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Abstract: We used the APSIM-Maize model to simulate maize potential yield (Yp) and rain-fed
yield (Yw) when adaptation options of sowing date and planting density were adopted under
Representative Concentration Pathway (RCP) 4.5 and 8.5 in the Guanzhong Plain of China. The
results showed that Yp would decrease by 10.6–14.9% and 15.0–31.4% under RCP4.5 and RCP8.5
for summer maize, and 13.9–19.7% and 18.5–36.3% for spring maize, respectively. The Yw would
decrease by 17.1–19.0% and 23.6–41.1% under RCP4.5 and RCP8.5 for summer maize, and 20.9–24.5%
and 27.8–45.5% for spring maize, respectively. The loss of Yp and Yw could be reduced by 2.6–9.7%
and 0–9.9%, respectively, under future climate for summer maize through countermeasures. For
spring maize, the loss of Yp was mitigated by 14.0–25.0% and 2.0–21.8% for Yw. The contribution of
changing sowing date and plant density on spring maize yield was more than summer maize, and
the optimal adaptation options were more effective for spring maize. Additionally, the influences of
changing sowing date and planting density on yields become weak as climate changes become more
severe. Therefore, it is important to investigate the potential of other adaptation measures to cope
with climate change in the Guanzhong Plain of China.

Keywords: potential yield; rain-fed yield; APSIM-Maize model; climate change; GCMs

1. Introduction

It has been estimated that the global average surface temperature will increase by
0.3–4.8 ◦C by the end of the 21st century [1]. Food security under global warming is
currently one of the top priorities on the political agenda [2]. Climate change has seriously
affected agricultural production, especially in developing countries such as China [3–5].
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Therefore, it is urgent to develop various agronomic management practices to cope with
the negative impacts of climate change on crop production to ensure global food security.

Maize is one of the three major food crops in the world. The yield of maize rose by
66.9 kg ha−1 year−1 since 1961 and the total production became the largest among the
three main food crops since 2001 in the world [6]. China is one of major maize producers
around the world and contributes to 22.8% of global maize production. The yield per
hectare has improved in recent years (1961–2017) due to breeding improvement, advanced
tillage systems, cultivation techniques, and the increasing use of agricultural machinery [7].
However, the harvested areas of maize decreased obviously in China. This was mainly
because of the national policy on optimizing the planting structure and reducing inefficient
crop planting areas [8].

The fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC)
indicated that climate change has adversely affected maize yields in many regions [9–11].
Numerous studies have further verified the phenomena in recent years. For example,
Ramirez et al. [11] reported that maize production would reduce by 12–40% under climate
change in Africa. Deryng et al. [12] found that extreme heat stress at anthesis under a high
emission scenario of RCP8.5 (Representative Concentration Pathway 8.5) led to doubling
loss of global maize yield. Rosenzweig et al. [13] reported that maize yields in low-latitude
areas decreased more under RCP8.5 because the tropical areas were more vulnerable to
climate change. Ureta et al. [14] projected that the maize rain-fed yields would decline in
the future in Mexico due to increased extreme heat events. In China, Chen and Liu [15]
found that maize yield would decrease mainly due to a shortened growth period of maize
caused by warming temperatures.

Climate change has become a major obstacle to safeguard the supply of maize. Many
researchers have used crop models to study the responses of maize yield to different man-
agement measures to cope with the negative impacts of climate change. In Mozambique,
Harrison et al. [16] reported that farmers can avoid some yield losses through delaying
planting dates and adopting longer-season maize varieties. Cuculeanu et al. [17] indi-
cated that delaying the sowing date to the last week of April with a planting density of
5 plants m−2 is able to cope with negative impacts of climate change on maize in Romania.

In recent years, the Agricultural Production Systems sIMulator (APSIM) model has
become a powerful tool to study the effects of climate change on crop yields. For example,
Traore et al. [18] found early planting and mineral fertilizer at recommended rates can
buffer the loss in maize yield in southern Mali based on the simulations with the APSIM
model. However, they cannot fully offset the adverse impacts of future climate change.
Seyoum et al. [19] used the APSIM model to study the potential of changing maize genotype
to increase maize yield under different environmental conditions in Ethiopia. Lv et al. [20]
also used the APSIM-Maize model to simulate the potential and attainable yields of spring
maize from 1961 to 2009 in Northeast China. They found that historical climate change had
a negative effect on maize yield. In general, the APSIM model has been widely used to
study and predict the impacts of climate change on crops.

In China, many researchers have also found that adjusting sowing date or planting
density was advisable to improve crop yield. For example, Ren et al. [21] demonstrated
increasing planting density has a great potential to increase maize yield in the Loess Plateau
of China. This is mainly because higher plant populations increase the number of maize
ears. Sun et al. [22] indicated that keeping sowing date in a certain range after June can
increase the summer maize yield in the North China Plain. However, most previous studies
only focused on a single countermeasure without considering the interaction with climate
change (e.g., increasing temperature and CO2 fertilization). Cuculeanu et al. [17] suggested
that an interaction of several management measures instead of a single measure is more
effective to mitigate the negative impacts of climate change on crop production. Therefore,
it is necessary to test the potential of multiple adaption options to mitigate the impacts of
future climate on maize yield in China.
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In our study, the APSIM-Maize model, driven by historical and projected future
climate data, was used to explore the impacts of future climate change on maize yield with
different agronomic options in the Guanzhong Plain of China. Our main objectives were to
(1) evaluate the performance of the APSIM-Maize model in simulating the growth of spring
and summer maize in the study area, (2) explore the impacts of future climate change
on maize potential and rain-fed yields, and (3) investigate the capacity of optimizing
sowing dates and planting densities to cope with the adverse impacts of climate change on
maize yield.

2. Materials and Methods
2.1. Study Sites

The Guanzhong Plain is located in Shaanxi Province, China. Wheat-maize rotation is
the main cropping system for grain production in the Guanzhong Plain [23]. We selected
two representative sites, Yangling (108◦10′ E, 34◦21′ N, 455 m) and Changwu (107◦49′ E,
35◦13′ N, 1152 m) in the Guangzhong Plain for our study (Figure 1).

Figure 1. Locations of the two representative experimental sites of Yangling and Changwu in the
Guanzhong Plain of Shaanxi Province, China.

Summer maize (growth period of June to October) was planted in Yangling and spring
maize (growth period of April to October) in Changwu. Both sites had typical continental
monsoon climates with an average rainfall of 360–470 mm and an average temperature of
17.8–24.1 ◦C during the maize growth period (Table 1).
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Table 1. Average temperature (◦C), rainfall (mm), and solar radiation (MJ m−2) during the
growing seasons of summer maize (June–October) and spring maize (April–October) at Yangling
and Changwu.

Site Maize
Type

Latitude
(◦N)

Longitude
(◦E)

Tmean
(◦C)

Rainfall
(mm)

Solar Radiation
(MJ m−2)

Yangling Summer 34.35 108.17 24.11 362 18.12
Changwu Spring 35.21 107.81 17.80 469 18.74

2.2. Field Experimental Data

The field experiments were carried out with summer maize cultivar of “Zhengdan
958” at Yangling in 2009–2012 and spring maize cultivar of “Xianyu 335” at Changwu in
2017–2018 (Figure 1 and Table 2).

Table 2. Detailed information for field experiments at Yangling and Changwu.

Site Variety Year Sowing Date
(dd/mm)

Maturity Date
(dd/mm)

Fertilization
(kg N ha−1)

Irrigation
(mm)

Density
(plants m−2)

Yangling Zhengdan 958
(summer maize) 2009–2012 10/06–13/06 29/09–02/10 137 40–50 6; 7.5

Changwu Xianyu 335
(spring maize) 2017–2018 26/04 17/09–23/09 225 0 6.5

The basic information of the summer maize experiment included row space of 60 cm,
sowing dates of June 10th to 13th, planting densities of 6 and 7.5 plants m−2, irrigations
available during growing seasons, and basal fertilizer and top dressing applied during
growing seasons. The basic information of spring maize experiment included row space of
60 cm and 40 cm, sowing date of April 26, no irrigation available during growing seasons,
and one-time basal fertilizer at the beginning of growing season. Each treatment had three
replicates and all the experimental plots were randomly distributed. The observation data
included phenology date (i.e., emergence, anthesis, and maturity) and grain yield, which
were mainly used to calibrate and validate the APSIM-Maize model. More details about
field experiments can be found in Table 2. The soil parameters of each site were obtained
through on-site sampling, including bulk density (g cm−3), wilting point (mm3 mm−3),
field capacity (mm3 mm−3), saturation (mm3 mm−3), organic carbon content (%), and total
nitrogen content (%) in continuous soil layers (Table 3).

Table 3. Soil properties at Yangling and Changwu.

Sites Soil Layer
(cm)

Bulk Density
(g cm−3)

Wilting Point
(mm3 mm−3)

Field Capacity
(mm3 mm−3)

Saturation
(mm3 mm−3)

Organic
Carbon

(%)

Total
Nitrogen

(%)

Yangling

0~20 1.26 0.15 0.25 0.43 0.76 0.10
20~40 1.35 0.16 0.26 0.45 0.68 0.10
40~60 1.30 0.16 0.26 0.44 0.61 0.09
60~80 1.32 0.14 0.29 0.35 0.54 0.08

80~100 1.35 0.15 0.24 0.30 0.55 0.08

Changwu

0~20 1.27 0.11 0.28 0.51 0.85 0.10
20~40 1.35 0.10 0.28 0.48 0.63 0.09
40~60 1.30 0.09 0.29 0.48 0.55 0.08
60~80 1.25 0.11 0.29 0.47 0.58 0.06

80~100 1.25 0.09 0.27 0.46 0.58 0.06
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2.3. Climate Data

Daily climate data of the two representative sites from 1971 to 2010 were obtained from
the Chinese Meteorological Data Service Center (CMDC; https://data.cma.cn/, accessed
19 June 2020), including daily rainfall (mm), solar radiation (calculated based on the
sunshine hours using the Angstrom formula, MJ m−2 day−1) [24], and daily maximum
and minimum temperatures (◦C).

For future climate projections, a total of 36 global climate models (GCMs) (Table 4)
were used from the Coupled Model Intercomparison Project phase 5 (CMIP5) dataset. Two
emission scenarios of Representative Concentration Pathway (RCP) (4.5 and 8.5) [9] were
considered. Two future time periods (2031–2060, 2050s) and (2071–2100, 2090s) were used.

Table 4. List of the 36 global climate models (GCMs).

ID Code Name Institute Country

1 AC1 ACCESS1-0 CSIRO and BoM Australia
2 AC2 ACCESS1-3 CSIRO and BoM Australia
3 BC1 BCC-CSM1.1(m) BCC China
4 BC2 BCC-CSM1.1 BCC China
5 BNU BNU-ESM GCESS China
6 CaE CanESM2 CCCMA Canada
7 CCS CCSM4 NCAR USA
8 CE1 CESM1(BGC) NSF-DOE-NCAR USA
9 CE2 CESM1(BGC) NSF-DOE-NCAR USA

10 CE5 CESM1(BGC) NSF-DOE-NCAR USA
11 CM2 CESM1(CAM5) NSF-DOE-NCAR USA
12 CM3 CESM1(WACCM) NSF-DOE-NCAR USA
13 CN1 CNRM-CM5 CNRM-CERFACS France
14 CSI CSIRO-Mk3.6.0 CSIRO-QCCCE Australia
15 ECE EC-EARTH EC-EARTH Europe
16 FIO FIO-ESM FIO China
17 GE1 GISS-E2-H NASA GISS USA
18 GE2 GISS-E2-H-CC NASA GISS USA
19 GE3 GISS-E2-R NASA GISS USA
20 GF2 GFDL-CM3 NOAA GFDL USA
21 GF3 GFDL-ESM2G NOAA GFDL USA
22 GF4 GFDL-ESM2M NOAA GFDL USA
23 HA5 HadGEM2-AO NIMR/KMA Korea
24 HA6 HadGEM2-CC MOHC UK
25 INC INM-CM4 INM Russia
26 IP1 IPSL-CM5A-LR IPSL France
27 IP2 IPSL-CM5A-MR IPSL France
28 IP3 IPSL-CM5B-LR IPSL France
29 MI2 MIROC5 MIROC Japan
30 MI3 MIROC-ESM MIROC Japan
31 MI4 MIROC-ESM-CHEM MIROC Japan
32 MP1 MPI-ESM-LR MPI-M Germany
33 MP2 MPI-ESM-MR MPI-M Germany
34 MR3 MRI-CGCM3 MRI Japan
35 NE1 NorESM1-M NCC Norway
36 NE2 NorESM1-ME NCC Norway

Monthly gridded climate data from the 36 GCMs (Table 4) were statistically down-
scaled using the method of Liu and Zuo [25] to produce daily temperature, rainfall, and
solar radiation in the two future periods at the two study sites. Firstly, gridded data were
statistically downscaled to site scale through the inverse distance-weighted interpolation
method [25]. Then, a bias correction was conducted to contrast and analyze the observed
GCMs monthly data for the baseline. Finally, we used the modified WGEN (stochastic
weather generator) to generate the daily climate data for each study site [26]. Detailed
descriptions of the statistical downscaling method can be found in Liu and Zuo [25], includ-

https://data.cma.cn/
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ing inverse distance-weighted interpolation, the procedure of bias correction, and temporal
downscaling. This statistical downscaling method has been widely used in the study of
climate change impact assessment around the world [27–31].

2.4. Model Simulations
2.4.1. APSIM-Maize Model

The APSIM-Maize model is a sub-model of the APSIM model, which is a daily-
stepped mechanism model developed by the Australian Agricultural Production Systems
Research Group (APSRU) to simulate crop growth and development processes. It is a
powerful modeling tool to simulate the effects of climate, soil, agronomic management
practices, and genotypes on crop production [32]. Its core modules include soil, crop,
management options, and climate [33]. Input data include daily weather data, soil data,
crop parameters, and management settings. This model has been widely tested and applied
worldwide [21,22,34,35]. In our study, the APSIM-Maize version 7.7 (https://www.apsim.
info/download-apsim/downloads/, accessed 10 July 2019) was used to simulate maize
yields for different management scenarios (i.e., planting densities and sowing dates) under
climate change in the Guanzhong Plain.

2.4.2. Model Calibration and Validation

We used the trial-and-error method to adjust the relevant crop parameters with an
objective to make the observed emergence, anthesis, maturity date, and yield close to
those simulated by the APSIM-Maize model during the processes of model calibration
and validation [36]. The model was calibrated with the experimental data of emergence,
anthesis, maturity dates and grain yields at Yangling in 2009–2010 and at Changwu in 2017.
Then, it was validated with the experimental data of anthesis, maturity dates and grain
yields at Yangling in 2011–2012 and at Changwu in 2018, respectively.

2.4.3. Simulation Scenarios

Potential yield (Yp) is defined as the maximum yield that a crop variety can reach
without water and nutrient stresses, and only being affected by meteorological condi-
tions. Rain-fed yield (Yw) is the potential yield under rain-fed conditions. The difference
between Yp and Yw is the yield gap (Yg), which indicates the achievable yield through
full irrigation [37,38]. The values of Yp and Yw are mainly determined by solar radiation,
temperature, and soil properties, while Yw is also affected by rainfall [39]. In our study, the
validated APSIM-Maize model was used to simulate maize Yp and Yw at the two selected
representative sites under different scenarios. The simulation of all scenarios for 1971–2100
was based on current maize cultivar with summer maize “Zhengdan 958” at Yangling and
spring maize “Xianyu 335” at Changwu. The simulated management scenarios were set
as follows.

(1) Initial conditions
The initial soil water content was set as evenly distributed throughout the soil profile at

75% of the plant available water capacity (PAWC) to avoid the failure of emergence, where
PAWC is defined as the difference between field capacity and wilting point. According to
the measured data of the soil samples, the initial NO3 and NH4 were set to 20 ppm and
10 ppm throughout the soil profile, respectively.

(2) Irrigation
The irrigation scenarios include full irrigation (Yp) and rain-fed condition (Yw). Under

full irrigation scenarios, automatic irrigation was conducted to eliminate the water stress
when soil water content was 20 mm less than PAWC.

(3) Fertilization
Adequate one-time fertilization of 250 kg N ha−1 was applied in each simulation

scenario. We have tested the simulated yields and found that yields did not change much
when the amount of fertilizer was above that value. Other management practices were the
same as those performed by local farmers.

https://www.apsim.info/download-apsim/downloads/
https://www.apsim.info/download-apsim/downloads/
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(4) Planting densities × Sowing dates
According to our field experiment [40,41], we took 6 plants m−2 as the local normal

planting density, and 8 June for summer maize and 19 April for spring maize as the
normal sowing dates, respectively. Then we set a planting density gradient of 4, 6, 8, and
10 plants m−2 and sowing dates at a one-week interval, namely 25 May (S1), 1 June (S2),
8 June (S3), 15 June (S4), and 22 June (S5) for summer maize at Yangling; 5 April (S1’),
12 April (S2’), 19 April (S3’), 26 April (S4’), and 3 May (S5’) for spring maize at Changwu.
There were 20 combinations of sowing dates and densities in total.

In the crop module of the APSIM-Maize model, atmospheric CO2 concentration (Cco2 )
affects crop radiation use efficiency, transpiration efficiency, and critical leaf nitrogen con-
centration [27]. However, the model cannot directly calculate the dynamic time-series value
of Cco2 [42]. In our study, we used empirical equations obtained through nonlinear least-
squares regression to calculate the Cco2 during 1971–2100 under the RCP4.5 (Equation (1))
and RCP8.5 (Equation (2)) scenarios [43].

Cco2 = 650.18 +
0.000075326y− 0.16276
0.00022299− 727.97y−2 − 0.00018747(y − 2045)3 (1)

Cco2 = 1034.3+
267.78− 1.6188y

4.0143 + y
53.342
5.2822

+ 21.746(
y− 2010

100
)

3
+ 100.65(

y− 1911
100

)
3

(2)

where y is the calendar year from 1971 to 2100, i.e., y = 1971, 1972, . . . , and 2100.

2.5. Data Analysis

A multiple linear regression model was established to quantify the effects of climatic
factors including mean temperature (◦C), rainfall (mm), solar radiation (MJ m−2), and CO2
concentration Cco2 (ppm) on future maize yield (Equation (3)).

∆Y = a∆T + b∆R + c∆S + d∆Cco2 (3)

where ∆Y, ∆T, ∆R, ∆S, and ∆Cco2 were the changes in maize yield, mean temperature,
rainfall, solar radiation, and Cco2 during maize growing seasons in the 2050s and 2090s
relative to the baseline of 1971–2010 under RCP4.5 and RCP8.5 for all of the 36 GCMs; a, b,
c, and d were model coefficients.

2.6. Statistical Indices for Model Evaluation

To evaluate the model performance in simulating maize growth in the Guanzhong
Plain, we used three statistics in the processes of model calibration and validation, includ-
ing root mean squared error (RMSE; Equation (4)), normalized root mean squared error
(NRMSE; Equation (5)), and determination coefficient (R2; Equation (6)) [44,45].

RMSE =

√
1
n

n

∑
i=1

(S i −Oi)
2 (4)

NRMSE =

√
1
n ∑n

i=1 (S i −Oi)
2

X
× 100% (5)

R2 =
∑n

i=1 (S i − S
)2

∑n
i=1 (O i − O

)2 (6)

where Oi is the observed value; Si is the simulated value; O and S are the average values of
the observed and simulated values, respectively; n is the number of samples.
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3. Results
3.1. Model Calibration and Validation

The simulated dates of anthesis and maturity were consistent with the observed dates
based on model calibration and validation results (Figure 2a).

Figure 2. Simulated and observed durations from sowing to anthesis and maturity (a) and yields (b) for “Zhengdan 958” at
Yangling and “Xianyu 335” at Changwu in the Guanzhong Plain of China.

The R2 between simulated and observed phenology dates was 0.98 and RMSE was
4 d. The simulated yields also closely followed the observations, with R2 = 0.76 and
NRMSE = 12%. It is worth noting that the observed yields of spring maize at Changwu
differed greatly in 2017 and 2018. Nevertheless, the yields were still well simulated with
the calibrated APSIM-Maize model. Therefore, the results indicated that the APSIM-Maize
model could effectively simulate maize growth and development under irrigation and rain-
fed conditions in the Guanzhong Plain of China. The calibrated parameters for summer
and spring maize are shown in Table 5.

Table 5. Genetic parameters for summer and spring maize.

Cultivar Parameter Name Description
Values

Zhengdan 958 Xianyu 335

tt_emerg_to_endjuv, ◦C d Thermal accumulation from emergence to end of jointing 170 120
tt_endjuv_to_init, ◦C d Thermal accumulation from end of jointing to early flowering 30 30

tt_flower_to_start_grain, ◦C d Thermal accumulation from flowering to start of grain filling 200 120
tt_flower_to_maturity, ◦C d Thermal accumulation from flowering to maturity 600 900

head_grain_no_max, kernel head−1 The maximum kernel per plant 700 660
grain_gth_rate, mg grain−1 day−1 Potential rate of grain filling 9.5 7.1

photoperiod_slope, ◦C hours−1 Photoperiod of slope 10 8

3.2. Climate Change in Maize Growth Period

Compared with the baseline of 1971–2010, projected changes of mean temperature,
solar radiation, and rainfall in the maize growing season were calculated at two sites in the
2050s and 2090s under RCP4.5 and RCP8.5 (Figure 3).
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Figure 3. Changes in growing season mean temperature (∆T; a,d), solar radiation (∆S; b,e), and
rainfall (∆R; c,f) in the 2050s and 2090s under RCP4.5 and RCP8.5 based on 36 GCMs relative to the
baseline of 1971–2010 for Yangling (June–October; a–c) and Changwu (April–October; d–f) in the
Guanzhong Plain of China. The box boundaries indicate the 25th and 75th percentiles; the black thin
and thick lines within the box mark the median and mean, respectively; whiskers below and above
the box indicate the 10th and 90th percentiles.

In general, all 36 GCMs projected that mean temperature would increase in both
sites (Figure 3a,d). Multi-model mean changes were +1.6 ◦C in the 2050s and +2.3 ◦C in
the 2090s under RCP4.5, and +2.1 ◦C and +4.3 ◦C under RCP8.5 in the 2050s and 2090s,
respectively, at Yangling. For Changwu, growing season temperature changes were +1.4 ◦C
and +2.0 ◦C under RCP4.5 and +1.8 ◦C and +3.8 ◦C under RCP8.5 in the 2050s and 2090s,
respectively. Solar radiation was also projected to increase in the future relative to the
baseline according to most GCMs under both RCPs (Figure 3b,e). For Yangling, the multi-
model mean increases were 3.2% in the 2050s and 5.0% in the 2090s under RCP4.5, and 3.1%
and 6.1% under RCP8.5 in the 2050s and 2090s, respectively. For Changwu, the multi-model
mean increases were 1.7% and 3.0% under RCP4.5 and 1.6% and 3.6% under RCP8.5.

The multi-model mean changes of rainfall were similar to other climatic factors and
increases were also projected at two sites under both RCPs (Figure 3c,f). In the 2050s and
2090s, there could be an increase of 1.8% and 7.5%, respectively, for Yangling under RCP4.5,
and 0.3% and 5.2%, respectively, under RCP8.5. For Changwu, the increases were 0.3%
and 5.6% under RCP4.5, and 0.3% and 4.8% under RCP8.5. It should be noted that the
projected change of rainfall tended to have wider ranges (10th to 90th) compared with
temperature and solar radiation, which means that rainfall projections from the 36 GCMs
had large variations.
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3.3. Impacts of Climate Change on Maize Phenology and Yield

The maize growth period from sowing to maturity shortened at both sites in the future,
which was mainly due to the increase in temperature (Figure 4).

Figure 4. Changes in maize growth period under potential and rain-fed conditions with normal sowing dates and planting
density in the 2050s and 2090s under RCP4.5 and RCP8.5 scenarios based on the 36 GCMs relative to the baseline of
1971–2010 for Yangling (a) and Changwu (b) in the Guanzhong Plain of China. The box boundaries indicate the 25th and
75th percentiles; the black thin and thick lines within the box mark the median and mean, respectively; whiskers below and
above the box indicate the 10th and 90th percentiles.

In the 2050s and 2090s, the multi-model mean changes of maturity date were −3.5
and −6.8 days under RCP4.5, respectively, −4.8 and −10.0 days under RCP8.5 for summer
maize in potential conditions, −2.7 and −6.0 days under RCP4.5, and −4.9 and −11.2 days
under RCP8.5 in rain-fed conditions. For spring maize, the multi-model mean changes
of maturity date were −18.9 and −23.7 days under RCP4.5, −22.3 and −34.7 days under
RCP8.5 in potential conditions, −12.7 and −17.5 days under RCP4.5, and −15.9 and
−27.3 days in rain-fed conditions. The shortening of the growth period was more obvious
for spring maize in Changwu than for summer maize in Yangling. This was because
spring maize was more sensitive to rising temperatures (Table 6). For spring maize, the
growth period would shorten by 10.0 and 7.6 days under potential and rain-fed conditions
respectively as the mean temperature in growing season increased by one degree, while it
would shorten by 2.4 days for summer maize (Table 6).

Table 6. Coefficients in the linear regression analyses on the impacts of mean temperature change
(◦C) on maize growth period change (days).

Sites Scenario Coefficients R2

Yangling
Potential −2.4 *** 0.64

Rain-fed −2.4 *** 0.56

Changwu
Potential −10.0 *** 0.97

Rain-fed −7.6 *** 0.97
*** indicates significance level at p < 0.001.

Future climate change had negative impacts on maize yields at study sites (Figure 5).
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Figure 5. Changes in maize potential yield and rain-fed yield with normal sowing date and planting density in the 2050s
and 2090s under RCP4.5 and RCP8.5 scenarios based on the 36 GCMs relative to the baseline of 1971–2010 for Yangling
(a) and Changwu (b) in the Guanzhong Plain of China. The box boundaries indicate the 25th and 75th percentiles; the black
thin and thick lines within the box mark the median and mean, respectively; whiskers below and above the box indicate the
10th and 90th percentiles.

In the 2050s and 2090s, the multi-model mean showed that Yp would decrease by
−10.6% and −14.9% under RCP4.5 respectively, and −15.0% and −31.4% under RCP8.5 at
Yangling. Similarly, Yw would decrease by −17.1% and −19.0% under RCP4.5 and −23.6%
and −41.1% under RCP8.5. For Changwu, the multi-model mean showed that Yp would
decrease by −13.9% in the 2050s and −19.7% in the 2090s under RCP4.5 and −18.7% and
−36.3% under RCP8.5. Yw decreased by −20.9% and −24.5% under RCP4.5 and −27.8%
and −45.5% under RCP8.5. Additionally, the changes of yield among 36 GCMs showed
a larger variation under rain-fed conditions than that under potential conditions, which
was mainly due to the larger variations in projected rainfall change (Figure 3). The results
of multiple linear regression analysis indicated that the changes of Yw at the two sites
were significantly positively correlated with rainfall change and negatively correlated
with temperature change (Table 7). Additionally, we found that there was a significantly
negative correlation between changes of Yw and solar radiation at Changwu. Changes in
CO2 concentration had no significant effects on maize yield change at the two sites.

Table 7. Coefficients in the multiple linear regression analyses on the impacts of change in growing
season mean temperature (∆T), solar radiation (∆S), rainfall (∆R), and CO2 content (∆Cco2 ) on maize
rain-fed yield change (%).

Sites ∆T (◦C) ∆R (%) ∆S (%) ∆Cco2 (100 ppm) R2

Yangling −7.11 *** 0.89 *** −0.69 −2.78 0.89

Changwu −8.00 *** 0.95 *** −2.90 *** −2.56 0.88
*** indicates significance level at p < 0.001.

3.4. The Impacts of Interactions of Sowing Dates and Planting Densities on Maize Yield

According to the yield changes under 20 different combinations of sowing dates and
planting densities in the future, we found that the negative impacts of climate change
could be mitigated or offset by a delayed sowing date and increased planting density
across most scenarios for both sites (Figure 6). However, as time advanced from the 2050s
to 2090s and projected greenhouse gas concentrations increased from RCP4.5 to RCP8.5,
the mitigation efficiency gradually weakened. The optimal combination was delaying
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sowing time by 1–2 weeks and increasing planting density to 8–10 plants m−2 for summer
maize at Yangling (Figure 6). The projected Yp and Yw would still decrease by 0.9–26.9%
and 7.2–41.1% under the optimal combination relative to the baseline of 1971–2010 under
normal combination. The Yp loss on account of climate change could be alleviated by
2.6–9.7%, and Yw loss could be alleviated by 0–9.9%.

Figure 6. Changes in maize potential yield (Yp) and rain-fed yield (Yw) under 20 combinations of sowing dates and planting
densities in the 2050s and 2090s under the RCP4.5 and RCP8.5 scenarios based on the 36 GCMs compared to the baseline
of 1971–2010 under normal combination for Yangling (a–h) and Changwu (i–p) in the Guanzhong Plain of China. The
y-axis indicates five sowing dates, 25 May (S1), 1 June (S2), 8 June (S3), 15 June (S4), and 22 June (S5) for summer maize at
Yangling, and 5 April (S1’), 12 April (S2’), 19 April (S3’), 26 April (S4’), and 3 May (S5’) for spring maize at Changwu.

However, the optimal combination for spring maize at Changwu was delaying sowing
by two weeks and increasing planting density to 8–10 plants m−2 in all scenarios. The Yp
loss due to climate change would be offset completely in the 2050s and 2090s under RCP4.5
and in the 2050s under RCP 8.5 with an increase by 3.2–11.1% compared to the baseline
under the normal combination, while the Yp would decrease by 22.3% in the 2090s under
RCP8.5. The Yw loss would be offset completely in the 2050s under RCP4.5 with an increase
by 0.9%, while the Yw would decrease by 10.1–43.5% in other scenarios. Overall, the Yp and
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Yw would increase by 14.0–25.0% and 2.0–21.8% under the optimal combination relative to
the normal combination in the future for spring maize at Changwu. It was notable that
the increase of Yp was more remarkable than Yw across most scenarios, which was because
water stress restricted the maize growth and yield improvement under rain-fed conditions.
Overall, delaying the sowing date and increasing planting density appropriately would be
an effective measure to address the negative impacts of climate change in the future in the
Guanzhong Plain.

The Yg between Yp and Yw would increase across most scenarios under the optimal
combination relative to the baseline of 1971–2010 under the normal combination. This was
because the magnitude of Yp increase with full irrigation was more obvious than Yw with
rain-fed conditions under the optimal combination. However, the relative change of Yg
would decline as time advanced and projected greenhouse gas concentration increased
in the future, especially for summer maize at Yangling (Figure 7). The multi-model mean
changes of Yg would be +24.9% in the 2050s and +5.3% in the 2090s under RCP4.5, and
−3.7% and −37.2% under RCP8.5 for summer maize in Yangling. At Changwu, Yg would
increase by +23.5% in the 2050s and +19.2% in the 2090s under RCP4.5, and +25.4% and
+1.8% under RCP8.5 for spring maize.

Figure 7. Changes in yield gap under optimal combination of sowing date and planting density in
the 2050s and 2090s under RCP4.5 and RCP8.5 scenarios based on the 36 GCMs relative to baseline of
1971–2010 under normal combination for Yangling and Changwu in the Guanzhong Plain of China.
The box boundaries indicate the 25th and 75th percentiles; the black thin and thick lines within the
box mark the median and mean, respectively; whiskers below and above the box indicate the 10th
and 90th percentiles.

4. Discussion
4.1. Performance of the APSIM-Maize Model

Our calibrated results showed that the APSIM model simulated maize anthesis and
maturity was consistent with the observed values in our study. The determination co-
efficient R2 for the phenology was 0.98 and the RMSE was 4 days. Similar results were
reported for maize in northeast China [35]. Additionally, there is a good agreement be-
tween simulated and observed maize yields (R2 = 0.76 and NRMSE = 12%). This is also
comparable to previous studies. For example, Ren et al. [21] reported that the APSIM-Maize
model performed well in simulating maize yield in the northwest of China (R2 = 0.83–0.95,
NRMSE < 20%). Overall, our calibrated results showed that the APSIM-Maize model could
effectively simulate the irrigated and rain-fed maize in the Guanzhong Plain.
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4.2. Impacts of Future Climate Change on Maize

In our study, many GCMs were used to capture the variations in future climate
projections. We found that the mean temperature in maize growing season would increase
by 1.4–4.3 ◦C. The solar radiation and rainfall would increase by 1.6–6.1% and 0.3–7.5%,
respectively. The results were consistent with previous studies. Zhang and Liu [46] reported
a 2.3–5.3 ◦C rise in temperature for 2070–2099 relative to the baseline of 1950–1999 in the
Guanzhong Plain of China. Zhang et al. [47] projected the solar radiation for 2021–2100
would increase by 0–0.8 MJ m−2 from May to September based on 28 GCMs in the Northeast
China Plain. Yu and Xiang [48] projected about 10% increase for area-averaged precipitation
for 2046–2065 compared to the baseline of 1986–2005 in the northwest China.

The growth periods for summer and spring maize would be shortened due to climate
warming in the future. The results were consistent with a previous study by Tao and
Zhang [49], which indicated that the growing season of irrigated maize would be shortened
by 4.2%−30.3% with a temperature rise of 1–3 ◦C in China. The irrigated maize was
shortened more than rain-fed maize, which is mainly caused by the interactions between
temperature rising and water stress. Drought stress during the growth period is likely to
prolong the growth period of maize [50].

Furthermore, we found that spring maize was shortened more than summer maize
because spring maize was more sensitive to warming than summer maize (Table 6). Al-
though the increase of CO2 content and rainfall can improve the photosynthetic rate and
produce higher yields [51], increased temperature has negative impacts on maize yield as it
accelerates phenological development, resulting in less intercepted nutrition and radiation,
decrease of photosynthesis, and an increase of respiration [52,53]. Overall, the simulated
maize yield for both varieties would decline across all future scenarios with a more obvious
variability for Yw among GCMs than Yp. The decrease of Yw for both varieties was also
more than Yp under all scenarios. This showed that there are drought stresses for rain-fed
maize in the Guanzhong Plain, and future temperature rising will aggravate the drought
stress of rain-fed maize. We used the multiple linear regression analysis to quantify how
each climatic factor change would affect yield change. The results showed that the changes
of Yw for both varieties were significantly negatively correlated with rising temperatures,
and positively correlated with increased rainfall. Therefore, the decreased rain-fed yield
was mainly due to the negative impacts of rising temperatures outweighing the positive
effects of increased rainfall. Using longer-season maize cultivars should be a priority for
the Guanzhong Plain.

4.3. Impacts of Sowing Dates and Planting Densities on Maize

It is of great significance to explore agronomic countermeasures for coping with the
negative impacts of future climate change on maize growth. Sowing date is generally
determined by local agricultural climatic resources [54]. Appropriate sowing dates are
able to take full advantage of local ecological resources such as precipitation and light
and avoid adverse conditions in the maize growing season [55]. Additionally, optimizing
planting density is likely to improve crop canopy structure, distribution of light, and heat
resources [56].

In this study, we found that properly delaying the sowing date and increasing planting
density could effectively offset the negative effects of future climate change. The optimal
combination was delaying the sowing date by 1–2 weeks with a planting density of
8–10 plants m−2. The loss of Yp and Yw on account of climate change could be reduced by
2.6–9.7% and 0–9.9% for summer maize, and by 14.0–25.0% and 2.0–21.8% for spring maize,
respectively. The influence of the optimal combination was more obvious for Yp. This is
mainly because increasing density will require more water for maize growth. Water stress
is still a key factor to limit yield increase under rain-fed conditions although the optimal
combination has a potential to optimize local climatic resources in the maize growth period.
It shows that drought stress will not only directly affect the growth and development of
maize, but also restrain the effects of optimal measures. Our adaptation options contributed
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more to yield increase for spring maize than summer maize under potential and rain-fed
conditions. This indicated that the optimal combinations are more effective for spring
maize with a longer growth period. Additionally, we found that the efficiency of optimal
combinations will weaken when climate changes become more severe. Therefore, it is
important to breed adapted varieties with a longer growing season. This was consistent
with the study of Harrison et al. [16], which reported that the use of maize varieties with a
longer growing season can avoid maize yield loss under future climate change.

Our results showed that the yield gap between potential yield and rain-fed yield
would increase in most scenarios under future optimal combinations, because the YP
increased more than Yw. In other words, it was possible for a considerable increase in
maize yield through irrigation under future climate scenarios. Additionally, previous
studies found that plastic film mulching and stubble mulching were effective ways to
increase crop water productivity and save water [57,58]. Therefore, it is important to
consider water retention strategies to explore the response of yield to climate change.
However, the yield gap would decline with time period and emission scenarios, especially
for summer maize. This is likely because the effect of optimal combination on Yw is more
than Yp under the high emission scenario RCP8.5 at Yangling.

4.4. Limitations of This Study

In this study, we evaluated the possible changes in maize yield simulated by the
APSIM-Maize model under future climate change based on a total of 36 GCMs under
two greenhouse emission scenarios of RCP4.5 and RCP8.5. However, there are some
uncertainties and limitations in our study, similar to most studies on climate change
impacts on crop production with biophysical models. Firstly, only one crop model was
used. The current results based on a single crop model are likely to be overestimated
or underestimated [59]. Multiple crop model simulations have been proposed as a more
robust approach for assessing climate change impacts on crop yields [60,61]. Meanwhile,
we simulated maize growth under full irrigation and rain-fed conditions with current
maize varieties, and we did not consider cultivar shift and the impacts of extreme climate
events, weeds, and pests. Furthermore, the climate characteristics such as precipitation
show large spatial differences in northwest China [62]. We only selected two sites, which
may not reflect the spatial variance in terms of yield response to future climate change.

5. Conclusions

In this study, we used field experimental data to validate the APSIM-Maize model
and found it performed well in the Guanzhong Plain of China. Our modeling results
showed that climate change would have adverse impacts on maize yield in the study
area. Therefore, it is necessary to investigate the potential of adaptation measures to cope
with these negative impacts. We found that delaying the sowing date by 1–2 weeks and
increasing plant density to 8–10 plants m−2 could effectively mitigate the negative impacts
of climate change in the Guanzhong Plain. The loss of potential and rain-fed yield could
be mitigated by 2.6–9.7% and 0–9.9% for summer maize and by 14.0–25.0% and 2.0–21.8%
for spring maize, respectively. The contribution of optimal sowing date and plant density
on yield increases was more for spring maize than summer maize under both potential
and rain-fed conditions. Therefore, our adaption options were more effective for spring
maize with a longer growing season. To maintain or increase yield potential in response to
the projected climate change, it is important to use a longer season maize cultivar under
optimal sowing date and plant density for the Guanzhong Plain. Additionally, we found
that the influences of changing sowing date and planting density on maize yield become
weak as climate changes become more severe in the future. Therefore, it is necessary to
investigate the potential of other adaptation measures to cope with climate change in the
Guanzhong Plain of China.
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