https://boris.unibe.ch/6000/1/Wolfgramm_
Kyrgyz.pdf (accessed on 21 July 2021).

65. Asseng, S.; Ludwig, F.; Milroy, S.; Travasso, M.I. Climate Change-Threats and Opportunities for Agriculture! In Proceedings of
the 5th International Crop Science Congress, Jeju, Korea, 14–18 April 2008.

66. Barros, V.R.; Field, C.B. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Part B: Regional aspects; Cambridge University
Press: Cambridge, UK, 2014.

67. You, L.; Rosegrant, M.W.; Wood, S.; Sun, D. Impact of growing season temperature on wheat productivity in China. Agric. For.
Meteorol. 2009, 149, 1009–1014. [CrossRef]

68. United Nations Development Programme (UNDP). The Kyrgyz Republic the Second Progress Report on the Millennium Development
Goals 2010; UNDP: Kyrgyzstan, Bishkek, 2010.

69. Sachs, J.; Schmidt-Traub, G.; Kroll, C.; Lafortune, G.; Fuller, G. Sustainable Development Report 2019; Bertelsmann Stiftung and
Sustainable Development Solutions Network (SDSN): New York, NY, USA, 2019; pp. 264–265.

70. IAEG, U.N. Final list of proposed Sustainable Development Goal indicators. Report of the Inter-Agency and Expert Group on
Sustainable Development Goal Indicators (E/CN. 3/2016/2/Rev. 1). 2016. Available online: https://sustainabledevelopment.un.
org/content/documents/11803Official-List-of-Proposed-SDGIndicators.pdf (accessed on 10 April 2020).

http://doi.org/10.1016/j.jenvman.2019.109892
http://www.ncbi.nlm.nih.gov/pubmed/31790871
http://doi.org/10.1007/s10795-007-9036-0
https://boris.unibe.ch/6000/1/Wolfgramm_Kyrgyz.pdf
https://boris.unibe.ch/6000/1/Wolfgramm_Kyrgyz.pdf
http://doi.org/10.1016/j.agrformet.2008.12.004
https://sustainabledevelopment.un.org/content/documents/11803Official-List-of-Proposed-SDGIndicators.pdf
https://sustainabledevelopment.un.org/content/documents/11803Official-List-of-Proposed-SDGIndicators.pdf

	Introduction 
	Materials and Methods 
	Research Area 
	Data 
	Time-Series NDVI Data 
	Climate Data 
	Environmental Data 

	Method 
	Classification of High-Quality Croplands 
	Classification of Potential High-Quality Croplands 
	Selecting Climatic and Environmental Variables 
	Random Forest Model for Assessing Potential High-Quality Croplands 


	Results and Discussions 
	Climate and Environmental Variables for Cropland Suitability Analyses 
	High-Quality Croplands in Kyrgyzstan 
	Potential High-Quality Croplands under the Baseline Climate 
	Validation and Model Performance for Predicting Potential High-Quality Cropland 
	Random Forest Model for Potential High-Quality Cropland under the RCP4.5 and RCP8.5 Scenarios 
	Agricultural Adaptation Strategy for Land-Use Purpose 
	Agricultural Adaptation Strategy against Climate Change 
	Implications of Proactive Policies on Food Security and Agricultural Resilience 

	Conclusions 
	References

