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Abstract: Plot size has an important impact on variation among plots in agronomic field trials, but
is rarely considered during the design process. Uniformity trials can inform a researcher about
underlying variance, but are seldom used due to their laborious nature. The objective of this research
was to describe variation in maize field trials among field plots of varying size and develop a tool to
optimize field-trial design using uniformity-trial statistics. Six uniformity trials were conducted in
2015–2016 in conjunction with Iowa State University and WinField United. All six uniformity trials
exhibited a negative asymptotic relationship between variance and plot size. Variance per unit area
was reduced over 50% with plots 41.8 m2 in size and over 75% when using a plot size >111.5 m2

compared to a 13.9 m2 plot. Plot shape within a fixed plot size did not influence variance. The data
illustrated fewer replicates were needed as plot size increased, since larger plots reduced variability.
Use of a Shiny web application is demonstrated that allows a researcher to upload a yield map and
consider uniformity-trial statistics to inform plot size and replicate decisions.

Keywords: field-plot size; experimental design; soil heterogeneity index; Smith’s index; uniformity trial

1. Introduction

Designing field experiments with adequate precision for detecting meaningful differ-
ences among treatments is challenging when the magnitudes of economic or biologically
significant differences are small [1]. The power to test such differences depends not only
on the magnitude of mean differences, but also on the chosen alpha level, the number of
samples represented in each treatment mean, and the underlying variance among field
plots for whatever measurement is being made [2].

The reciprocal relationship between experimental variance and field-plot size has been
noted and studied by several researchers [3–5]. Smith [6] developed an empirical law for
describing heterogeneity among field plots based on this nonlinear relationship:

Vs =
V0

sb (1)

where VS = variance of a plot of size s (area), V0 represents the theoretical maximum
variance, and b is a soil heterogeneity index. The value of b ranges from zero to one.
with the latter representing higher heterogeneity. A b value of one indicates the plots are
spatially uncorrelated and homogeneous. A b value of zero means that plots are perfectly
correlated, in which case the variance between plots is constant and does not depend on
plot size [7].

While the shape of the relationship has been shown to be similar across many sites, the
values of V0 and b vary considerably with the field being sampled, and are influenced by
the crop species and the variable measured. Experimental variation in maize grain yield is
particularly influenced by plot size for a number of reasons with a higher variance observed
among smaller plots. When plots are too small, they fail to encompass the natural variation
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occurring within a site. The greater the soil heterogeneity, the greater the variability will be
among smaller plots. Smaller plots are also affected to a greater extent by harvest losses
and measurement errors [7]. For example, when maize is planted at a population of nine
plants m−2, the loss of a single ear from a 1 m2 plot can result in a yield loss of 11%. The
loss of a single ear has much less impact as the plot size increases. Errors in measuring plot
length have a similar impact. A 10 cm error in measurement can result in either including
or excluding an ear from the calculation of grain yield. Such an error would be trivial
in a large plot, but could have a large effect on grain yield estimated from small plots.
Experiments with seed limitations may use smaller plots due to necessity, but experimental
design often use small plots out of convenience and habit [7].

Border effects from neighboring plots are also greater in small plots, and plants
adjacent to open alleys experience reduced interplot competition in acquiring sunlight, air
movement, soil moisture, and nutrients [8]. Alley effects not uniformly distributed across
treatments have been shown to influence treatment effects [9–11].

Parameters for Smith’s model were originally and traditionally have been estimated
using uniformity trial data [12]. The general approach is to subdivide a field into relatively
small units from which measurements are taken and then aggregated into plots of various
sizes and shapes. The field is managed uniformly so differences among plots can be ascribed
to spatial variation in soil [12]. The variance among plots of each size is determined and
regressed against plot area using log–log linear regression:

lnVs = lnV0 − bln(s) (2)

Despite its usefulness, conducting a uniformity trial to obtain estimates of soil hetero-
geneity is time- and labor-consuming, and is a seldom-used practice. Available literature
demonstrates the effect of plot size on data variance of maize from past decades [13–16],
on inbreds [17], and from regions outside of the United States [18]. Continued advances in
plant breeding and agronomic practices have resulted in increased average maize grain
yield in the United States. Data is needed on current maize hybrids from key maize grow-
ing regions within the United States to inform researchers on best practices regarding
experimental design decisions.

Further, developing a more robust and relatively simple method for acquiring the
soil heterogeneity index for a given plot area would enable researchers to optimize plot
size based on the competing constraints of cost and experimental precision. Georeferenced
data could be used to estimate the parameters of Smith’s model more easily compared to
conducting a formal uniformity trial, and perhaps with greater precision. The objectives of
this research were to describe variation in maize yield among field plots of varying size
using elite commercial germplasm grown under modern management practices from the
Upper Midwest region of the United States to provide guidance for optimizing plot size for
measuring yield, and to provide researchers with a web tool to automate data compilation
for interpretation of uniformity trials conducted on their own research sites.

2. Materials and Methods
2.1. Site Characteristics and Trial Execution

Uniformity trials were conducted in 2015 and 2016 at the Iowa State University
Agronomy Research Farm near Boone, IA, and near River Falls, WI, on a research site
operated by WinField United (Land O’Lakes, Arden Hills, MN, USA). A description of
the site characteristics and agronomic management practices for each site are included
in Table 1. In all trials, an area roughly 0.3 ha−1 was bulk-planted with a single maize
(Zea mays L.) hybrid in 76 cm rows. Herbicide and insecticide crop protection inputs were
used at each site as needed to control weeds and pests, and were uniformly applied across
the trial site. Seed was planted to a depth of 4 to 5 cm directly between the rows from the
previous year using a planter equipped with row cleaners and 13-wave coulters positioned
directly in front of the seed disk openers.
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Table 1. Agronomic management practices of six uniformity trials conducted to investigate the effect of plot shape and size
on the variance of maize yield.

Trial 2015 2016

Location Boone, IA, USA Boone, IA, USA River Falls, WI,
USA Boone, IA, USA Boone, IA, USA River Falls, WI,

USA
Field name ISU B1 ISU B4/B5 Wahr SE ISU NE ISU SE Wahr NW

Soil type(s) Nicollet Nicollet Pillot Canisteo Harps Canisteo
Clarion Pillot

Previous crop Corn Corn Corn Soybean Corn Soybean

Hybrid planted Channel 1

211–97
Channel 211–97 Croplan 2

2845SS
Pioneer 3

P0969AM
Pioneer

P1197AMXT Croplan 4099

Planting date 1 May 2 May 13 May 13 May 18 May 5 May
Harvest date 15 October 15 October 11 November 24 October 24 October 31 October

Planting
density (plant

ha−1)
79,073 79,073 74,131 75,614 78,826 79,073

Preplanting
fertilizer

168 kg N ha−1

anhydrous
ammonia

168 kg N ha−1

anhydrous
ammonia

150 kg N ha−1

anhydrous
ammonia

168 kg N ha−1

anhydrous
ammonia

168 kg N ha−1

anhydrous
ammonia

150 kg N ha−1

anhydrous
ammonia

Side-dress
fertilizer

64 kg N ha−1

urea–
ammonium

nitrate

86 kg N ha−1

urea–
ammonium

nitrate

67 kg N ha−1

urea–
ammonium

nitrate

- -

67 kg N ha−1

urea–
ammonium

nitrate
1 Monsanto Company, St. Louis, MO, USA; 2 Land O’Lakes, Arden Hills, MN, USA; 3 DuPont Pioneer, Johnston, IA, USA.

Alleys were cut following tassel emergence and pollination using a tractor guided
by a global positioning system to divide the trial area into 12 ranges 4.6 m in length
with a border on all sides. Plot size of 144 individual plots in a 12 × 12 grid measuring
3.0 m wide × 4.6 m long was measured to the nearest 12.7 mm. Harvest was performed
using a Winterstieger combine (Winterstieger, Salt Lake City, UT, USA) equipped with a
HarvestMaster GrainGage (Juniper Systems, Logan, UT, USA) providing yield and seed
moisture measurements for the middle two rows. Plot yields were recalculated based on
the actual plot size recorded prior to harvest.

Data were analyzed using the index.smith function from the agricolae [19] package
within R software [20] to calculate Smith’s index of soil heterogeneity. Yield maps were
interpolated from data collected by grid sampling as described above. Maps were created
using the kriging interpolation Spatial Analyst tool of ArcMap 10.8 (ESRI, Redlands, CA,
USA). A spherical semivariogram model was used with the ordinary kriging method to do
the interpolation.

2.2. Uniformity-Trial Web Application

A web application was built using the shiny [21] package of R [20]. The user must
upload a csv file with specific column headings: row, col, plot_width, plot_length, and
yield. The plot_width, plot_length, and yield data may be in Imperial or SI units; the
output will be returned in the same units.

The application returns three tab panels of information. The first tab panel, “Yield
Map”, produces a basic plot map, which is simply a scatter plot created with the ggplot2 [22]
package, using the col and row data as horizontal and vertical coordinates, and with points
colored according to relative yield.

The second tab panel, “Smith’s Index”, uses the index.smith function of the agrico-
lae [19] package to generate a uniformity table. The uniformity table contains every plot
configuration possible, using multiples of the original plot lengths and widths. For each
plot configuration, the variance among plots is calculated.

The regression of plot variance on plot area is then plotted using the ggplot2 [22] and
plotly [23] packages, in which blue points represent actual plot variances, and a red line
represents the variance predicted by Smith’s index. In addition, the natural logarithms of
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variance and plot size are fit with a linear regression model, and the slope is reported as
Smith’s index below the plot.

The third tab panel, “LSD vs. Plot Size”, uses ggplot2 [22] to display the regression of
least significant difference (LSD) at the α = 0.05 level of significance. LSDs are displayed
assuming two, three, four, five, or six replications, and are calculated from the variance
predicted by Smith’s index.

3. Results
3.1. Uniformity Trials

Maize yields from the six uniformity trials ranged from 7636 to 19,139 kg ha−1

(Figure 1), and the average difference between the minimum and maximum values within
the trials was 6114 kg ha−1.
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Figure 1. Summary statistics for six maize uniformity trials conducted to investigate the influence of
plot size and shape on soil heterogeneity. X denotes the mean, horizontal line denotes the median, the
box (rectangle) represents the interquartile region (IQR), and the whiskers (vertical lines) represent
the upper and lower quartiles, respectively. Dots are outliers defined as being outside 1.5 × IQR.

Variance per unit area decreased as plot size increased, and all six uniformity trials
exhibited a negative asymptotic relationship between variance and plot size. Variance per
unit area was reduced over 50% with plots 41.8 m2 in size, and over 75% when using a plot
size >111.5 m2 compared to a 13.9 m2 plot (Figure 2).
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Figure 2. Estimated variance per unit area among plots of various sizes and shapes from six maize uni-
formity trials based on predicted values calculated from regression of log (variance) on log (length).

While the general shape of the curves was similar among all six sites, the degree of
soil heterogeneity differed. The interpolated yield maps in Figure 3 illustrate the presence
and degree of soil heterogeneity within each site.
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Figure 3. Interpolated yield maps for six maize uniformity trials conducted from 2015–2016 to
evaluate the natural variability among field plots of varying size. A total of 144 experimental units
were arranged in a 12 × 12 grid with individual plots measuring 3.0 m wide × 4.6 m long. Maps were
created using the kriging interpolation Spatial Analyst tool of ArcMap 10.8 (ESRI, Redlands, CA, USA).
A spherical semivariogram model was used with the ordinary kriging method for the interpolation.

Smith’s index of soil heterogeneity ranged from 0.532 to 1.026 among the six trials
(Table 2).
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Table 2. Estimates of Smith’s soil heterogeneity index (b), the natural logarithm of the base variance
(V) estimated using ln–ln linear regression of variance on plot area. Means within columns followed
by the same letter were not significantly different at p = 0.05.

Field b ln(V)

ISU.B1 0.946 a 8.376 a
ISU.B4 1.026 a 8.677 a

WAR.SE 0.532 b 7.470 b
ISU.NE 0.926 a 8.225 a
ISU.SE 0.642 b 7.282 b

WAR.NW 0.940 a 7.713 a
SE 0.062 0.291

The soil heterogeneity index combining data across the six trials was 0.75, indicat-
ing that these sites had a high degree of soil heterogeneity or low correlation between
adjacent plots.

Plots of varying shapes were included in these uniformity trials for plot sizes of 27.9,
41.8, 55.7, 83.6, 111.5, 167.2, 250.8, and 334.4 m2. A Chi-squared test revealed the shape of
the plot did not result in a statistically lower variance within a fixed plot size (data not
shown). The data also illustrated the relationship between plot size and replicate number
in influencing the ability to detect treatment differences (Figure 4).
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Figure 4. Relationship between plot size and least significant difference for trials with varying
replicates using data from six uniformity trials conducted in the Upper Midwest region of the
United States.

There was a tradeoff between these two design factors, and fewer replicates were
needed as plot size increased, since larger plots had a lower variance. Based on the degree
of soil heterogeneity present in these uniformity trials, a 111.5 m2 plot with two replicates
will produce an equivalent least significant difference (LSD) compared to a 27.9 m2 plot
with six replicates.
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3.2. Uniformity-Trial Data Automation

Here, the data output of the Shiny application will be demonstrated for automation of
uniformity-trial data compilation. Grain yields for fields ISU.B4 and ISU.SE are displayed,
with data presented per experimental unit and points colored based on relative yield
(Figure 5). The overall productivity of field ISU.B4 was lower, and the yield of individual
plots more randomly distributed compared to ISU.SE.
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output data include a plot map with horizontal and vertical coordinates and points colored according
to relative yield. Fields ISU.B4 (A) and ISU.SE (B) are used in this example. Relationship of Variance
and Plot Size. Available online: https://marin-harbur.shinyapps.io/plot_size_app_for_uploaded_
data/ (accessed on 18 June 2021).

Smith’s index of soil heterogeneity for field ISU.B4 was almost twice that of field
ISU.SE (Table 2). Variances for all possible plot sizes and shapes were plotted, and a
regression line fit based on Smith’s index. While both fields exhibited a negative asymptotic
relationship between variance and plot size, the slope of the curve was much steeper for
field ISU.B4, indicating that for initial small plot sizes, a change in plot size would be
expected to have a large effect on variance (Figure 6). In contrast, changes in plot size for
field ISU.SE would result in a less-dramatic change to plot variance, since the field had a
lower value for Smith’s index.

The third panel displays the regression of LSD based on plot size for trials with varying
replicate scenarios (Figure 7). The data can aid a research practitioner planning out the
design factors for an experiment, given the variation present in the field and available land.
Using field ISU.B4 as an example, a trial with four replicates and plot size of 165.6 m2 will
produce a similar LSD as a trial with 6 replicates and plot size of 91.6 m2.

https://marin-harbur.shinyapps.io/plot_size_app_for_uploaded_data/
https://marin-harbur.shinyapps.io/plot_size_app_for_uploaded_data/
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4. Discussion

These data indicated that field characteristics at the same location but within different
parts of the field exhibited unique characteristics. For example, field ISU.B4 exhibited
the greatest index of soil heterogeneity (b), and the variation was oriented in a gradient
going from the front of the trial to the back. Without adjustments to alpha levels, replicate
number, or plot size, this site would be best suited for field trials with treatments with
large, expected magnitudes of response. Prior knowledge of these gradients could allow
for appropriate orientation of blocks to successfully partition variation from the residual
variance. In contrast, field ISU.SE had one of the lowest soil heterogeneity values and a
more neutral gradient. This field could accommodate a variety of trials, and would be a
good choice to evaluate agronomic practices in which treatment differences are expected to
be small. However, there was a problematic area within the field that should be omitted
from trials.

The negative asymptotic relationship between variance and plot size agreed with
findings from Smith [6] and others [16]. Some uniformity trials have shown plot-size
trends that were contradictory to Smith’s Law of Heterogeneity [3,4]. However, the crops
in those trials were perennial forage grasses, which present a very different cropping
system compared to an annual maize system. Annual systems are subject to more-frequent
disturbance from agronomic practices resulting from planting, maintenance, and harvest,
in addition to new trials being placed over the top of past trials in successive years. In
addition, maize can be particularly troublesome because the number of plants per plot is
small, resulting in a large individual contribution to the overall plot yield [7].

Past trials investigating the effect of plot shape demonstrated inconsistencies in the
ability for plot shape to lower experimental error [6,14,24]. These trials showed that plot
size had no effect when the magnitude of soil variation was equal in both plot dimen-
sions. The optimum plot shape should reduce differences in soil productivity from plot
to plot within a block, and therefore requires knowledge of gradients within the trial
site. Multistate field trials on corn (Zea mays L.), soybean (Glycine max (L.) Merr.), and
sorghum [Sorghum bicolor (L.) Moench] showed that multiple gradients were prevalent in
field trials [25]. Plots squarer in shape provided a safeguard to the experimenter if the
presence and direction of gradients was not known.

The choice between adding more replicates versus increasing plot size is especially
critical if there are land constraints for the trial area. Small plots increase experimental error
and require a larger number of replicates, whereas larger plots reduce residual variance,
requiring fewer replicate plots. While both design control factors influence experimental
error, increasing replicates is considered most effective when soil heterogeneity coefficients
are moderate (0.2 < b < 0.7), and increasing plot size is most effective in highly heterogenous
settings (b > 0.7) [6].

While increasing replicates of small plots (≤27.9 m2) is an effective strategy to reduce
variance, the benefit decreases with each additional replicate (Figure 4). Adding replicates
to small plots also fails to address edge and alley effects, which can interact with treatment
effects and confound results [10–12]. More plants in small plots (≤27.9 m2) are closer to
plot alleys, which provides greater access to additional resources such as sunlight, soil
moisture, and nutrients compared to larger plots, which can elevate the yield of plants
toward plot ends [26]. Because larger plots reduce the perimeter-to-area ratio and a greater
percentage of plants are away from alleys, per-plant yields could be lower, allowing more
room for yield enhancement from agronomic inputs.

Tedford et al. [27] found the consistency and magnitude of response from foliar
fungicide applications increased as plot size became larger. Kandel et al. [28] demonstrated
that small plots and large plots could produce similar yield responses, but over twice
as many replicates were needed when using small plots to detect the same treatment
difference as compared to using large plots. In the Tedford et al. [27] example, seven
replications within 12 locations were required to detect a yield response of 124 kg ha−1
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using small plot trials, compared to three replications within 12 locations using larger plots.
In practice, trial practitioners commonly use fewer replicates to conserve land resources.

A three-year review of the Agronomy Journal investigating experimental design
characteristics used by agricultural scientists showed that 96.7% of field experiments used
an average of 3.8 replicates [29]. Depending on the anticipated magnitude of response of
the agricultural treatment and the degree of experimental variance, it is likely that many
field trials are designed with inadequate power to adequately detect treatment differences.
Prior knowledge regarding the degree of soil heterogeneity at trial sites would help the
researcher optimize design factors to objectively evaluate agricultural treatments.

5. Conclusions

Uniformity trials can provide information regarding the degree of soil heterogeneity
present at a site, which can help researchers implement appropriate design control factors.
Unfortunately, due to their laborious nature, they are rarely employed prior to making
design decisions. Our findings indicated data variance per unit area was reduced over 50%
with plots 41.8 m2 in size, and over 75% when using a plot size >111.5 m2 compared to a 13.9
m2 plot. Proper design elements are critical for accurately testing agronomic inputs, and can
result in inconclusive or inaccurate trial outcomes if not considered appropriately. Here, we
provide a tool to automate data compilation for uniformity-trial statistics (Supplementary
Materials).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11061254/s1, uniformity trial data set.
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