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Abstract: Modelling field spatial patterns is standard practice for the analysis of plant breeding. Jointly
fitting the genetic relationship among individuals and spatial information enables better separability
between the variance due to genetics and field variation. This study aims to quantify the accuracy
and bias of estimative parameters using different approaches. We contrasted three settings for the
genetic term: no relationship (I), pedigree relationship (A), and genomic relationship (G); and a set
of approaches for the spatial variation: no-spatial (NS), moving average covariate (MA), row-column
adjustment (RC), autoregressive AR1 × AR1 (AR), spatial stochastic partial differential equations, or
SPDE (SD), nearest neighbor graph (NG), and Gaussian kernel (GK). Simulations were set to represent
soybean field trials at F2:4 generation. Heritability was sampled from a uniform distribution U(0,1). The
simulated residual-to-spatial ratio between residual variance and spatial variance (Ve:Vs) ranged from
9:1 to 1:9. Experimental settings were conducted under an augmented block design with the systematic
distribution of checks accounting for 10% of the plots. Relationship information had a substantial impact
on the accuracy of the genetic values (G > A > I) and contributed to the accuracy of spatial effects
(30.63–42.27% improvement). Spatial models were ranked based on an improvement to the accuracy
of estimative of genetic effects as SD ≥ GK ≥ AR ≥ NG ≥ MA > RC ≥ NS, and to the accuracy of
estimative of spatial effects as GK ≥ SD ≥ NG > AR ≥ MA > RC. Estimates of genetic and spatial
variance were generally biased downwards, whereas residual variances were biased upwards. The
advent of relationship information reduced the bias of all variance components. Spatial methods SD,
AR, and GK provided the least biased estimates of spatial and residual variance.

Keywords: field plot variation; spatial adjustment; genomic selections; soybean breeding;
spatial modeling

1. Introduction

Commercial breeding programs rely extensively on data-driven tools to efficiently
improve crop genetics. The data analysis is based on modeling incorporate spatial and
genetic relationship information.

In terms of modeling spatial patterns, plant breeding trials have historically utilized
moving averages based on neighbor plots [1,2] as a simple method to account for within-
field variation at higher resolutions than what is captured by the experimental blocks [3,4].
Spatial covariates have also been used in combination with other methods to increase
accuracy and decrease bias [5,6], and it has shown favorable results when paired with
genomic analysis [7]. Nevertheless, the spatial approaches have shifted from covariates to
covariances with the advent of computing power, in which case the within-field variation
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is reparametrized as structured random effects [8]. Under this framework, kernel methods,
such as kriging and splines [9], are incorporated seamlessly into mixed models for plant
breeding [10].

The current gold standard for the parameterization of spatial patterns in breeding
trials is the two-dimensional auto-regressive structure referred to as AR1 × AR1 [11],
where the dimensional correlations (ρx, ρy) are estimated from data via restricted maxi-
mum likelihood [11–17]. AR1 × AR1 has served as a complementary approach to common
experimental design [18], however, convergence can be a major issue due to the multiplicity
of parameters being estimated [17]. Two kriging-type Matérn processes [19,20] that can
be utilized as stable alternatives to AR1 × AR1 are the stationary Gaussian kernels [21],
and the stochastics partial differential equation (SPDE), which correspond to a spline-like
generalization of the AR1 process [22,23]. Yet, literature is scarce on the direct compar-
ison among the multiple geostatistical methods when it comes to the analysis of plant
breeding trials.

In terms of genetic information, modeling relationships are known to increase the
accuracy of estimative genetic effects [24], with more impact in case of no replication or a few
numbers of replications [25–29]. In addition, the joint model of genetic relationship has been
reported to improve the signal separability between genetic and spatial variation [7,30,31].

The benefits in terms of accuracy attributed to relationship, spatial adjustment, and
the combination of both have not been benchmarked, and their benefits remain unknown
for early breeding stages. The goal of this study is to assess the accuracy and bias gains
while comparing the combination of different parameterization approaches for the genetics
and spatial patterns using simulation. Accuracy was measured on the coefficients as the
correlation between estimated and true simulated values, and bias was measured on the
variance components as the difference between estimated and true simulated values. Our
simulation settings aim to reproduce the non-replicated trials from the early stages of
varietal breeding programs, where the control of field plot variation is critical.

2. Material and Methods
2.1. Simulated Data

This section describes the general simulation settings, including the simulated genome,
creation of the founder population and breeding parents, the experimental design, and
simulated variance components. An overall representation of the simulation settings is
provided in Figure 1. The next sections are reserved for the description of statistical models
and the implementation details.

2.1.1. Breeding Scenario

Simulation settings recreated early generation trials of a varietal breeding program,
using soybeans (Glycine max L.) as template species to recreate the genomic settings. Soy-
bean was chosen for its commercial importance [32]. Field settings were based on a single
location containing balanced families, non-replicated entries, and performance checks.
Entries were simulated to be at F2:4 generation, where selection would be performed at a
single-observation level.
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Figure 1. Illustration of the simulation steps: Create founder germplasm, form breeding population,
assign variances, allocate plots into the field, data observation, statistical analysis, a summary of
accuracy and bias.

2.1.2. Genome

Simulated genomic parameters were based on a soybean genome [33]. The genome
contained 20 chromosomes, with an average length of 128 cM, covering and 950 Mb in
genome size. The simulated genome contained 46,000 segregating polymorphic sites.

2.1.3. Breeding Lines

A set of founder lines was set with an effective population size (Ne) of 106 [34,35]. The
founder lines would represent the entire diversity of the species, not the breeding program.
From the 106 founders, we recreated an evolutionary process from which 20 breeding lines
were produced. The evolutionary process was based on the Markovian Coalescent Simu-
lator [36] that recreates multiple cycles of drift, mutation, and selection. The 20 breeding
lines were utilized as parents for the populations under evaluation.

2.1.4. Breeding Trial

From the 20 breeding parents, 30 cross-combinations were performed at random. The
30 biparental families had 30 individuals each, totaling 900 breeding lines. The breeding trial
included the 900 breeding lines in addition to 90 check plots, composed of 3 genotypes with
30 replications each. These were allocated into a rectangular field (30 rows × 33 columns)
under a non-replicated augmented design, with checks systematically placed in the field [37].
Breeding lines, checks, and field layout were simulated separately in each iteration.

2.1.5. Genotyping and Breeding Values

Breeding lines were simulated and genotyped with 20,000 markers to mimic com-
mercial SNP arrays available for soybeans, hence capturing a subset of all simulated
polymorphic sites (46,000). True breeding values were obtained from the true genomic
information under an infinitesimal model, hence all polymorphic sites had a small value
sampled from a normal distribution. The observed SNP data would not include all true
segregating loci, reproducing previous methodological frameworks [38]. The true breeding
values were subsequently rescaled to display the variance parameters described next.
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2.1.6. Population Parameters

A different set of variances were sampled for each run. First, a heritability value was sam-
pled from a uniform distribution as h2 ∼ U(0, 1), from which the ratio between genetic vari-
ance (σ2

g) and residual variance (σ2
e ) was estimated as follows: σ2

e =
(
1− h2)÷ h2, assuming

σ2
g = 1. Spatial variance (σ2

s) was computed as a proportion of the residual variance, following
the ratios: δ

(
σ2

s : σ2
e
)

= 1:9, 1:3, 1:1, 3:1 and 9 : 1, thus σ2
s = σ2

e δ. In terms of intra-class correla-
tion coefficients, ICC = σ2

s ÷
(
σ2

s + σ2
e
)
, the rates correspond to ICC = 0.10, 0.25, 0.50, 0.75, and

0.90. The fixed ratios δ enables contrasting scenarios where the pure error is prevalent over
spatial signal, and vice-versa. Variance components were subsequently rescaled to add up to 1.

2.1.7. Spatial Variation

Field spatial patterns were simulated from a stationary Matérn covariance func-
tion [39]. This function is commonly utilized for the simulation of spatial gradients
in two-dimensional projections [40–42]. The signal from Matérn processes can be ade-
quately recovered from most spatial procedures such as Gaussian kernels, splines, and
auto-regressive moving averages [43]. A simulated field is presented in Figure 2.
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2.2. True and Statistical Model
2.2.1. True Model

The true model utilized to build the response (y) was based on a random effect model
set as the linear combination of an overall mean (µ), genetics (g), spatial effect (s), and i.i.d.
residuals (e). Thus,

y = µ+ g + s + e

Genetic, spatial, and residual terms were assumed to be normally distributed as
g ∼ N

(
0, Gσ2

a
)
, s ∼ N

(
0, Sσ2

a
)

and e ∼ N
(
0, Iσ2

e
)
. The covariance matrices correspond

to the genomic relationship build from genome-wide polymorphism (G) and the Matérn
covariance structure (S) described above. For simplicity, the true genetic term did not
include dominance or epistasis effects.
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2.2.2. Statistical Model

The statistical model consists of the parametrizations that attempt to recover the true
simulated values. The technical details of the model parametrizations are described in the
next two sections.

The notation “hat” represents the estimated coefficients and matrices, whereas the
non-hat regards the simulated (or true) values. The genetic term was parameterized as
unknown (K = I), based on single-generation pedigree information (K = A), and based

on the estimated genomic information (K =
^
G) observed from the SNP array. The spatial

term was set one of the following parametrizations: no spatial adjustment (NS), row-
column adjustment (RC), moving average covariate (MA), AR1 × AR1 structure (AR),
SPDE structure (SD), nearest neighbor graph (GM), or Gaussian kernel (GK).

2.2.3. Accuracy and Bias

The accuracy of coefficients is defined as the Pearson correlation between the estimate
and true parameters. Hence, for the vector of genetic and spatial coeffects, the accuracy
is defined as cor(g, ĝ) and cor(s, ŝ). The accuracy of selection for the top 10% estimated
as the Jaccard coefficient of coincidence, measuring the percentage overall between the
top-ranked individuals from the estimate and true breeding values. Bias was measured
as the difference between the estimate and true parameters (i.e., θ̂− θ). Measures of bias
were computed for the variance components of the genetic, spatial, and residual terms.

2.3. Genetic Parametrizations

The genetic term of our statistical model was set as a random effect. Three parametrizations
of the correlation matrix (K) were:

2.3.1. No Relationship (K = I)

This parametrization is based on unstructured levels, which translated into the as-
sumption that the relationship among genotypes is unknown. Under this setting, the
genetic variance estimates largely rely on the replicated checks.

2.3.2. Pedigree Relationship (K = A)

In this study, the pedigree relationship matrix (A) was based on a single generation,
hence capturing relationship at the full- and half-sibling level. Such parametrization is well
known in animal breeding and it is computationally efficient, since the sparse precision
(A−1), the matrix can be directly computed [44].

2.3.3. Genomic Relationship (K = Ĝ)

The genomic relationship matrix [28] was computed as
^
G = αMM

′
, where M is the

genotypic matrix containing individuals as rows and markers as column, coded as {0,1,2}
then centered column-wise, and α is the normalizing factor computed as the sum of marker
variance under Hardy–Weinberg equilibrium.

2.4. Spatial Parametrizations

The spatial term of our statistical model (ŝ) was parametrized in multiple ways with
the purpose of benchmarking different strategies. These included:

2.4.1. No Spatial Term

This baseline parametrization sets sNS = 0. Not adding a spatial term is herein
informative to contrast the effect of adding spatial parametrization on the accuracy of
coefficients and bias of variance components.
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2.4.2. Row-Colum Effect

Two random effects, parametrizing each row and column as an independent level. This
parametrization captures major linear patterns but no intra-field spatial gradients. The row-
column term is described as sRC = srow + scol, assuming normality as srow ∼ N

(
0, Iσ2

row
)

and scol ∼ N
(
0, Iσ2

col
)
.

2.4.3. Moving Average Covariate

The moving average is a fixed effect covariate with one degree of freedom, sMA = xβ,
also referred to as Papadakis covariate or Nearest Neighbors covariate [7,45]. The covariate is
computed for each observation by average the observed phenotypic values of surrounding
plots. We averaged the values of phenotypes within the distance of two rows and two columns.

2.4.4. AR1 × AR1

The two-dimensional autoregressive model AR1 × AR1 term is here described as
sAR ∼ N(0, R), where the spatial structure is dictated by R = (Σr ⊗ Σc)σ2

AR, and Σ repre-
sents the autoregressive matrices that specify the correlation (ρ) among levels. Two key
properties of this method are: (1) involves estimating three parameters (σ2

AR, ρr , ρc) via
maximum likelihood and (2) the precision matrix (R−1) is sparse and can be computed
directly as without building R [13,17,46].

2.4.5. Stochastic Partial Differential Equations (SPDE)

Under this framework, the spatial term is defined as sSD ∼ N(0, B), where B is a spatial
covariance structure build via SPDE [23,47], defined by the function f (k) =

(
κ2 − ∆

)0.5 αx(s),
where κ is scale parameter, ∆ is the Laplacian (∑

i
∂2/∂ki

2), and α is a smother parameter

(α = ν + 0.5γ) with dimension domain γ.

2.4.6. Nearest Neighbor Graph

This parametrization generalizes the moving average covariate into a dynamic nearest
neighbor function [48,49] using the adjacent matrix (H) as design matrix of random effects,
thus sGM = Hγ and γ ∼ N

(
0, Iσ2

γ

)
. The matrix H was set to connect observations within

two rows and two columns.

2.4.7. Gaussian Kernel

This uses a stationary Gaussian kernel to parametrize the covariance matrix of the
spatial term [50]. In this method sGK ∼ N

(
0, Uσ2

GK
)
, where U = exp

(
αD2), as D is the

Euclidean distance among plots based on row and columns, and α is a normalizing factor
set ad hoc as 0.25.

2.5. Computation

The package AlphaSimR [38,51] was utilized to simulate the founder parents, to
simulated the genome, to execute the Markovian coalescent simulator that generated the
breeding parents, to simulate the crosses, to simulate the genotyping array, and to simulate
the true breeding value.

Models were fit under the hierarchical Bayesian framework. Parameters were com-
puted through Integrated Nested Laplace Approximation (INLA) to avoid computing
Markov Chain Monte Carlo [22,52] with the R package INLA [47,52,53].

Covariance structures for SPDE and AR1×AR1 are available in the INLA package [47].
The moving average covariate and the graphical model design matrix were based on the
functions SPC and SPM, respectively, implemented in the bWGR package [54]. The genomic
and pedigree relationship matrices, as well as the Gaussian kernel, were built using native
R functions.

Subsequent statistical analyses of results were performed using the software R [55].
The code was run in parallel, distributed over 960 cores using the package doParallel [56].
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Each scenario (δ) was simulated 2000 times, computing all combinations of genetic and
spatial parametrization.

3. Results

Accuracies and biases are summarized in Table 1 and Figures 3 and 4. Results indicate
that adding relationship information has a major impact on the accuracy of genetic coeffi-
cients, whereas spatial adjustment was beneficial when the residual-to-spatial ratio is 1:1 or
above. The least biased variance components were provided by SPDE, and methods that
provided poor spatial adjustment led to upper biased residual variance.

Table 1. Marginal treatment averages and standard error across residual-to-spatial variance ratios.

Accuracy Bias

cor(g,
^
g) cor(s,

^
s) Selection ^

σ
2

g−σ2
g

^
σ

2

s−σ2
s

^
σ

2

e−σ2
e

I 0.569
(0.015)

0.662
(0.039)

0.395
(0.010)

−0.050
(0.004)

−0.146
(0.036)

0.185
(0.035)

Relationship A 0.739
(0.009)

0.683
(0.038)

0.516
(0.009)

−0.005
(0.001)

−0.141
(0.036)

0.142
(0.035)

G 0.782
(0.009)

0.692
(0.037)

0.562
(0.009)

−0.012
(0.001)

−0.134
(0.037)

0.141
(0.035)

NS 0.661
(0.036) - 0.463

(0.027)
−0.030
(0.006) - 0.374

(0.069)

RC 0.661
(0.036)

0.394
(0.025)

0.463
(0.027)

−0.034
(0.007)

−0.362
(0.070)

0.377
(0.069)

MA 0.705
(0.028)

0.672
(0.034)

0.497
(0.022)

−0.020
(0.005) - 0.155

(0.021)

Spatial NG 0.708
(0.027)

0.765
(0.034)

0.499
(0.022)

−0.024
(0.007)

−0.120
(0.025)

0.076
(0.009)

SD 0.717
(0.025)

0.778
(0.039)

0.509
(0.020)

−0.007
(0.005)

−0.004
(0.008)

0.007
(0.004)

AR 0.711
(0.026)

0.678
(0.065)

0.502
(0.021)

−0.018
(0.006)

−0.101
(0.015)

0.046
(0.012)

GK 0.714
(0.027)

0.786
(0.037)

0.505
(0.022)

−0.023
(0.006)

−0.114
(0.021)

0.057
(0.011)



Agronomy 2021, 11, 1397 8 of 17

Agronomy 2021, 11, x    8 of 17 
 

 

  SD 
0.717   

(0.025) 

0.778   

(0.039) 

0.509   

(0.020) 

−0.007 

(0.005) 

−0.004 

(0.008) 

0.007   

(0.004) 

  AR 
0.711   

(0.026) 

0.678   

(0.065) 

0.502   

(0.021) 

−0.018 

(0.006) 

−0.101 

(0.015) 

0.046   

(0.012) 

  GK 
0.714   

(0.027) 

0.786   

(0.037) 

0.505   

(0.022) 

−0.023 

(0.006) 

−0.114 

(0.021) 

0.057   

(0.011) 

 

Figure 3. Accuracy of genetic effect, spatial effect, and selection, under varying residual‐to‐spatial variance ratios (δ
σ : σ ). Colors correspond to the genetic relationship: Identity (green), pedigree (orange), genomics (red). Spatial adjust‐

ment methods on x‐axis: no spatial adjustment (NS), row‐column (RC), moving average covariate (MA), autoregressive 

AR1 × AR1 (AR), SPDE (SD), nearest neighbor graph (NG), and Gaussian kernel (GK). 

Figure 3. Accuracy of genetic effect, spatial effect, and selection, under varying residual-to-spatial variance ratios (δ = σ2
e : σ2

s ).
Colors correspond to the genetic relationship: Identity (green), pedigree (orange), genomics (red). Spatial adjustment methods
on x-axis: no spatial adjustment (NS), row-column (RC), moving average covariate (MA), autoregressive AR1 × AR1 (AR),
SPDE (SD), nearest neighbor graph (NG), and Gaussian kernel (GK).
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Colors correspond to the genetic relationship: Identity (green), pedigree (orange), genomics (red). Spatial adjustment meth-
ods on x-axis: no spatial adjustment (NS), row-column (RC), moving average covariate (MA), autoregressive AR1 × AR1
(AR), SPDE (SD), nearest neighbor graph (NG), and Gaussian kernel (GK).

Across the various scenarios, the accuracy of genetic effects varied from 0.569 to 0.782.
Based on the marginal averages (Table 1), the genetic accuracy increased from no relation-
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ship (0.569) to a pedigree-based relationship (0.739) and increased further with genomic
information (0.782). With regards to the contribution of the spatial term to genetic accuracy,
the RC was equivalent to NS (0.661), whereas all other methods (0.705–0.717) provided an
improvement on estimate genetic accuracy of approximately 0.05. The performance of spatial
methods in the accuracy of genetic effects can be summarized as follows: SD ≥ GK ≥ AR ≥
NG ≥MA > RC ≥NS.

Higher gains in genetic accuracy were observed when adding relationships to NS, as it
goes from no relationship (0.525) to pedigree (0.709) and genomics (0.749), increasing 0.184
and 0.224 in genetic accuracy, respectively, (Supplementary Tables S1 and S2) when com-
pared to models with sophisticated spatial adjustment, such as SD, which goes from no rela-
tionship (0.598) to pedigree (0.756) and genomics (0.799) where the average gains were 0.158
and 0.201 for pedigree and genomic relationship, respectively (Supplementary Table S2).
The benefits of this relationship also increase as the residual-to-spatial ratio decreased, as
the average improvement of pedigree over no relationship is 0.136 at δ = 9 : 1 and 0.170
when δ = 1 : 9. Similarly, the improvements attributed to the genomic relationship were
0.176 at δ = 9 : 1 and 0.213 at δ = 1 : 9 (Supplementary Table S1).

Accuracies of spatial effects varied from 0.241 to 0.940 across simulated scenarios
(Supplementary Table S3). The accuracy of spatial effects increased with spatial variance
increase, such that little to no gain is observed when the residual-to-spatial variance ratio is
9:1 and 3:1, and negligible gains when the ratio is 1:1 (Figure 3). The contribution of adding
a relationship to the spatial accuracy was small, (Supplementary Table S4), but beneficial.
It provided a marginal increase from 0.021 and 0.030, going from no relationship (0.662) to
pedigree (0.683) and genomic (0.692) relationship (Table 1).

Figure 3 shows that SD, AR, and GK provided the most accurate spatial predictions
for scenarios where the spatial signal is greater than the random noise (1:3 and 1:9). In
noisy scenarios (9:1 and 3:1), AR1 × AR1 did not perform as well, and the methods that
provided the most accurate predictions were SD, GK, and the NG. Based on the marginal
performance of accuracy in spatial effects (Table 1), the models can be ranked as follows:
GK ≥ SD ≥ NG > AR ≥MA > RC.

The accuracy of selection of the top 10% ranked from 0.306 to 0.607 (Supplementary
Table S5). This metric provided similar results to those observed on genetic accuracy since
the accuracy to selection is an alternative measure of the accuracy of genetic effects with
specific application to breeding purposes. The advent of relationships provided a great
impact on selection (Table 1 and Supplementary Table S6), with an improvement from 0.395
without a relationship, to 0.516 and 0.562 when using pedigree and genomic relationship
information, respectively, with the corresponding enhancement of 30.63% and 42.27%.
The different spatial parameterizations also differed with regards to their contribution to
selection accuracy, particularly on scenarios where the spatial signal was strongest (1:9 and
1:3). Figure 3 shows that in the extreme case (1:9), the enhancement from NS to SD is 0.120,
both with genomic relationship, from 0.410 to 0.530 and without relationship 0.080, from
0.260 to 0.340.

The biases of the variance components are illustrated in Figure 4, and the marginal
averages across delta scenarios are provided in Table 1. Supplementary Tables S3 and S4
present the marginal averages for the different combinations of relationship, spatial method,
and delta. For all purposes, bias values closer to zero are desirable and an estimator is
considered unbiased if the bias is exactly zero. Herein, bias indicates if certain parametriza-
tions are under-or over-estimating the variances attributed to the different model terms.
For the methods NS and MA, estimators of spatial variance (σ̂2

s ) are not computed, so
the bias is not available. On the row-column parametrization (RC) the estimated spatial
variance was the sum of the variances attributed to the row and column terms.

The dispersion around genetic variance estimates was nearly constant (Figure 4),
as the simulations were based on sampling the heritability from a uniform distribution
(0,1). The genetic and spatial variance components were generally biased downwards
(Supplementary Tables S7–S10), and the residuals were biased upwards (Supplementary
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Tables S11 and S12). Table 1 indicates that genetic variance is more biased downwards
when the genetic term is fit without relationship (−0.050) compared to with pedigree
(−0.005) and genomic (−0.012) relationship, where pedigree was less biased than genomics.
Genetic variances were least biased for spatial parametrization SD and most biased for RC
and NS. In marginal terms, the best results were observed from the combination of SD and
genomic information (Supplementary Table S8). Figure 4 shows MA and NG providing
relatively unbiased genetic variances when associated to pedigree information.

Figure 4 provides three trends related to the bias of spatial variance: (1) in scenarios
with deltas of 9:1 and 3:1, the bias of the spatial variance component is lows as the absolute
variance is low; (2) models unable to capture the field gradients (NS and RC) display upper
biased residual variances, as the variance of spatial trends shifts towards the residuals;
(3) SD was the least biased but displayed the highest dispersion.

The unbiasedness of residual variance relies on the accuracy of genetic and spatial
terms, as more accurate models yield lower residual variances. Table 1 shows that the bias
of residual variance was equally reduced when pedigree (0.142) and genomic relationships
(0.141) were utilized in comparison to no relationship (0.185). The spatial parameterizations
that provided the least residual bias were SD and AR (Table 1), closely followed by the
Gaussian kernel and the Neared Neighbor graph. In one instance, SPDE was combined with
genomic information, and the average residual biased was negative−0.003 (Supplementary
Table S12). The unbiased SD + G could be an artifact of the simulation settings, as SD is the
spatial method closest related to the Matérn function, and both true and statistical models
utilize genomic information, so it is expected that results would look considerably different
if the true model was based on linear gradients.

4. Discussion

Commercial plant breeding programs require making the most out of all information
available for decision making, which often entails utilizing sophisticated statistical models
that enable the usage of complex inputs, such as genomic relationships and spatial correla-
tions [7,52,57]. Modeling additional sources of information leads to more accurate results
and, consequently, better use of the available resources [58,59].

Spatial patterns found in field experiments often constitute a large amount of non-
target signals. Ignoring or not properly accounting for exogenous sources of variation
causes a reduction in the accuracy of coefficients due to contaminated signals [57,60] and,
consequently, inaccurate selections [3,12]. Failing to control and accommodate nuisance
parameters is critical when information is scarce [61], which is a common scenario in
observational experiments of a non-replicated nature [37,62].

The noisy data problem is critical in the early stages of plant breeding, where decisions
have large economic repercussions and are solely based on the information at hand [63].
Normal circumstances dictate that a large number of entries are placed into small plots
set under non-replicated experimental design [64]. Plots may be grown primarily for
seed increase in early trials; often, breeders perform visual selection relying on checks to
discriminate genetic signals from field variation [65]. However, the infusion of information
into single-loc evaluations, such as local spatial trends [66] and genomic [67], enables
accurate data-driven selections of higher-yielding entries. Besides agronomic performance,
models fitting both genomics and spatial information have been beneficial to improve the
selection of quality traits, such as grain composition in soybeans [68].

Simulations from this study demonstrate that when there is enough spatial signal in
the field, the adequate parameterization of field variation will improve the accuracy of
genetic effects under un-replicated trials. In another study with wheat [69], it was reported
that trials with replication across locations may also benefit from spatial adjustment. The
main findings generally align with previous reports from simulation and real data from
various crop and tree species, including studies performed on wheat, rye, barley, triticale,
cotton, orange, lupin, tea, and soybeans [3,11,12,58,70–78].
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Spatial modeling is a mature statistical approach and is becoming a standard pipeline
procedure for analyzing field trials in plant breeding. Autoregressive procedures that
account for field variation in agricultural trials were introduced in the 1940s [79,80], with
multiple iterations of improvement [2]. Over the past 20 years, AR1 × AR1 became the
benchmark model, where the success of this approach is largely due to the sparsity, speed,
and availability of its implementation [81]. However, reports indicate some convergence
problems with the AR1 × AR1 parameterization under certain conditions, such as its appli-
cability to narrow field layouts [17,62]. This problem has served as motivation to the search
for alternative frameworks that may provide equally satisfying results with more algorith-
mic stability. Previous studies suggested the use of Linear Variance (LV) models [82,83] to
improve the stability of AR1xAR1 models, particularly for REML-based implementations
(e.g., ASREML, SAS). No convergence problems were observed in this study with the
AR1xAR1 implementation fit as a random term with Bayesian estimation correlations and
variance components. Even without convergence problems, AR1xAR1 parametrization
displayed poor performance under the scenarios with a residual-to-spatial variance ratio
lower than 1:1 (Figure 3), which we attributed to the small spatial variance. This issue
was not observed in the scenario 1:3 and 1:9, where the spatial variance component is
greater than the residual variance. Alternatives to AR1xAR1 commonly involved splines
and kernels within the linear model framework [46,78,84,85] as well as new methodologies
derived from machine learning, including random forest [86,87] and deep learning [87].
This study utilized a set of methods besides AR1 × AR1, with comparable performance.
Similar results were reported [46,83]. We also showed evidence that adding relationship
information provided additional benefits to the estimation of both genetics and spatial
effects (Table 1).

We find it worth pointing out that, unlike the spatial parameterization, the use of ge-
netic relationship information had not been utilized in plant breeding until recently [10,88],
largely motivated by the success of animal breeding and the availability of genomic infor-
mation. Nowadays, commercial breeding programs have genomic information from every
entry grown in the field, and breeding wants to make the most out of this information. A
general limitation to the use of genomic information is the cost of genotyping; whereas
pedigree information is free, the genomics relationship provided higher accuracies than
the pedigree relationship, as supported by numerous reports [26,29,89]. The advantages of
genomics over pedigree are believed to be due to the Mendelian segregation and selection
bias not captured by pedigree [25,90], and unreliable record-keeping of pedigree informa-
tion in plant breeding [91,92]. Yet, the pedigree information is a suitable replacement for
genomics when such information is not available (Table 1, Figures 3 and 4).

Our simulation settings endeavored to be as realistic as possible. The information
utilized in this study is generally available for analysis of field trials in early breeding
stages: (1) spatial information is obtained from the field layout map and (2) relationship
information is available either through pedigree or genomics, as genotyping is a routine
operation in most commercial plant breeding programs. Yet, the advantages of utilizing
both sources of information jointly are not of common knowledge, and literature on the
topic is scarce. Our simulations provided some evidence that such modeling is beneficial to
both genetic effects and parameter estimation (Table 1), leading to more accurate selections
in breeding stages where information in the entry basis is not abundant.

We acknowledge that AR1 × AR1, SPDE, and the Gaussian kernel have shared
statistical properties with the Matérn function utilized in the true model. As the field
variation was simulated as gradients, these conditions are unfavored for row-column
adjustments. Thus, terms of rows and columns were not coupled to other gradient-based
models. However, row-column adjustment can be as good or better than more sophisticated
parameterizations [58], in one specific study with real data.

Gradient-based spatial adjustments are complementary to standard experimental
designs [18]. Increments in performance help unbalanced and un-replicated experiments.
Among these, the p-rep designs have been emphasized in plant breeding trials in the
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early stages [64,93,94]. In such designs, supplementing models with genomic relationship
information trends to provide more robust coefficients and variance components without
known tradeoffs observed on studies with real and simulated data [21,25,26,95–97]. Theo-
retical connections between the current work and generalizations to more complex designs
and multi-environmental evaluations are provided in the Supplementary Text T1.

Our simulated study provides a new insight on spatial modeling: the residual-to-
spatial variance ratio as a determinant factor to define when accuracy gains can be expected
from the analysis. Based on the scenarios considered in this study, results indicate that
more noise than spatial signal translates into no added benefit on fitting spatial terms.

We envision two directions for future studies: (1) assess and benchmark the benefits
provided by fitting spatial and relationship information in multi-environmental trials, with
a varying number of locations; (2) evaluate the benefits from adding other sources of
information for single-environmental trials, such as genotype-by-environment interactions,
dominance, and pleiotropy. The latter might include the simultaneous evaluation of
multiple traits, optimization of experimental designs accounting for the number of plots,
locations, and phenotyping costs, which become relevant with the advent of phenomics
and high-throughput phenotyping.

5. Conclusions

The addition of a relationship matrix provided greater improvement to the accuracy
of the genetic coefficients than accounting for the spatial variation. The study shows that
genomic relationships provide more accurate results than pedigree, and both relationships
are better than no relationship.

The modeling field plot variation is beneficial when the spatial variance is equal to or
greater than the residual variance. Accounting for field variation using SPDE and Gaussian
kernel provided the highest accuracy of genetic effects, closely followed by AR1 × AR1,
Nearest Neighbor Graph, and moving average covariate. In this study, the row-column
parametrization was equivalent to no spatial adjustment. We reiterate that our results are
conditional to the simulated scenario, as this study emphasized complex field patterns
created through the Matérn function.

In terms of parameter estimation, variance components were least biased when rela-
tionship information was utilized. Concerning spatial variation, SPDE generally provided
the least biased variance components, followed by AR1 × AR1.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11071397/s1, Table S1: Marginal genetic accuracy and standard error by delta
ratios and treatments, Table S2: Marginal genetic accuracy and standard error by relationship and
spatial methods, Table S3: Marginal spatial accuracy and standard error by delta ratios and treat-
ments, Table S4: Marginal spatial and standard error by relationship and spatial methods, Table S5:
Marginal selection accuracy (top 10%) and standard error by delta ratios and treatments, Table S6:
Marginal selection accuracy (top 10%) and standard error by relationship and spatial methods, Table
S7: Marginal bias of genetic variances and standard error by delta ratios and treatments, Table S8:
Marginal bias of genetic variances and standard error by relationship and spatial methods, Table
S9: Marginal bias of spatial variances and standard error by delta ratios and treatments, Table S10:
Marginal bias of spatial variances and standard error by relationship and spatial methods, Table
S11: Marginal bias of residual variances and standard error by delta ratios and treatments, Table S12:
Marginal bias of residual variances and standard error by relationship and spatial methods, Text T1:
Factors influencing accuracy within- and across-locations.
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