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Abstract: Seedlings of Chrysalidocarpus lutescens, Dracaena deremensis and Dracaena marginata were
grown in plastic containers filled with sphagnum peat-moss to assess the effects of three different
water systems on plant growth, water saving and nutrient removal during the experimental period.
The experiment lasted for 8 weeks and consisted of three water systems. These consisted of an open
draining system fertigated with a standard nutrient solution (system T0) and two closed systems:
sequential reuse of the leachate (system T1) and sequential reuse of the leachate with the addition of
H2O2 (system T2). Over the course of the experiment, samples of water and supplies generated in
each water treatment were collected weekly, and from these data water volume and nutrient loads
were calculated. The addition of H2O2 to the leachate resulted in an enhancement in plant dry weight
in Dracaena deremensis and Dracaena marginata. Regarding anion loads (Cl−, NO3

−, H2PO4
−, SO4

2−)
in these water systems, there was a removal rate of 42%, 28%, 27% and 28%, respectively, in the closed
systems compared to the open system. For the cation loads (Na+, K+, Ca2+ and Mg2+) in these water
systems, there was a removal rate from 28% to 29%, respectively, in the closed systems compared to
the open system.

Keywords: biomass; closed draining system; Dracaena deremensis; Dracaena marginata; open draining
system; water saving

1. Introduction

The increasing surface of greenhouses in Southern Europe and the Mediterranean
region has led to several side effects such as environmental pollution, mainly associated
with the release of water and nutrients as wastewater into the environment [1,2]. This
has become even more aggravated, since the majority of soilless cropping systems in the
greenhouses in this area are open or free draining—draining the leachate directly into the
soil [3,4]. The leakage of nutrients, such as nitrate and phosphorous, from fertigation in
greenhouses into the environment is usually greater than the thresholds established by
environmental guidelines, causing the contamination of water resources [5,6].

High-tech, sophisticated greenhouse systems can obtain a return in the use of inputs
such as water and nutrients, through, for instance, the collection of the drainage gen-
erated by a crop for further irrigation in another, or the same crop [7,8]. Nevertheless,
the implementation of this type of methodology has several disadvantages, such as the
high investment cost and the continuous replenishment of recirculating nutrient solutions
due to the increasing electrical conductivity of the groundwater used for irrigation [9,10].
Moreover, reduced yields associated with the increase in salinity in the root zone, and the
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risk of pathogen propagation throughout the fertigation system, entail more drawbacks for
its implementation [11,12]. Another management strategy for reusing the drainage and re-
ducing the pollution generated is the sequential reuse of the leachate to irrigate increasingly
salt-tolerant crops [13]. This fertigation strategy is known as a cascade cropping system,
and it is based on the collection of the drainage from beneath one crop to fertigate the
salt-tolerant crop that is above it in the series, aiming to almost entirely reduce the volume
of leachate of the last crop [14]. It is worth mentioning that in this fertigation system, each
subsequent crop must be able to tolerate the accumulated salts from the previous crop in
order to avoid plant damage and death [15].

Although the implementation of this type of growing system (cascade cropping) is
still in its early stages, based on recent literature, there are some models with different
combinations of open and closed systems. For instance, Muñoz et al. [16] conducted an
experiment with horticultural crops in which beef tomato was the donor crop, or the
first stage of the cascade cropping system, and lettuce, tomato and endive were then
the receiving crops, or second stage of the cascade cropping system. Similarly, García-
Caparrós et al. [17] conducted a cascade cropping system that involved simultaneously
growing one horticultural and one ornamental species, with Cucumis melo being the donor
crop and Rosmarinus officinalis the receiving crop. Analogously, Plaza et al. [18,19] carried
out an experiment with Citrullus lanatus being the donor crop and Cordyline fruticose the
receiving crop. In this latter experiment with horticultural and ornamental species, the
differences between an open and closed systems under the implementation of the cascade
cropping system were also assessed.

Besides the disinfectant power of hydrogen peroxide, its employment in irrigation
water or fertigation to improve oxygenation in the root zone is increasing among growers,
since it improves both the yield and the crop quality [20–22]. Nevertheless, there is little
information about the supplies of H2O2 in an ornamental cascade cropping system and its
effects on crops. Therefore, in this study, a pot experiment with Chrysalidocarpus lutescens,
Dracaena deremensis and Dracaena marginata was established in order to discern the effects
of different water treatments on plant growth, water saving and nutrient removal under
cascade cropping systems, including the application of H2O2 in fertigation treatment.

2. Materials and Methods
2.1. Plant Material and Growing Conditions

Previous experiments with similar conditions were conducted with the same species in
the facilities of the University of Almeria (36◦49′ N, 2◦24′ W). Seedlings of Chrysalidocarpus
lutescens, Dracaena deremensis and Dracaena marginata were purchased from a local nursery
and then transplanted into 1.5 L plastic containers filled with sphagnum peat-moss. The
climatic conditions during the experimental period were recorded with HOBO SHUTTLE
sensors (model H 08-004-02, Onset Computer Crop., Bourne, MA, USA). The recordings
reported an average temperature of 16.5 ± 1.5 ◦C, a relative humidity (RH) of 55.6 ± 2.9%,
and photosynthetically active radiation (PAR) of 55.4 ± 4.4 µmol m−2 s−1. All the experi-
ments lasted for 8 weeks following the advice given by local nursery growers to produce
saleable plants of all three species.

2.2. Experimental Water Systems

The experiment consisted of three water systems. These included an open draining
system fertigated with a standard nutrient solution (system T0), and two closed systems:
sequential reuse of the leachate (system T1) and sequential reuse of the leachate with the
addition of H2O2 (system T2). Each water system consisted of four replicates with four
plants (one plant per pot) per species, and stage with a planting density of 6 plants per m2.
In the T0 water system, seedlings of each species were fertigated with a standard nutrient
solution for ornamental plants (fertigation treatment 1) recommended by Jimenez and
Caballero [23]. In the two closed systems, C. lutescens plants (first stage) were fertigated
with the standard nutrient solution (fertigation number 1), but in each closed system the
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leachate generated by this species was used in a different way. In water system (T1), the
sequential reuse treatment, the drainage of C. lutescens plants (fertigation number 2) was
used directly to fertigate D. deremensis, from which the drainage generated (fertigation
number 3) was reused to fertigate D. marginata. In the case of T2, fertigation numbers 2 and
3 were supplied with H2O2 (1.2 M) at 1% (v/v) to result in fertigation treatments numbers
4 and 5, respectively (Figure 1).
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Figure 1. Schematic layout of the different water treatments. Number 1: standard nutrient solution; number 2: drainage
from fertigation of C. lutescens fertigated with nutrient solution; number 3: drainage from fertigation of D. deremensis
fertigated with water number 2 used to fertigate D. marginata; number 4: drainage from fertigation of C. lutescens fertigated
with nutrient solution supplied with H2O2; number 5: drainage from fertigation of D. deremensis fertigated with water
number 4 supplied with H2O2 used to fertigate D. marginata.

2.3. Chemical Composition of Fertigation Treatments

Collection of the drainage discharged by each species in the different fertigation
treatments was performed weekly. The nutrient solutions and drainage samples consisted
of 5 mL aliquots, filtered using membrane filters (0.45 µm), and frozen for further analysis.
To determine the pH and EC values of the samples obtained, both a pH meter and a
conductivity meter were used (models Milwaukee pH52 and C66) (Milwaukee Instruments,
USA), respectively. The determination of the chemical composition of the nutrient solution
or drainage (anions and cations concentration) was performed by high-performance liquid
chromatography (HPLC) (model 883 Basic IC Plus, anions ion exchange column model
Metrosep A SUPP 4, cations ion exchange column model Metrosep C4 100, IC conductivity
detector range (0–15,000 mS cm−1); Metrohm, Herisau, Switzerland)) as described by
Csaky and Martinez-Grau [24].

After recording these determinations, and together with the values of volume noted for
the nutrient solution and drainage generated (expressed in L m−2), the amounts of nutrient
supplied and discharged from each crop (expressed in grams per m−2) were calculated by
multiplying them. The comparison between the water systems was conducted taking into
account the distribution ratio of each water system and the planting density.

2.4. Model Development

The comparison between the water treatments required the determination of the
number of plants and the water supplies needed in each water system, which were cal-
culated following the equations given by Garcia-Caparros et al. [17,25]. Data used for
the model and its calibration were collected from previous experiments conducted under
similar conditions.
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From the results obtained in these experiments, the following equations were defined
in order to determine the number of plants needed in each stage of the different water
Treatments (1), and the nutrient solution supplies for the species in each stage of the
different drainage water Treatments (2):

Pi =
Pi−1 ×Wupti−1 × Xleai−1

Wupti×(1 + Xleai)
(1)

Wsupi =
n

∑
i=1

Pi ×Wupti (2)

The use of subscript (i−1) refers to the previous stage in the different drainage water systems.
The main inputs of this model are the following: water uptake of the species in each

stage of the different water systems (Wupti), and the percentage of leachate in the previous
stage of the different drainage water systems (Xleai). The main outputs of the model are
the number of plants needed in each stage of the different drainage water systems (Pi), and
water supply for the species in each stage of the different drainage water systems (Wsupi).

Finally, with the values obtained using Equations (1) and (2), the distribution ratio (DR)
was determined. In our experiment, the results obtained showed that the distribution ratio
(DR) of each species (expressed as number of plants per m2) that can be simultaneously
grown in each water system was 1/1.34/0.42 for both system T1 and T2, which was also
applied to T0 to compare the data recorded between the different water systems.

2.5. Statistical Analysis

The experiment was analysed as a completely randomized block design, where the values
obtained were considered as independent replicates. Unifactorial variance (ANOVA) was
performed, and Fisher’s Least significant difference (LSD) tests (p < 0.05) were used to assess
the differences between the water treatments. All the statistical analyses were performed
using Statgraphics Centurion XVI.II (Statpoint Technologies, Inc., Warrenton, VA, USA).

3. Results
3.1. Chemical Composition of Fertigation Treatments

The chemical composition of the fertigation treatments showed a significant increase
in the pH and EC of fertigation treatments Nos. 2, 3, 4 and 5 compared to fertigation
treatment No. 1, mainly associated with the increase in concentrations of Cl−, NO3

−, Na+,
K+, Ca2+ and Mg2+ (Table 1).

Table 1. Chemical composition of the fertigation treatments. Electrical conductivity (EC) was expressed in dS m−1 and
nutrient concentration in mmol L−1. Treatment number 1: standard nutrient solution; number 2: drainage from fertigation
of C. lutescens fertigated with nutrient solution; number 3: drainage from fertigation of D. deremensis fertigated with water
number 2 used to fertigate D. marginata; number 4: drainage from fertigation of C. lutescens fertigated with nutrient solution
supplied with H2O2; number 5: drainage from fertigation of D. deremensis fertigated with water number 4 supplied with
H2O2 used to fertigate D. marginata. Data represent the means ± standard deviation of four samples per treatment. For
water numbers 2–5, the values are the average values of the different chemical parameters assessed weekly during the
experimental period. In each row, different letters indicate significant differences (p < 0.05).

Parameters 1 2 3 4 5

pH 6.60 ± 0.10 b 7.96 ± 0.11 a 8.03 ± 0.08 a 7.88 ± 0.12 a 8.12 ± 0.08 a
EC 1.90 ± 0.12 b 4.55 ± 0.24 a 5.11 ± 0.45 a 4.61 ± 0.25 a 5.21 ± 0.42 a

Cl− 3.50 ± 0.11 b 20.94 ± 2.85 a 25.98 ± 2.50 a 20.88 ± 2.63 a 25.93 ± 2.41 a
NO3

− 6.05 ± 0.51 b 15.87 ± 1.61 a 16.26 ± 1.61 a 14.32 ± 1.54 a 15.98 ± 1.53 a
H2PO4

− 0.70 ± 0.06 a 0.30 ± 0.03 b 0.78 ± 0.05 a 0.26 ± 0.03 b 0.75 ± 0.05 a
SO4

2− 2.01 ± 0.04 a 1.69 ± 0.09 b 2.03 ± 0.15 a 1.68 ± 0.11 b 2.11 ± 0.09 a
Na+ 2.60 ± 0.08 b 12.12 ± 0.88 a 12.05 ± 1.14 a 12.28 ± 0.98 a 11.96 ± 1.10 a
K+ 3.08 ± 0.06 b 8.14 ± 0.50 a 8.82 ± 0.70 a 8.18 ± 0.45 a 8.76 ± 0.74 a

Ca2+ 2.03 ± 0.05 b 9.55 ± 0.55 a 9.41 ± 0.78 a 9.53 ± 0.54 a 9.55 ± 0.85 a
Mg2+ 1.41 ± 0.04 b 4.44 ± 0.38 a 5.19 ± 0.48 a 4.40 ± 0.32 a 5.24 ± 0.50 a
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3.2. Plant Biomass

Fertigation of D. deremensis and D. marginata with T1 resulted in a decline of 13% and
20% in DW, respectively, compared to the control treatment (T0), whereas the fertigation of
these species with T2 resulted in a significant increase of 16% and 18% in DW, respectively,
compared to T0 (Table 2).

Table 2. Biomass itemized by species plants under the three water treatments considering the
respective distribution ratio (DR) of the number plants of the three species. In each column, different
letters indicate significant differences (p < 0.05).

Dry Weight (g)

Systems C. lutescens D. deremensis D. marginata

DR (1:1.34:0.42)
T0 125.91 ± 12.01 a 14.20 ± 0.95 a 2.93 ± 0.21 a

T1 125.91 ± 12.01 a 12.28 ± 0.73 b 2.34 ± 0.18 b

DR (1:1.34:0.42)
T0 125.91 ± 12.01 a 14.20 ± 0.95 b 2.93 ± 0.21 b

T2 125.91 ± 12.01 a 16.48 ± 1.13 a 3.45 ± 0.24 a
System (T0) is an open draining system fertigated with standard nutrient solution and two closed systems
(sequential reuse of the leachate (system T1) and sequential reuse of the leachate with the addition of H2O2
(system T2).

3.3. Application of Model Development to Water and Nutrient Management

Considering the water volume and nutrient loads of each system, systems T1 and T2
both consumed 45.2 L m−2, resulting in a water saving of 28% compared to T0 (62.9 L m−2).
The T0 system generated a leachate volume of 17.7 L m−2, whereas neither T1 nor T2
generated any leachate.

The anion loads in the drainage were also calculated; comparing T1 and T2 with T0,
there was a removal of 42% of Cl− (9.7 g m−2 in T0 and 5.6 g m−2 in T1 and T2), 28% of
NO3

− (23.4 g m−2 in T0 and 16.8 g m−2 in T1 and T2), 27% of H2PO4
− (4.2 g m−2 in T0

and 3.1 g m−2 in T1 and T2), and 28% of SO4
2− (12.1 g m−2 in T0 and 8.6 g m−2 in T1 and

T2), respectively. There was no generation of pollution in T0, whereas in T1 and T2 there
was a discharge to the environment of 12.5 g m−2 of Cl−, 11.6 g m−2 NO3

−, 1.3 g m−2 of
H2PO4

− and 2.7 g m−2 SO4
2−.

As for the cation loads, the comparison of T1 and T2 against T0 reported that there was
a removal of 28% Na+ (3.8 g m−2 in T0 and 2.7 g m−2 in T1 and T2), 28% K+ (7.4 g m−2 in T0
and 5.3 g m−2 in T1 and T2), 28% Ca2+ (5.0 g m−2 in T0 and 3.6 g m−2 in T1 and T2), and 29%
Mg2+ (2.1 g m−2 in T0 and 1.5 g m−2 in T1 and T2), respectively. There was no generation of
pollution in T0, whereas in T1 and T2 there was a discharge to the environment of 3.8 g m−2

of Na+, 4.3 g m−2 of K+, 4.6 g m−2 of Ca2+ and 1.8 g m−2 of Mg2+(Figure 2).
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Figure 2. Water volume, anion and cation loads of each water system. System (T0) is an open draining system fertigated
with standard nutrient solution and two closed systems (sequential reuse of the leachate (system T1) and sequential reuse of
the leachate with the addition of H2O2 (system T2)). Blue bar is the water supply, grey bar is the drainage water and white
bar is the reusable drainage water for the irrigation of the next crop in the system.

4. Discussion

The chemical analysis of the different water systems revealed a significant increase in
EC and pH values as well as in Cl−, NO3

−, Na+, K+, Ca2+ and Mg2+ concentrations in the
fertigation treatments compared to the standard nutrient solution. The increasing value of
these parameters can be associated with the reuse of the drainage and the accumulation
of these nutrients due to differences in water uptake between the treatments, as reported
by Carmassi et al. [26] and Grewal et al. [27]. The lowest values of H2PO4

− and SO4
2−

reported in fertigation treatments 2 and 4 can be associated with a preferential uptake of
these nutrients for Dracaena deremensis, as reported Zulfiqar et al. [28].

Fertigation with the sequential reuse of the leachate resulted in a clear reduction in
dry weight in D. deremensis and D. marginata plants. Nevertheless, the additional supply
of H2O2 to the leachate notably increased the dry weight in both species. Similar results
concerning the ameliorative effect of the addition of H2O2 have been reported in different
crops such as wheat [29], zucchini, soybean, and cotton [30], mainly due to the increase in
oxygenation conditions.

It is necessary to point out that the addition of H2O2 did not result in significant
differences in water saving and nutrient removal between the closed systems assessed
(T1 and T2). The comparison between the closed systems (systems T1 and T2) and the
open system (T0) showed a clear reduction in water volume as well as nutrient loads.
The reduction in water volume in our experiment (28%) was greater compared to the
results obtained by other researchers in cascade cropping systems (around 18%) [17,25].
An increase in the reduction in the water volume for irrigation is highly advantageous in
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areas of water scarcity, such as the Mediterranean area [31]. Considering high pollutants,
such as nitrate and phosphates, the comparison between the water systems revealed a
clear removal of these nutrients with values of around 28%, which are slightly lower in
comparison to the data reported in other cascade cropping systems (around 30%) [17,25].
These high rates of nitrate and phosphate removal discharged into the environment are
beneficial for the adequate maintenance of water resources, since both nutrients are the
main cause of water eutrophication processes [32]. In our experiment, in the case of sulfates
(28%), the rate of removal is similar to the range proposed by other researchers in a cascade
cropping system with Cucumis melo and Rosmarinus officinalis [32] in the different water
systems assessed (from 27 to 39%). Regarding chloride, the removal rate in our experiment
(42%) was much greater than in previous experiences [17,25], with values of around 12%.
This higher rate of chloride removal can be associated with the uptake of these salts for an
enhancement of crop growth, as reported by Garcia Caparros et al. [33], since the choice of
the species for a cascade cropping system is mainly based on the species’ increasing salt
tolerance capacity.

As for the cation loads, it is necessary to point out that in our experiment the rate
of removal between the different cations assessed was similar, with values of around
28%. These removal values were within the ranges noted by other researchers in similar
growing systems, such as those reported by Garcia-Caparros et al. [17,25]. The removal
of cations, especially sodium, is of crucial importance in order to avoid the salinization of
the soil and the aquifers [34]. Moreover, the higher rate of removal of these cations can be
ascribed to the nutrient requirements of the species selected, which are involved in crucial
physiological processes in plant growth and development [35–37].

5. Conclusions

The results obtained show that fertigation with the sequential reuse treatment resulted
in a clear reduction in the dry weights of D. deremensis and D. marginata plants. Nevertheless,
the addition of H2O2 to the leachate enhanced the growth of these species, resulting in a
higher dry weight. The comparison between open and closed systems revealed a greater
water saving along with greater nutrient removal in the closed systems compared to the
open draining system. These results suggest that future experiments on cascade cropping
systems should include different volumes of H2O2 to check if the ameliorative effect is
similar, or even better.
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