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Abstract: Weeds compete with crops and are hard to differentiate and identify due to their 
similarities in color, shape, and size. In this study, the weed species present in sorghum (sorghum 
bicolor (L.) Moench) fields, such as amaranth (Amaranthus macrocarpus), pigweed (Portulaca oleracea), 
mallow weed (Malva sp.), nutgrass (Cyperus rotundus), liver seed grass (Urochoa panicoides), and 
Bellive (Ipomea plebeian), were discriminated using hyperspectral data and were detected and 
analyzed using multispectral images. Discriminant analysis (DA) was used to identify the most 
significant spectral bands in order to discriminate weeds from sorghum using hyperspectral data. 
The results demonstrated good separation accuracy for Amaranthus macrocarpus, Urochoa panicoides, 
Malva sp., Cyperus rotundus, and Sorghum bicolor (L.) Moench at 440, 560, 680, 710, 720, and 850 nm. 
Later, the multispectral images of these six bands were collected to detect weeds in the sorghum 
crop fields using object-based image analysis (OBIA). The results showed that the differences 
between sorghum and weed species were detectable using the six selected bands, with data 
collected using an unmanned aerial vehicle. Here, the highest spatial resolution had the highest 
accuracy for weed detection. It was concluded that each weed was successfully discriminated using 
hyperspectral data and was detectable using multispectral data with higher spatial resolution. 

Keywords: weed classification; hyperspectral reflectance; discriminant analysis; weed species; 
weed mapping; site-specific weed management 
 

1. Introduction 
Weeds are unwanted plants that can damage and reduce crop yields, becoming 

worse over time if no action is taken to control the growth rate of the weeds. The 
competition for moisture, nutrients, and sunlight between the weeds and crops affects 
crop yields, which can be reduced by 45–95% [1–3]. The use of chemicals is widespread 
because of their effectiveness.; however, because of the diversity of weed and due to 
herbicide resistance [4], this is not a long-term solution. The excessive use of herbicides 
harms crops and increases the end product price [3], in addition to jeopardizing 
environmental protection efforts [4] and leading to soil contamination [5], unless natural 
herbicides made of organic acids or essential oils are employed to mitigate these negative 
impacts; however, organic herbicides can be expensive. 

As such, spot spraying can reduce the amounts of herbicides to which the crops are 
exposed. This method is used to prevent weeds from affecting the crops [6]. This is better 
than blanket application using the site-specific weed management (SSWM) approach, in 
which the herbicide is sprayed on only a few spots in the field according to the patch area 
at an exact location and exact time [7]. This method is used to identify the locations of the 
weed patches and the weed species [8]. 
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The SSWM method uses statistical analysis to differentiate weeds from crops [9]. 
With the SSWM method, information is collected using remote sensing, whereby the 
spectral wavelengths are detected for each plant [10]. One of the spectral analysis methods 
used to discriminate between winter (wheat and clover) and summer (maize and rice) 
crops is linear discriminant analysis (LDA) [11]. For instance, the spectral signatures of 
wheat range from 350 to 712, 451 to 1562, and 1951 to 2349 nm. In comparison to wheat, 
clover has spectral signatures in the range of 727 to 1299 nm. The spectral signatures for 
maize are similar to those of rice and almost the same as wheat, at 350 to 713, 1451 to 1532, 
and 1951 to 2349 nm. It has been proven that each plant or crop has unique spectral 
signatures and wavelength bands. 

Many statistical analysis methods are used to process hyperspectral data, including 
stepwise linear discriminant analysis (SLDA), principal component analysis (PCA), 
support vector machine (SVM), random forest (RF), neural network (NN), and linear 
discriminant analysis (LDA) approaches. STEPWISE was created based on these 
approaches. The RF and SVM models were tested in terms of their hyperspectral data with 
feature selection using a successive projection algorithm (SPA). Based on the SPA 
selection, the results showed more than 90% classification accuracy for barnyard grass, 
weedy rice, and rice using a SVM with six spectral bands (415, 561, 687, 705, 735, and 
1007 nm) [12]. The neural network machine learning algorithm successfully classified 
herbicide-resistant weeds at 25% to 79% accuracy using an unmanned aerial vehicle 
(UAV) [13]. The results depended on the sunlight, images, and growth stage of the plants. 
Linear discriminate analysis (LDA) and support vector machine (SVM) classifiers are the 
best techniques for weed classification, with 90% and 87.14% accuracy, respectively [14]. 
The same goes for LDA in classifying lettuce varieties, providing 81.04% accuracy [15]. 
This shows that the plants’ spectral signatures can be used for classification, which can be 
improved using UAV image processing. 

It is challenging to process the resulting images due to the similarities between weeds 
and crops; thus, object-based image analysis (OBIA) can be used to segment features 
based on the objects in an image. The combination of k-means and multiresolution 
segmentation OBIA can be used to differentiate weed species [16]. The segmentation is 
performed based on the textures, objects, and color features [16]. UAV imagery enables 
data collection for weed mapping using the random forest–OBIA method. Farmers can 
use weed maps to manage their fields [6]. 

In this study, aimed to find out whether hyperspectral data can be used to 
discriminate weeds from crops. Our hypothesis was that hyperspectral data would be able 
to help in identifying weeds by using the spectral bands to detect the weeds in the field; 
therefore, the hyperspectral analysis of weed species in sorghum crops was explored. The 
aim was to discover the significant spectral bands that can be used to discriminate weeds 
species and how the spectral bands can be used to detect weeds within fields. The data 
were classified using statistical analysis and image processing. Then, the significant 
spectral bands were used to detect weeds in the field using multispectral UAV data. If 
weeds are detectable using image processing, this will help farmers to monitor weeds at 
earlier stages to avoid weed infestation, meaning farmers will be able to only spray the 
weed patches in the affected areas, reducing costs and protecting the soil and crops from 
excessive chemicals. 

2. Materials and Methods 
2.1. Site Data 

This study was conducted at the Gatton Campus, Queensland (27°32′32.90″ S, 
152°19′58.88″ E, WGS 84 Datum) (Figure 1). During the summer, Sorghum bicolor (L.) 
Moench (SG) variety 84G22 was used to detect weeds in the research area. The seeds were 
placed in the ground using the StarFire integrated terrain compensation (iTC) global 
positioning system (GPS) tractor at 30 mm depth on 25th October 2013 and 26th 
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November 2014. The crop rows for sorghum were set at 75 cm using a Case IH 95 tractor 
fitted with a four-unit Nodet planter. 

 
Figure 1. The map of the study area at the University of Queensland, Gatton. Adapted from [14]. 

The experimental design used in this study involved a 6 × 4 randomized block design. 
The plots of those treated with control (untreated) and pre-emergence herbicide were 
separated. Two pre-emergence herbicides were used, namely Gesaprim® 600 SC at a rate 
of 2 L/ha (with 600 g/L atrazine active constituent) and DualGold® at a rate of 2 L/ha (with 
960 g/L S-metolachlor active constituent). 

Sorghum species were placed in each plot. In this study, one type of sorghum species 
was placed in each quadrat. The four replicates were placed randomly. In this condition, 
we focused on the common weed species and those highlighted in Table 1. 

Table 1. The weeds species that were found in 2013 and 2014. Adapted from [14]. 

No Weeds Species 2013 2014 
1 Amaranthus macrocarpus (AM) ✓ ✗ 
2 Ipomea plebeia (B) ✗ ✓ 
3 Malva sp. (MW) ✓ ✗ 
4 Cyperus rotundus (NG) ✓ ✓ 
5 Urochoa panicoides (LG) ✓ ✓ 
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6 Portulaca oleracea (PG) ✗ ✓ 

2.2. Spectral Separability Procedures 
The hyperspectral data in the range of 325–1075 nm were collected using the ASD 

FieldSpec® HandHeld 2 spectroradiometer (Malvern Panalytival, Cambridge, United 
Kingdom (U.K)). This instrument is a minimal, convenient, visible near-infrared (VNIR) 
alternative to the ASD FieldSpec 4 [17]. The ASD FieldSpec® HandHeld 2 
spectroradiometer is a robust and sturdy device that uses the ASD FieldSpec 4 VNIR 
spectrometer for efficient measurement [17]. The data for each weed species and sorghum 
crop were collected in 2013 and 2014. Data collection started from week two and 
continued until week four at different growth stages of the weeds and crops. The optical 
panel was calibrated using white references. Prior to measurement, the ASD FieldSpec® 
HandHeld 2 spectroradiometer was calibrated with a Spectralon white reference panel 
provided by the manufacturer (Malvern Panalytival, Cambridge, United Kingdom 
(U.K))., as indicated in the operation guide [18]. ASD FieldSpec® HandHeld 2 instrument 
was aimed so that the optical input was shown but did not darken the white reference 
panel, while being close enough for the panel to fill the field of view. It was important to 
conduct a calibration process before and after hyperspectral data were collected for 
optimization and dark current collection. Each spectral signature of the leaves was 
collected. Then, the data were transferred to a computer and saved in MasterFile format. 
The MasterFile data were binned and run using the first derivative (FD) analysis. 

Classification Procedures 
The data were split into calibration data (group 1, 70%) and validation data (group 2, 

30%) (Figure 2) [14]. The calibration and validation data were randomly split into two 
groups. 

. 

Figure 2. Classification procedures and accuracy evaluation of the band combinations. Adapted 
from [14]. 

Stepwise linear discriminant analysis (SLDA) was run to identify 20 significant bands 
in the calibration data via the STEPDISC procedure using SAS (SAS Institute, North 
Carolina State University, United States of America (USA)) software. The linear 
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discriminant analysis was constructed using the “rule set” from the 20 significant bands. 
Then, the validation data were run with the same “rule set” to verify the accuracy. 

2.3. Band Identification 
The identified bands were combined into six bands because the multispectral sensor 

MCA 6 (Tetracam Inc., California (USA))can only be fitted with six bands; therefore, in 
this paper, only six bands are shown. The best six-band combinations were chosen from 
the eight bands (from the currently available MCA 6 (Tetracam Inc., California (USA)), 
with another six bands from the 20 significant bands (Table 2). The MCA 6 multispectral 
camera was used to collect the aerial images in the sorghum field using UAV. For the 
MCA 6 camera, only six bands were used during the flight (because the sensor could only 
be fitted with six bands). The combination of the eight bands was used because produced 
more combinations; thus, to find the best six bands, the band combinations were run using 
discriminant analysis to obtain the highest classification accuracy. Almost all spectral 
regions resembled those from MCA 6 and the six bands from the 20 significant bands 
(using linear discriminant analysis (LDA)); however, for the red-edge region, MCA 6 
highlighted bands at 750, 730, 720, and 710 nm, while LDA only highlighted bands at 720 
and 710 nm. 

Table 2. The eight bands selected from MCA 6 and LDA. 

Spectral Region  Bands Sources 
NIR 850 nm MCA 6, LDA 

Red-edge 750, 730, * 720 and * 710 nm MCA 6, * LDA 
Red 680 nm MCA 6, LDA 

Green 560 nm MCA 6, LDA 
Blue 440 nm MCA 6, LDA 

* For the red-edge region, 720 and 710 nm bands were taken from LDA and MCA. 

2.4. Multispectral Imagery Data Collection 
The MikroKopter JR11X UAV and multiple camera array 6 (MCA 6) sensor (Tetracam 

Inc., California (USA)) were used to collect the aerial images at week 3 (17 December 2014). 
The MCA 6 camera has six sensors that can be fitted in the UAV. The six bands were 
chosen based on the results in Section 2.3. The multispectral data were collected for 
different spatial resolutions, which were 5.43 mm (flight height: 10 m), 10.83 mm (flight 
height: 20 m), and 20.31 mm (flight height: 37.5 m). The RGB imagery was collected at a 
height of 1.6 m (0.87 mm spatial resolution). The field of view (FOV) for MCA 6 was 38.3° 
× 31.0°. The image size was 1280 × 1024. The advantages of MCA 6 are that it can provide 
8 or 10 bit data and its weight of 790 g enables it to be attached to UAVs. 

2.5. Object Based Image Analysis (OBIA) Procedures 
The images were segmented and classified using the nearest neighbor (NN) method 

with vegetation, soil, and shadow samples. The OBIA workflow is shown in Figure 3. This 
shows the hierarchy level for the whole image, which is then narrowed down to the 
vegetation, before being dividing it into two classes in level 3. In level 4, there are four 
types of weed. 
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Figure 3. Hierarchy of weed discrimination classification. Adapted from [14]. 

The image segmentation started at the scale of 40, using the “multiresolution 
segmentation” algorithm, based on the color (spectral) and shape or the spatial criterion 
(Figure 4). In this study, the spectral and shape values were weighted based on their 
homogeneity. The shape value was 0.1 because the overall shape of the weeds and 
sorghum was only ten percent of the total, which led to inaccurate segmentation. The color 
value (wcolour) was 0.5 because the spectral bands of the weeds and sorghum were similar, 
with only slight differences. The compactness values indicated different shapes and 
smoothness weights, showing variability in terms of features. The parameters values were 
flexible because they were based on trial and error. 

 
Figure 4. Process tree for the weeds according to eCognition Developer. Adapted from [14]. 

The objects were classified according to soil (SO) and vegetation, then the vegetation 
was segmented on a scale of 1 to 10. In fact, the vegetation was divided into sorghum and 
weeds. Then, both sorghum and weeds were reclassified. Using the “enclosed by class” 
function, sorghum was merged while weeds were split into different classes. This rule set 
can be slightly modified to run other images and data. 

The confusion matrix was used to assess the accuracy before its adoption as a normal 
procedure [19–22]. The KHAT statistic was computed based on [23] as: 
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𝑁∑ 𝑥𝑖𝑖 −  ∑ (𝑥𝑖 + ∗ 𝑥 + 𝑖)௥௜ୀଵ௥௜ୀଵ𝑁∑ (𝑥𝑖 + ∗ 𝑥 + 𝑖)௥௜ୀଵ  (1)

where r is the number of rows in the matrix; xii is the number of observations of row i and 
column i; xi+ and x+i are the marginal total of row i and column i, respectively; N is the total 
number of observations. 

3. Results and discussion 
3.1. Classification of Weeds Species 

Weeds can be discriminated using stepwise linear discriminant analysis (SLDA), and 
the classification of the validation data in 2013 was 85–90% accurate, as illustrated in Table 
3. Stepwise linear discriminant analysis was used in lettuce varieties, showing a 
classification accuracy of 81.04% [15]. These results can be improved using high-
dimensional analysis methods, such as a support vector machine (SVM) [12,24]. 

Table 3. Results for the classification of 20 significant bands in 2013. Adapted from [14]. 

Species 
Calibration Data (%) Validation Data (%) 

Wk 2 Wk 3 Wk 4 Wk 2 Wk 3 Wk 4 
Amaranthus macrocarpus (AM) 100 100 100 100 83 80 

Urochoa panicoides (LS) 100 100 100 100 100 100 
Malva sp. (MW) 88 100 100 75 100 100 

Cyperus rotundus (NG) 100 100 100 100 67 100 
Sorghum bicolur (L.) Moench (SG) 92 92 100 67 75 71 

Mean 96 98 100 88 85 90 
High accuracy (>80); Wk = Week 

Table 4 shows that the validation data in 2014 were 97–100% accurate. This means 
that the accuracy increased from the previous year and the results shown were consistent. 

Table 4. Results for the classification of 20 significant bands in 2014. Adapted from [14]. 

Species 
Calibration Data (%) Validation Data (%) 

Wk 2 Wk 3 Wk 4 Wk 2 Wk 3 Wk 4 
Ipomea plebeia (B) 100  100  100  100  100  100  
Urochoa panicoides (LS) 100  100  100  89  100  100  
Cyperus rotundus (NG) 100  100  100  100  100  100  
Portulaca oleracea (PG) 100  100  100  100  100  100  
Mean 100  100  100  97  100  100  
High accuracy (>80), Wk = Week 

3.2. Classification and Validation 
The significant bands for the classification of weeds and sorghum were successfully 

analyzed using linear discriminant analysis (LDA). In 2013, the significant bands were 
tested for their classification accuracy. The accuracy of Malva sp. (MW) decreased to 90%, 
while sorghum reached more than 90% accuracy in week two (Table 3, calibration section). 
This shows that the classification accuracy was high (>80%). Meanwhile, the sorghum 
accuracy increased to 92% in week three, then finally all weeds showed 100% classification 
accuracy during week four. Here, the larger the size of the weeds, the more accurate the 
classification. 

The weed classification was tested using independent data (Table 3, validation 
section). In week two, the classification accuracy for sorghum increased to 70%, reaching 
75% in week three; however, it decreased to 4% during week four in 2013. The same was 
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true for Malva sp. (MW), where the classification was 75% accurate in week two but 
increased to 100% in weeks three and four. The accuracy for Amaranthus macrocarpus (AM) 
decreased to 80% in week three, although for Urochoa panicoides (LS) remained at 100% 
from week two to week four. Although the accuracy of Cyperus rotundus (NG) decreased 
from 100% to 67% in week three, it improved by up to 100% in week four. The 
classification accuracy decreased by 3–4% in week four for sorghum. Overall, the results 
proved that the classification improved from week two to week four in 2013. In 2014, the 
classification was 100% successful for most of the significant bands for each week (both 
calibration and validation data), except for the 89% classification accuracy for Urochoa 
panicoides (LS) in week two. 

The independent data tested in 2013 using linear discriminant analysis (LDA) 
produced accurate results, as highlighted in Table 3. Meanwhile, stepwise linear 
discriminant analysis (SLDA) was used to test the dependent data and the classification 
accuracy was found to be slightly lower. The classification accuracy increased to 100% in 
2014 using SLDA, as shown in Table 4. The accuracy of the classification for the weed 
discrimination using LDA and support vector machine (SVM) has been increased at 15 
bands compared to the eight bands at more than 90% and 85%, respectively [24]. Similar 
results were found for the separation between weed species using LDA, which has a high 
degree of separation [25]. A previous study found that discriminant analysis (DA) can 
detect grass and broadleaf weed species with 70 to 100% accuracy [26].  

The differences in the classification between weeds and sorghum in 2013 and 2014 
were insignificant. The statistical analysis showed that most of the classification was at 
100% for both years. Additionally, the different growth stages between week two and 
week four were not prominent. Weed discrimination with other species was investigated 
during pre-planting and found the overall accuracy above 95% [25]. It is of excellent 
significance to increase weed identification accuracy for pre-planting applications. The 
differences in results seen here were influenced by the growth stages and locations of the 
plants, as well as abiotic and biotic parameters [27]. Additionally, the spectral reflectance 
of plants depends on the weather conditions and the amount of sunlight received, due to 
the atmospheric conditions and azimuth [28]. The plants’ morphology also affects their 
spectral reflectance, such as the shape and color of the leaves. These similar findings 
suggest that the environmental factors, microclimates, plant leaves, solar angles, and 
changing morphological and spectral properties are different at every growth stage, 
which will influence weed detection [29]. Humans are unable to differentiate between 
these plants features using the naked eye; thus, by using spectral signatures, the plants 
can be differentiated and classified using statistical analysis and machine learning [30–
32]. 

A previous study showed that linear discriminant analysis (LDA) is more accurate 
compared to principal component analysis (PCA) in classifying Sesbania herbacea (Mill.) 
McVaugh (hemp sesbania), Ipomoea wrightii (palm leaf morning glory), Ipomoea lacunosa 
(pitted morning glory), Sida spinosa (prickly sida), Senna obtusifolia (sicklepod), and 
Jacquemontia tamnifolia (small flower morning glory) species in soybeans [33]. A similar 
study found that weeds and wheat were successfully classified with 100% accuracy using 
partial least squares (PLS) analysis and linear discriminant analysis (LDA) [34]. The short-
wave infrared (SWIR) wavelengths between 1445 and 2135 nm were used in the previous 
study. Compared to our study, wavelengths of up to 1000 nm were used; thus, in the 
future, it is recommended to use SWIR wavelengths for weed classification. In a study in 
New Zealand, hyperspectral imaging was used to detect weeds using machine learning 
(ML). This method was another way of detecting weeds quickly and accurately using the 
multilayer perceptron method at 89% accuracy [26]; thus, hyperspectral imaging can be 
used in weed detection using ML as compared to object-based image analysis. 

3.3. Band Identification 



Agronomy 2021, 11, 1435 9 of 16 
 

 

The results showed that the highest accuracy for the six combinations was 93%, 
involving the combination of the bands at 440, 560, 680, 710, 720, and 850 nm. The linear 
discriminant analysis (LDA) results from the hyperspectral data were significant for the 
six combinations. Table 5 shows the results from the classification of band combinations 
based on Table 2. There were 28 combinations (please refer to [14]), although only three 
are highlighted in in Table 5. The band combinations were narrowed down into five-, four-
, and three-band combinations. The combination results can be found in [14]. 

The spectral signatures showed that each plant had significant bands. Based on the 
spectral signatures, each weed species in the sorghum field was identified. The band 
combinations helped us to more accurately identify the weeds in the sorghum field. The 
20 significant bands were narrowed down to eight bands, which were used in the 
multispectral sensor. This method was similar to the previous research, in which the 
bands underwent further analysis [35]. The discrimination accuracy between sugar beets 
and maize was 90% when using specific spectral bands [36]. 

A similar study used spectral signatures (500–550, 650–750, 1300–1450, and 1800–
1900 nm) to successfully discriminate weeds from sugarcane [30,32]. The short-wave 
infrared bands (SWIR; 1660, 1890, and 2000 nm) matched the primary features of the pure 
cellulose and lignin spectra of the plants. Changes in cellulose and leaf water content 
determine the levels of these characteristics, which can be leveraged to classify plant 
species [30]. Several wavelengths, including 491, 541, 641, 722, 772, 852, 942, 1047, 1132, 
1443, and 2475 nm, were selected and calculated for the purpose of identifying plants 
species using an artificial neural network (ANN) and support vector machine (SVM) [31]. 
We found that ANN and SVM provided high levels of accuracy of up to 86%. 

Other examples were the wavelengths of 440, 500, 530, 550, 560, 575, 590, 620, 640, 
and 675 nm, which were used to classify seagrass in Southeastern Australia [2]. Similar 
results were found using specific wavelengths to discriminate Bermudagrass (Tifway 419). 
In fact, wavelengths of 353, 357, 360, 362, 366, 372, 385, 389, 391, 396, 405, 441, 442, 472, 
726, 727, 732, and 733 nm were found in the discriminant analysis (DA) of Bermudagrass 
(Tifway 419) at 98% accuracy. 

The combination of visible (VIS) and near infra-red (NIR) bands improved the 
classification accuracy using linear discriminant analysis (LDA) between weeds and sugar 
beets (686, 694, 726, 856, 897, and 970 nm), as well as between potatoes and weeds (686, 
726, 856, 897, 970, and 978 nm) [37]. Furthermore, the health of the citrus crop was verified 
using 440, 560, 680, 710, 720, and 850 nm bands [38], consistent with the results in this 
study. 

Mediterranean plants were found by using the high spectral resolution of the mid-
infrared (MIR) radiation, enabling accurate species discrimination [39]. Since this study 
focused on the visible to near-infrared (325 to 1075 nm) range, we suggest that future 
studies should consider spectral reflectance from 1055 up to 2000 nm for further analysis 
of weed discrimination, because MIR reflectance is also affected by the moisture content 
of plants [39]. 

Table 5. Classification results based on the band combination. Adapted from [14]. 

Combination 
Number The Band Combinations (nm) AM (%) LS (%) 

MW 
(%) 

NG 
(%) 

Mean 
(%) 

1 440, 560, 680, 710, 720, 730 43 100 100 100 86 
2 440, 560, 680, 710, 720, 750 43 100 100 100 86 
3 440, 560, 680, 710, 720, 850 71 100 100 100 93 

3.4. Results of Image Processing 
The same six spectral bands were used for image collection in the field. The spectral, 

physical, and contextual characteristics of the weeds and sorghum affect the development 
and efficiency of the segmentation and classification rule sets in image processing 
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procedures. The rule sets in the object-based analysis (OBIA) can be modified to identify 
weeds at different growth stages so that the results are more accurate. In addition, the 
detection of weeds will be more accurate when using a high spatial resolution. 

The growth stages of the weeds from week one to week four after being planted were 
assessed via multispectral images. Based on the results, weeds and sorghum were 
accurately classified in week three (Table 6), because the sizes of both were bigger in 
comparison to weeks one and two; however, the size of the weeds was still small and they 
were easy to separate from the sorghum plants. The same was true for Cyperus rotundus 
(NG) and Urochoa panicoides (LG), which were successfully classified in week three after 
planting. The shapes of leaves such as broadleaf Portulaca oleracea (PG) and Ipomea plebeian 
(B) were easier to distinguish. Both were successfully classified in week three. The 
literature showed how grass weed seedlings were discriminated from monocotyledonous 
crops, with seedlings of broadleaf weeds in dicotyledonous crops proving more 
challenging to identify at later stages [40] because they have similar spectral reflectance 
and due to the spread of weeds in small patches and the effects of soil reflectance at the 
early stages of growth [41]. 

The weeds started to mix with the crop at week four; thus, the broadleaf weeds were 
detected at an early stage. Weed detection earlier stages of growth is consistent with weed 
control strategies that are designed to minimize competition with sorghum plants, as 
weeds become difficult to detect at the later stages of growth. Additionally, the 
background reflectance in images also affects weed detection in the field. For example, the 
background reflectance of sorghum can be used in object-based image analysis (OBIA) to 
identify the shapes of weed leaves more accurately as compared to the sorghum 
background; therefore, the background was extracted as a black shade (with a low digital 
number) in the image analysis. This is consistent with the study by Steward and Tian [42], 
who normalized red–green–blue (RGB) data into the hue, saturation, and intensity (HSI) 
image space to segment plant images against background regions. The HSI 
transformation is a standard technique used to numerically describe color in the image 
domain using spherical coordinates, which are roughly analogous to the conventional 
attributes of hue, saturation, and lightness (I) [43], whereby images are collected under 
artificial light. In contrast with our study, the images were collected under field 
illumination conditions. 

Table 6 shows the object-based image analysis (OBIA) results for week three after 
planting via different spatial resolutions, also known as the ground sampling distance 
(GSD) technique. In week three, the weeds were neither too small nor too large and they 
were individually identifiable. Overall, most of the weed species were successfully 
classified; all species were correctly classified at 10.83 mm, while at 20.31 mm, Cyperus 
rotundus (Q1NG) was misclassified but the rest were correctly classified. 

Table 6. Weed species at a ground sampling distances (GSDs) of 10.83 mm (altitude: 20 m) and 20.31 
mm (altitude: 37.5 m) for week three. Adapted from [14]. 

Image Height: 1.6 m 
(RGB) 

Week 3 (GSD: 10.83 mm) Week 3 (GSD: 20.31 mm) 
17th December 2014 17th December 2014 

    

Q1NG (Cyperus rotundus) Correctly classified 
Misclassified as Sorghum 

(in the circle) 
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Q1PG 

(Portulaca oleracea) Correctly classified Correctly classified 

   
Q1B (Ipomea plebeian) Correctly classified Correctly classified 

   
Q1LS 

(Urochoa panicoides)  Correctly classified Correctly classified 

3.5. Weed Map Analysis 
The results show that the spatial resolutions of the aerial images affect the 

classification accuracy. The higher the spatial resolution (5.42 mm), the higher the 
accuracy (Figure 5). Most of the weeds were detected with a 5.42 mm resolution. 
Nevertheless, a spatial resolution of 20.31 mm can still be used to detect weeds in sorghum 
fields. It was concluded that weeds can be detected in a sorghum field at altitudes of 10 to 
40 m. 
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Figure 5. Mosaic images at 5.42 mm (altitude: 10 m) and 20.31 mm spatial resolutions (altitude: 37.5 
m). Adapted from [14]. 

The six bands used were 850, 720, 710, 680, 560, and 440 nm (10 nm width). These six 
bands were based on the 2013 and 2014 datasets; however, not all weeds were detected in 
2014. This is because different types of weeds were detected in 2014. This is why Urochoa 
panicoides (LS), Cyperus rotundus (NG), Portulaca oleracea (PG), and Ipomea plebeian (B) were 
misclassified in some quadrants. 

In this study, image processing was carried out using rule sets constructed using 
object-based image analysis (OBIA). The rule sets are flexible and can be modified to 
obtain optimal results. The rule sets have to be modified to accommodate plant growth 
stages and image environments [20]. In this study, similar rule sets were used, although 
the scale, shape, and compactness settings were modified based on the spatial resolution 
of the images. The second group of segmentation settings depend on how much 
segmentation is achieved from the first-stage segmentation settings and how many more 
images need to be segmented. 

 Multiresolution segmentation generates objects by merging several pixels together 
based on their homogeneity [44]; however, other algorithm techniques can be used to 
investigate the effectiveness of the segmentation. Since the classification process was 
focused on identifying weeds in the sorghum field, the soil (SO) classification was only of 
minor interest. In the future, the shadow objects could be separated to obtain more 
accurate results [45]. This also highlights the desirability of image collection when there 
are fewer shadows (before 12:00 p.m.). 

Image analysis could be enhanced using the object-based image analysis (OBIA) 
automatic processing technique. The geographic object-based image analysis (GEOBIA) 
automatic classification technique has the potential for large-area processing and might 
be useful in the automatic processing of multiple images [20,46]. This could be an 
alternative for detecting crop rows before identifying weeds within the crops [47]. This is 
possible because crop rows are planted at fixed locations and weeds tend to grow 
randomly within the fields. 

It is important to look at how objects are sampled to obtain unbiased and accurate 
results [48]. Since this study only focused on three main classes of objects, the use of KHAT 
statistics was acceptable. Kappa coefficients are frequently used to indicate classification 
accuracy and are more accurate than using percentages [49]. 

 Six spectral bands were used in this analysis. It might be useful to choose fewer 
bands or a combination of bands in future studies. For example, six bands were used in a 
previous study for segmentation analysis of weed detection [50]; however, these were 
narrowed down to calculate the normalized difference vegetation index (NDVI) bands, so 
as to discriminate between vegetation and soil. 

The detection accuracy can be improved by using hyperspectral imaging, as 
proposed by Lopez-Granados [41]. Our study used only six bands, while hyperspectral 
imaging involves of up to 1000 much narrower bands (depending on the sensor). 
Nevertheless, the cost is higher when hyperspectral imaging is used compared to using a 
multispectral camera; thus, for the multispectral bands, the use of three to six bands to 
detect weeds in fields is suitable and affordable. 

3.6. Accuracy Assessment 
Confusion Matrix Accuracy 

Three resolutions were validated using the confusion matrix (Table 7). In fact, the 
higher spatial resolution (5.42 mm) gave a higher accuracy level of 92%. The weed 
detection was underestimated at 20.31 mm spatial resolution when the producer accuracy 
(PA) was lower than the user accuracy (UA). Overall, KHAT accuracies were high for all 
spatial resolutions, indicating accurate classification, except for the 20.31 mm resolution 
(KHAT <80%). A KHAT accuracy of more than 70% is adequate for classification [44]. 
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Weed mapping was performed using the object-based image analysis (OBIA) method 
at different spatial resolutions. Kappa statistics in the range of 0.61–0.80 indicate good 
classification [44]. They are deemed comparable to 61–80% KHAT values. In this study, 
the classification accuracy remained higher than 80% for the overall and KHAT accuracies, 
except for Cyperus rotundus (NG) at 10.83 mm spatial resolution. Meanwhile, at 5.42 mm 
spatial resolution, the classification accuracy increased to 92% and 97% for overall and 
KHAT accuracies, respectively, as shown in Table 7. This shows that higher spatial 
resolutions will provide higher accuracy. A previous study recommended the use of very 
high spatial resolution for weed detection [51]. Larger crop rows can help in detecting 
weeds using UAV. At least four pixels should be used for 15 cm crop rows to detect small 
objects via aerial images [52]. The same approach was used in another study, where 2 cm 
spatial resolution was used to detect weeds in maize fields [50]. The researchers obtained 
90% accuracy for weed detection using a combination of normalized difference vegetation 
indexes (NDVI) and OBIA. Fewer band combinations could be tested in the future. There 
may also be a trade-off between the number of bands and the spatial resolution of the 
images. 

Table 7. Confusion matrix used for mosaic image resolution. Adapted from [14]. 

Spatial Resolution Confusion Matrix Weed (%) Soil (%) Sorghum (%) 

5.42 mm 

Producer Accuracy 
(PA) 81 100 90 

User Accuracy (UA) 81 100 90 
Overall Accuracy (OA) 92   

KHAT (K) 97   

20.31 mm 

Producer Accuracy 
(PA) 

56 98 77 

User Accuracy (UA) 61 95 77 
Overall Accuracy (OA) 84   

KHAT (K) 74   

4. Conclusions 
In this paper, we identified the significant spectral bands for weed discrimination 

using hyperspectral data, which can be used in multispectral sensors for weed mapping. 
We used discriminate analysis to produce six significant spectral bands for the weed 
classification process. We collected multispectral imagery of the study area using an MCA 
6 camera and analyzed these images using object-based image analysis (OBIA). The 
hierarchical model of multiscale weed detection was used successfully to simplify the 
OBIA rule sets for weed mapping. We determined that the use of fewer bands and high 
spatial resolution improves weed classification. This demonstrates the importance of 
having optimum spectral and spatial resolutions. We also found that the growth stages 
during play an important role data collection for weed detection in sorghum fields. These 
findings will be significant in overcoming difficulties in weed detection and mapping for 
sorghum crops. The spectral signatures of weed species can be used as inputs in spectral 
libraries and as guidelines for accurate weed mapping. The findings can also be used as 
inputs to develop automated technology for accurate weed detection applications. This 
approach can be integrated with artificial intelligence (A.I) systems, tractors, unmanned 
aerial vehicles (UAV), or drones for weed detection and automated targeted spraying of 
herbicides. This approach could have a big impact on the agroecology environment and 
provide a cost-effective method for weed control management. Currently, the results of 
this study are limited to the analysis procedures used for the multispectral images of the 
weeds and sorghum plants collected in the study area. In future studies, we recommend 
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using hyperspectral imaging and machine learning techniques at different growth stages, 
with different herbicide applications and over diverse areas. 
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