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Abstract: Analysis of the rise in prices for consumer goods is a state’s priority task. The state assumes
the obligation to regulate pricing in all spheres of consumption. First of all, the prices for essential
commodities to which agricultural products belong are analyzed. The article shows the changes
in prices for consumer goods of agricultural products (sugar) during a pandemic. The analysis of
forecasting prices for sugar and its impact on the development of its production is carried out. The
construction of the forecast model was based on extrapolation. The structure of a forecast model for
price changes was based on the analysis of the time series of the Autoregressive Integrated Moving
Average (ARIMA) class. This model consists of an autoregressive model and a moving average model.
A forecast of the volume of domestic sugar transportation by rail has been completed. The algorithms
implemented this model for searching for initial approximations and optimal parameters for the
predictive model. The Hirotsugu Akaike Information Criterion (AIC) was used to select the best
model. The algorithms were implemented in the Python programming language. The quality check
of the description was performed with a predictive model of actual data. An economic interpretation
of the rise in sugar prices and proof of the forecast’s truth obtained from a financial point of view
were carried out.

Keywords: agronomy; machine learning; predictive analytics; autoregressive integrated moving
average; Box–Cox transform

1. Introduction
1.1. Problem Statement

Agriculture is a large and multi-stage industry. The sustainability of the development
of this industry is the primary task of the state. Therefore, in today’s circumstances, it
is possible to exercise qualitative control over each sector only when designing, using
and implementing effective forecasting and planning mechanisms. A comprehensive
assessment of the state of the future makes it possible to study promising development
programs and evaluate the consequences of decisions taken at a given time. The coronavirus
pandemic has caused severe damage to all major world powers’ economies. Russia is no
exception: high mortality, global instability, job losses, and declining wages— no analyst
forecast predicted such a large-scale disaster. In 2020, there has been a constant rise in
goods’ prices. According to Rosstat estimates, fruits and vegetables have risen in price
by 17.40% sunflower oil by 25.91%, and cereals by 20.12% for this period. However, the
most significant increase in consumer prices fell on sugar— 64.54%. Due to such negative
dynamics, it was decided to analyze this area.
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In Russian practice, the primary method for the production of granulated sugar is
the processing of sugar beets. Consequently, a seasonal component appears [1,2]. The
amount of vegetables harvested is influenced by the area planted and the yield. The more
space is planted with fertile vegetables, the more abundant the harvest will be. Next, the
harvested beets are transported to unique factories, where the root crop will be processed
into sugar. The next stage is the transportation of products from the manufacturer to the
consumer. In the domestic market, rail and freight delivery to the point of sale is carried
out. Thus, transportation is a critical link in the chain described above. The target variable
for our study is the price of sugar. The forecast of the sugar price will be carried out, taking
into account the volume of sugar transportation in the country (using the example of the
Russian Federation) from 2020 to 2023. Product transport data from 1 January 2011 to
31 December 2019 will be selected as input data for the simulation. In this case, the base
time interval in the analysis will be considered the calendar month of each year and the
corresponding indicator characterizing the amount of sugar transported during this period.
Having built a predictive model and ensuring its accuracy, we will determine the trend
towards decreasing or increasing the volume of domestic traffic of the product in question.
Based on this result, we will predict the dynamics of sugar prices in the short term. For
this, we consider the inverse correlation of the demand for a product with the price itself—
an increase in value will guarantee a decrease in order. In this case, the volume of cargo
transportation in the country will also decrease. Since we will already know the amount
of sugar transported over the following years, we will estimate the cost measure of the
product itself [3].

1.2. Justification of the Choice of Methods for Solving the Problem

There are two broad approaches to forecasting: extrapolation (the models are based on
the experience) and modeling (the study of the dependence of factors affecting a parameter
is used as a basis). The choice must be made based on both the study and the available data.
The research will be based on data from previous years on the volume of transported sugar
in the country for different time intervals. In the analysis, we will rely on a time series. As a
forecasting method, we will choose extrapolation since the internal transportation of sugar
is characterized by the time and volume of the transported cargo. Many models allow
forecasting with varying degrees of accuracy: correlation–regression analysis [4–7], neural
network models [8,9], research-based on multiple regression [10–12], models based on
classification–regression trees [13,14], maximum likelihood sampling models [15–17] and
many others [18–21]. For forecasting economic time series, models of the ARIMA class are
used [22]. Our study will use the ARIMA and Seasonal Autoregressive Integrated Moving
Average (SARIMA) models as there is a seasonal component in the data. The relevance
of the application of these methods is confirmed in some studies by leading scientists.
Some studies were modeled and predicted using ARIMA, SARIMA, and other stochastic
models and related to agricultural productivity: water resources, hydrology and quality,
and others [23–26].

2. Data Preparation and Transformation
2.1. Time Series: Visualization and Checking for Stationarity

Statistically reliable data were taken from the Rosstat estimate for the selected pe-
riod. We have chosen a rather long observation period—from 2010 to 2018. In total,
100 observations were considered in the study. Let us put all the data on a graph (Figure 1)
and conduct a visual analysis. Any time series can theoretically be decomposed into sev-
eral key components: trend, seasonal component, cyclical component, and some random
component. There is a pronounced annual seasonality, that is, the second half of each year
has maximum values.
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Figure 1. Domestic rail transport of sugar in the Russian Federation.

Let us check our time series for stationarity. Unfortunately, there is no one-size-fits-
all method. Each time series is exceptional, and its study algorithm must be selected
individually. Yang L., Lee C., Su J.-J. used the Dickey–Fuller test in their studies [27]. This
work also used the Dickey–Fuller statistical test since it has a significant test power for
series with many observations. The assumption that the series is nonstationary is taken
as the null hypothesis. If during the experiment it turns out that the p-value of the time
series is less than 0.05, that is, the 95.00% significance level is reached, then there will be
grounds to reject the null hypothesis. Using the Python toolkit, this can be done as follows
(Figure 2):

Figure 2. Implementation of the Dickey–Fuller test in Python.

The Dickey–Fuller criterion gives an attainable significance level of 0.010. Conse-
quently, the null hypothesis is rejected, so the series is considered stationary. However, the
graph shows that the trend is visible. Since we could not conclude the presence or absence
of a trend in the series, we will apply another very effective criterion of inversions. It is
advisable first to formalize the hypotheses:

H0 : Ei = x, i = 1, 2, 3, . . . , N− no trend
H1 : IEi+1 + Ei I > 0, i = 1, 2, 3, . . . , N − 1− trend
Next, it is necessary to calculate how many times an inequality of the form xi > xj,

i < j. Let us denote this quantity as I. The area of acceptance of the null hypothesis is as
follows (1):

I100;1−α/2 < I < I100;α/2 (1)

Now, let us search for the normalized statistics I_ and the number of inversions in our
time series using the inversion criterion (Figure 3).

According to the corresponding criterion table at a significance level of 0.05, we
can find:

I100;1−α/2 = I100;0.975 = 2145
I100;α/2 = I100;0.025 = 2751
Therefore, hypothesis H0 should be rejected with a 5% significance level since I = 3086

does not fall within the confidence interval between 2145 and 2751, resulting in a non-
stationary time series. It is advisable to check this statement using the Seasonal-Trend
Decomposition Procedure Based on Loess (Figure 4).
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Figure 3. Implementation of the statistical test of inversions in Python.

Figure 4. Seasonal-Trend Decomposition Procedure Based on Loess.

In Figure 4, the trend shows the general downward direction of the data. Consequently,
the series is unambiguously nonstationary. Information from graphs 3 and 4 will be of
great value in further research. The seasonal and residual information will be critical in
further developing the forecast model. This conclusion is confirmed by the studies carried
out in this direction by Guisande C., Rueda-Quecho A.J., Rangel-Silva F.A., Ríos-Vasquez
J.M., Xiong T., Li C., Bao Y., Nguyen L., Novák V. [28–30].

2.2. Box–Cox Transform and Data Stabilization

In most cases, the data in the series have a noise component. This component affects
the correctness of the assessment and the adequacy of the conclusions. It is possible to
facilitate the task and level the arising noise components by smoothing the time series.
This operation makes the data more stable and more convenient to work with. One of
the most effective is the Box–Cox transformation. The application of this method can be
noted in a number of studies by Voyant C., Notton G., Duchaud J.-L., Almorox J., Yaseen
Z.M., De Lima e Silva P.C., Severiano C.A., Alves M.A., Silva R., Cohen M.W., Guimarães
F.G. [31,32]. In a situation where λ tends to zero, the variable will result in a logarithmic
form, while at λ = 1—to linear. By varying λ, you can constantly change from linear to
logarithmic and vice versa. The model will be smoother and more stable, which will lead
to its good quality. We convert the series and find the optimal parameter λ (Figure 5):
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Figure 5. Time series transformation using the Box–Cox test.

The graph shows that the program has found a suitable parameter λ = −0.449. The
chart shows that the values on the ordinate have stabilized and are concentrated around a
constant. Our new series may now be stationary. This can be checked using the previously
used Dickey–Fuller criterion (Figure 6):

Figure 6. Applying the Dickey–Fuller test to the transformed series.

The p-value turned out to be 0.044. That is, the series can be considered stationary.
However, visually, we see again that there is a decreasing nonlinear trend. We conclude
that the series, despite the applicable criterion’s results, cannot be called stationary [33].
When analyzing data, you cannot rely entirely on the fairness of standards or methods, as
they do not always give the expected results.

2.3. Time Series Differentiation

Some techniques allow you to transform the original series into a stationary one. The
most effective and easy to use is the method of differentiation, which enables you to stabilize
the average value of the series and remove various changes in its level. The principle of
the operation of such a method is to subtract the previous observation from the current
one. As a result, we will obtain a calculated “series of differences”, which can be further
investigated. Differentiation is seasonal and common. They can be applied repeatedly both
separately from each other and in combination. For example, if a series has a pronounced
seasonality, then it is always recommended to conduct seasonal differentiation first. In
some cases, the series may be stationary after the first iteration. We apply the above
procedure to our series (Figure 7):

Considering the optimal parameter of the Dickey–Fuller criterion [34], we conclude
that the series is stationary. Let us carry out one more normal differentiation to consolidate
this result (Figure 8). The series is now unambiguously stationary. The trend type has
changed its structure. If there was a smoothly descending trend in the original time series,
there is no systematic behavior—the values arbitrarily fluctuate around a constant. This is
precisely the result we wanted to achieve by differentiation. The transformed time series is
stationary. Now, we can build a predictive model.
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Figure 7. Application of seasonal differentiation and decomposition of a time series into components.

Figure 8. Application of normal differentiation and decomposition of a time series into components.

3. Making a Forecast of the Volume of Domestic Sugar Shipments by Rail
3.1. Finding Initial Approximations for the Predictive Model

Consider the autocorrelation [35] and partial autocorrelation functions [36] for the
resulting transformed time series. In a general sense, an autocorrelation function can be
understood as a measure of the linearity of the relationship between elements of a time
series that are distant from each other by a certain number of points in time. It is possible
to quantify the degree of similarity between the values of the series at neighboring points
with the help of such a function. That is, it is the usual Pearson correlation coefficient [37]
between the values of a given time series and its copy shifted by a certain number of
values. The partial autocorrelation function is the autocorrelation of the residuals of the
previous order autoregressive. It allows you to see the periodicity in the data and find
the autoregressive order of the time series. With the help of graphs, we will look for
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parameters for our model. We visualize with the use of Python two correlograms for the
two time-differentiated series obtained in the previous paragraph (Figure 9):

Figure 9. Autocorrelation and partial autocorrelation function graph.

Let us limit the number of lags along the abscissa axis to 36 so that the graph is not
noisy. The blue corridor, which predominantly contains points, is the confidence interval
(automatically set at 95%). Values outside this range are likely to be correlated rather than
statistical randomness. So, let us proceed to select initial approximations for the forecast
model [38] Let us first consider the graph of the autocorrelation function. To determine
the initial approximation for the Q parameter, you need to pay attention to the maximum
seasonal lag, which differs from 0. The seasonality period in our time series is one year
or 12 months. We must find the largest value, which will be a multiple of 12. At the same
time, it must necessarily go beyond the blue confidence corridor. The correlogram shows
that the first and only value that satisfies us is 12. Therefore, determine that Q = 1. From
one graph of Figure 9, you can also identify q. In our case, 12, 13 and 18 lags significantly
differ from 0. It is not possible to take the seasonal coefficient as an initial approximation.
Briefly, 18 lag is too large and will not be used in further work. There is only one number
left, which will represent q – 13. Next, we turn to the plot of partial autocorrelation to find
initial approximations for the parameters P and p. The logic here will be identical to that
used in the first correlogram analysis. So, the graph shows that P and p are equal to 3.

3.2. Finding the Optimal Parameters for the Predictive Model

The resulting SARIMA model consists of the following key components: P = p = 3,
Q = 1, q = 13. Let us take d and D as the number of times the series’ regular and seasonal
differentiation is carried out, respectively. Since we performed both actions once, the
parameters will be equal to 1. Consideration of the vector representations of the values
shows that there will be 448 possible sets. From these combinations, it is necessary to
choose the optimal one, that is, to set up the forecast model. The AIC allows you to choose
the best model from several proposed. With the correct selection of initial approximations,
the criterion will choose an optimal set of parameters from the set of values. We assume
that several of the 448 models will be outliers. When hitting them, the row will diverge,
the program will issue an error notification, thereby interrupting the iteration cycle. We
will ignore every unsuitable parameter and consider only those that are similar to optimal.
From the rest, those will be selected for which the value of the information criterion will be
minimal. The Python implementation is shown in Figure 10:
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Figure 10. Application of the Akaike information criterion.

We ended up with 32 unsuitable models. The quality of the selection of parameters is
burdened by the program execution time—with sufficiently large initial approximations, it
can be large (compilation took 15 minutes). So, the best were the sets (1, 1, 1, 1), (1, 1, 0, 1),
(2, 1, 0, 1), (1, 1, 2, 0), with the values of the information criterion −478.70, −478.60, −476.60,
−475.80, respectively. Since it is necessary to select the minimum values, we select the first
combination. As a result, we got the SARIMA model (1, 1, 1) ∗ (1, 1, 1, 12). Simultaneously,
the achieved level of significance Q is high −0.65 (Figure 11).

Figure 11. Statistical indicators of the model.

3.3. Analysis of the quality of the constructed model

Let us analyze the residuals. The residuals can be called the difference between actual
data and predicted values. By this critical component of the time series, the quality of
the constructed model is judged. In addition, using the residuals, one can say about the
presence of any fundamental or not very gross errors [39]. Visually, according to the
correlogram (Figure 12), it is possible to determine spontaneous behavior.

Figure 12. Results of the application of the Dickey–Fuller test and the Student’s test. Building
a correlogram.
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There is no seasonality or trend here. We can visually see that the remnants look
like noise. However, visual analysis is not enough to draw definitive conclusions. There-
fore, it is necessary to show that the model works stably using a theoretical approach.
There are several essential properties inherent in adequate residuals—unbiasedness, non-
autocorrelation, stationarity [40]. Let us check each item. The first thing to check is
unbiasedness. This term is understood as the equality of the mean value to zero. To do this,
we will use the Student’s test. The achieved significance level is approximately 0.720, which
means that the hypothesis of unbiasedness is not rejected. The Dickey–Fuller criterion quite
unambiguously confirms that the idea of non-stationarity is denied. That is, the remainders
are stationary. The absence of autocorrelation can be justified by considering the correlo-
gram in the previous paragraph. The high attainable level of significance confirms this. As
a result, the residuals are unbiased, stationary, and non-autocorrelated. The fulfillment of
all the necessary properties guarantees good trainability of the predictive model.

3.4. Building a Predictive Model

Let us check how well our predictive model will describe the initial data (Figure 13).

Figure 13. Checking the quality of the description of the predictive model of actual data.

The predicted values of the model’s results are highlighted in red on the chart. Visual
analysis reveals good data fit. This result can be confirmed by searching for the mean
squared difference (MSE) between estimated and actual values (Figure 14). The obtained
result— 1.105 shows that under the conditions of the study, it can be considered a permis-
sible deviation. The high level of similarity between the present and predicted values is
indicated by the high correlation coefficient— 0.920.

Figure 14. Finding the mean squared difference (MSE) between estimated and real values.

Let us apply the inverse Box–Cox transformation to return our changed series to its
original form. Let us carry out the forecast for four years ahead (Figure 15).
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Figure 15. Building a forecast.

The trained model claims that domestic rail transport of sugar declined in 2020. In
subsequent years, the volume of deliveries will remain at the level of the date in question.
Since the price of sugar is inversely correlated with domestic supply, the cost measure
should rise.

4. Economic Interpretation of Rising Sugar Prices

Let us prove our forecast’s truth from an economic point of view. The trend towards
reducing the volume of domestic transport of sugar by rail is apparent. This may be due
to many different applied factors, including the importance of imports and exports of
products, logistic redistribution of transport load, changes in the agricultural sector, the
ratio of supply and demand for goods. We will analyze each of the listed segments, identify
patterns and compare them with the forecast results to make a competent conclusion. The
first step is to build graphs for the import (Figure 16) and export (Figure 17) of sugar.

Figure 16. Import of sugar from Russia.

There has been a gradual decrease in the volume of sugar supplies from abroad over
the past ten years. However, this indicator is still far from 0.

The reverse dynamics can be seen in the supply of goods abroad. The export level
is actively increasing from 2016 to 2019. A contradiction arises: with a sufficient number
of products in the country for self-sufficiency and high export volumes, importing sugar
from abroad continues. Some experts call such a government decision a political move
(Common Economic Space with Belarus). Others believe that the small volume of imports
is a market partnership. Another opinion: in Russia, sugar is made not only from sugar
beets but also from raw cane, the raw material for which does not grow in our country.
Beets are harvested from late summer to mid-autumn. Furthermore, it is processed in
factories into sugar. Even though this production method is the main one, this production
may theoretically not be enough for the whole year. Then, there will be an acute sugar
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deficit in the country. People will start to buy goods in bulk, and this can cause an increase
in prices for it. The general excitement creates popular discontent, which the state will
remove by artificially lowering costs. Therefore, there are alternative technologies for the
production of sugar. In particular, the cane base is also used, which Russia imports. In any
case, the trade surplus for this product cannot explain either the slowly decreasing trend in
domestic rail transport of sugar or the change in its pricing policy.

Figure 17. Export of sugar from Russia.

The next stage is the logistic redistribution of the transport load. Grain rail hoppers
and particular purpose trucks mainly deliver sugar. Maritime transport also occupies
a niche in the transportation sector; however, it is used for large-scale, long-distance
deliveries. Trains have always been a priority for medium and long distances, while freight
transport carried out delivery from the arrived train to the point of sale or vice versa.
Therefore, one cannot complain about the logistical decision to replace some container
transportations by rail with trucks. Under the main changes in the agricultural sector
related to sugar, it is necessary to understand the dynamics in sugar beet yields (Figure 18)
and the regulation of the volume of cultivated areas.

Figure 18. Productivity of sugar beet c/ha harvested area in the Russian Federation.

Producers choose favorable regions of the country for sowing and growing root
crops. This is mainly the southern part of Russia, particularly the Krasnodar Territory.
The indicator is quite unstable throughout the entire period of time, but there were no
unproductive years for the period under consideration. In 2020, the country’s southern
regions experienced unfavorable weather conditions: the summer was dry, and the spring
was cold. An active reduction in acreage accompanied the climatic situation. As a result,
farms had a high proportion of re-seeding. As a result, the yield decreased by 23.00%,
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and the average yield indicator in the period under review was 420 c/ha. This parameter
cannot be called high, since the advanced economically developed countries have a similar
indicator of more than 500 c/ha. However, until 2020, Russia managed to successfully
supply the domestic market and supply the surplus for export. With not the highest yield,
this can only be conducted with very large sown areas (Figure 19).

Figure 19. The sown area of sugar beet in the Russian Federation—a thousand hectares.

The chart shows an increase of 21.00% from 2013 to 2019. The Ministry of Agriculture
decided to reduce the cultivated area in 2020, as in the last time, the volume of sugar
production exceeded the level of consumption. The changes in the agricultural sector
turned out to be very serious; there was a decrease in the importance of sugar beets. This
could be a possible reason for a potential shortage in the sugar market. However, this
needs to be verified by comparing consumption and production levels. When analyzing
production, it is critical to say about the technological equipment of factories in the country.
At the moment, about 70 enterprises are operating in Russia. Of these, about a third are
owned by individuals, which contributes to the development of competition. This gives
rise to introducing the latest technologies in factories and the integration of domestic
manufacturers into world trade. At the same time, a good climate for the inflow of
investment into the industry is created directly through such initiatives. At the same
time, sugar beet is not a profitable agricultural crop. Figure 20 shows the production and
consumption of sugar in the Russian Federation from 2010 to 2019.

Figure 20. Production and consumption of sugar in the Russian Federation.

If in the early 2010s consumption exceeded production, then, starting in 2016, the
situation begins to change dramatically. This can be explained by the fact that the country’s
total population in the period under consideration, according to Rosstat data, increased
by more than one million people. The level of demand for sugar in 2019 remained ap-
proximately the same as it was in 2011. At the same time, the total tonnage of the sugar
produced is gradually increasing. The production volume has dropped significantly in
the last year, while consumption has not undergone significant changes. This dynamic is
driven by the changes in the agricultural sector that were mentioned earlier. There was
a deficit in the sugar market in 2020. Thus, in the Russian Federation, consumer price
volatility can be explained by the population’s expectation of a sugar shortage due to a
decrease in crop yield and a difficult economic situation in the country and the world. Over
the past five years, the average inflation rate has been relatively high—about 6.60%. This
was accompanied by a decline in real incomes of the population in 2015, 2016, and 2017 by
3.20%, 6.00% and 2.00%, respectively. While the figure rose by 2.00% in 2018 and 2019, it
was down by 3.50% again in 2020. All this testifies to a decrease in the purchasing power
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of citizens, and, with positive population growth, the demand for sugar remains stable. In
addition, the domestic rise in prices was supported by the global trend—in the 4th quarter
of 2020, quotations for sugar futures increased significantly.

5. Conclusions

The paper proposed analyzing a comprehensive assessment of sugar prices in the
Russian Federation in 2020. Transportation is an important component in determining the
price. In open sources, there is no up-to-date data on the domestic transportation of the
goods in question by rail, so we built the SARIMA predictive model. The direct support
here was the indicators for the period from 2011 to 2019. As a result of the work of the
model, a decrease in the volume of sugar transportation in 2020 was determined. Since the
price of a product is inversely correlated with the number of goods transported, a reduction
in supply should be accompanied by an increase in the price of sugar. Since the forecast
contains a probabilistic nature, it must be substantiated empirically from an economic
point of view. To do this, it was proposed to analyze the following factors: the volume of
imports and exports of products, logistic redistribution of transport load, changes in the
agricultural sector, the ratio of supply and demand for goods in the country. The situation
on the sugar market in Russia is ambiguous. On the one hand, the Ministry of Agriculture
is trying to prevent a crisis situation in this sector, finding the optimal yield and acreage
ratio. On the other hand, 2020 has shown that the desire to cover domestic consumption
does not always bring the desired result. The weather conditions greatly influenced the
amount of the harvested crop. As a result, the volume of sugar production decreased,
which caused a deficit, supported by the unfavorable situation in the country and the low
purchasing power of the population. As a result, there was an active rise in prices, which
was predicted using the SARIMA class model. This confirms the adequacy of our chosen
methodology. Many other agricultural sectors can be assessed in the same way—with the
right approach, planning accuracy will be high. The use of the predictive model considered
in the article will make it possible to influence the increase in sustainable development of
agriculture in any, even the most difficult, situations. This study has important insights
for sustainable agricultural development. The results have important practical value and
can be used to predict significant factors such as product price, sales volumes, imports and
exports of agricultural products, etc. Those wishing to be acquainted with the full version
of the study, data set, program code can send a request to the authors of this article.

Author Contributions: Conceptualization, S.K. and P.N.; formal analysis, D.S.; methodology, S.K.
and R.G.; project administration, M.T. and P.N.; resources, I.B.; software, M.T. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mohammadi-Ahmadmahmoudi, E.; Deihimfard, R.; Noori, O. Yield gap analysis simulated for sugar beet-growing areas in

water-limited environments. Eur. J. Agron. 2020, 113, 125988. [CrossRef]
2. Khozaei, M.; Kamgar Haghighi, A.A.; Zand Parsa, S.; Sepaskhah, A.R.; Razzaghi, F.; Yousefabadi, V.; Emam, Y. Evaluation of

direct seeding and transplanting in sugar beet for water productivity, yield and quality under different irrigation regimes and
planting densities. Agric. Water Manag. 2020, 238, 106230. [CrossRef]

3. Rajaeifar, M.A.; Sadeghzadeh Hemayati, S.; Tabatabaei, M.; Aghbashlo, M.; Mahmoudi, S.B. A review on beet sugar industry
with a focus on implementation of waste-to-energy strategy for power supply. Renew. Sustain. Energy Rev. 2019, 103, 423–442.
[CrossRef]

4. Hu, Y.; Xia, X.; Fang, J.; Ding, Y.; Jiang, W.; Zhang, N. A Multivariate Regression Load Forecasting Algorithm Based on Variable
Accuracy Feedback. Energy Procedia 2018, 152, 1152–1157. [CrossRef]

5. Hu, J.; Heng, J.; Wen, J.; Zhao, W. Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy
and quantile regression based algorithm. Renew. Energy 2020, 162, 1208–1226. [CrossRef]

6. He, F.; Zhou, J.; Mo, L.; Feng, K.; Liu, G.; He, Z. Day-ahead short-term load probability density forecasting method with a
decomposition-based quantile regression forest. Appl. Energy 2020, 262, 114396. [CrossRef]

http://doi.org/10.1016/j.eja.2019.125988
http://dx.doi.org/10.1016/j.agwat.2020.106230
http://dx.doi.org/10.1016/j.rser.2018.12.056
http://dx.doi.org/10.1016/j.egypro.2018.09.147
http://dx.doi.org/10.1016/j.renene.2020.08.077
http://dx.doi.org/10.1016/j.apenergy.2019.114396


Agronomy 2021, 11, 1235 14 of 15

7. Yu, Z.; Qin, L.; Chen, Y.; Parmar, M.D. Stock price forecasting based on LLE-BP neural network model. Phys. A Stat. Mech. Appl.
2020, 124197. [CrossRef]

8. Begam, K.M.; Deepa, S.N. Optimized nonlinear neural network architectural models for multistep wind speed forecasting.
Comput. Electr. Eng. 2019, 78, 32–49. [CrossRef]

9. Du, Z.; Hu, Y.; Buttar, N.A. Analysis of mechanical properties for tea stem using grey relational analysis coupled with multiple
linear regression. Sci. Hortic. 2020, 260, 108886. [CrossRef]

10. Yilmazer, S.; Kocaman, S. A mass appraisal assessment study using machine learning based on multiple regression and random
forest. Land Use Policy 2020, 99, 104889. [CrossRef]

11. Rastgou, M.; Bayat, H.; Mansoorizadeh, M.; Gregory, A.S. Estimating the soil water retention curve: Comparison of multiple
nonlinear regression approach and random forest data mining technique. Comput. Electron. Agric. 2020, 174, 105502. [CrossRef]

12. Amoozad-Khalili, M.; Rostamian, R.; Esmaeilpour-Troujeni, M.; Kosari-Moghaddam, A. Economic modeling of mechanized and
semi-mechanized rainfed wheat production systems using multiple linear regression model. Inf. Process. Agric. 2019, 7, 30–40.
[CrossRef]

13. Fan, J.; Yue, W.; Wu, L.; Zhang, F.; Cai, H.; Wang, X.; Xiang, Y. Evaluation of SVM, ELM and four tree-based ensemble models
for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric. For.
Meteorol. 2018, 263, 225–241. [CrossRef]

14. Koklu, M.; Ozkan, I.A. Multiclass classification of dry beans using computer vision and machine learning techniques. Comput.
Electron. Agric. 2020, 174, 105507. [CrossRef]

15. García Nieto, P.J.; García–Gonzalo, E.; Arbat, G.; Duran–Ros, M.; Ramírez de Cartagena, F.; Puig-Bargués, J. Pressure drop
modelling in sand filters in micro-irrigation using gradient boosted regression trees. Biosyst. Eng. 2018, 171, 41–51. [CrossRef]

16. Li, S.; Wang, K.; Ren, Y. Robust estimation and empirical likelihood inference with exponential squared loss for panel data models.
Econ. Lett. 2018, 164, 19–23. [CrossRef]

17. Mikkelsen, J.G.; Hillebrand, E.; Urga, G. Consistent estimation of time-varying loadings in high-dimensional factor models. J.
Econom. 2018, 208, 535–562. [CrossRef]

18. Kasahara, H.; Shimotsu, K. Asymptotic properties of the maximum likelihood estimator in regime switching econometric models.
J. Econom. 2018, 208, 442–467. [CrossRef]

19. Balti, H.; Abbes, A.B.; Mellouli, N.; Farah, I.R.; Sang, Y.; Lamolle, M. A review of drought monitoring with big data: Issues,
methods, challenges and research directions. Ecol. Inform. 2020, 101136. [CrossRef]

20. Shittu, O.I.; Asemota, M.J. Comparison of Criteria for Estimating the Order of Autoregressive Process: A Monte Carlo Approach.
Eur. J. Sci. Res. 2009, 30, 409–416. [CrossRef]

21. Kuznetsova, A.; Maleva, T.; Soloviev, V. Using YOLOv3 algorithm with pre-and post-processing for apple detection in fruit-
harvesting robot. Agronomy 2020, 10, 1016. [CrossRef]

22. Du, H.; Zhao, Z.; Xue, H. ARIMA-M: A New Model for Daily Water Consumption Prediction Based on the Autoregressive
Integrated Moving Average Model and the Markov Chain Error Correction. Water 2020, 12, 760. [CrossRef]

23. Sentas, A.; Psilovikos, A.; Karamoutsou, L.; Charizopoulos, N. Monitoring, modeling, and assessment of water quality and
quantity in River Pinios, using ARIMA models. Desalin. Water Treat. 2018, 133, 336–347. [CrossRef]

24. Sentas, A.; Psilovikos, A.; Psilovikos, T. Statistical analysis and assessment of water quality parameters in Pagoneri, river Nestos.
Eur. Water 2016, 55, 115–124.

25. Phan, T.-T.-H.; Nguyen, X.H. Combining Statistical Machine Learning Models with ARIMA for water level forecasting: The case
of the Red River. Adv. Water Resour. 2020, 142, 103656. [CrossRef]

26. Paschke, R.; Prokopczuk, M. Commodity derivatives valuation with autoregressive and moving average components in the price
dynamics. J. Bank. Financ. 2010, 34, 2742–2752. [CrossRef]

27. Yang, L.; Lee, C.; Su, J.-J. Behavior of the standard Dickey–Fuller test when there is a Fourier-form break under the null hypothesis
Econ. Lett. 2017, 159, 128–133. [CrossRef]

28. Guisande, C.; Rueda-Quecho, A.J.; Rangel-Silva, F.A.; Ríos-Vasquez, J.M. EIA: An algorithm for the statistical evaluation of an
environmental impact assessment. Ecol. Indic. 2018, 93, 1081–1088. [CrossRef]

29. Xiong, T.; Li, C.; Bao, Y. Seasonal forecasting of agricultural commodity price using a hybrid STL and ELM method: Evidence
from the vegetable market in China. Neurocomputing 2018, 275, 2831–2844. [CrossRef]

30. Nguyen, L.; Novák, V. Forecasting seasonal time series based on fuzzy techniques. Fuzzy Sets Syst. 2018, 361. [CrossRef]
31. Voyant, C.; Notton, G.; Duchaud, J.-L.; Almorox, J.; Yaseen, Z.M. Solar irradiation prediction intervals based on Box–Cox

transformation and univariate representation of periodic autoregressive model. Renew. Energy Focus 2020, 33, 43–53. [CrossRef]
32. De Lima e Silva, P.C.; Severiano, C.A.; Alves, M.A.; Silva, R.; Cohen, M.W.; Guimarães, F.G. Forecasting in non-stationary

environments with fuzzy time series. Appl. Soft Comput. 2020, 106825. [CrossRef]
33. García, C.A.; Otero, A.; Félix, P.; Presedo, J.; Márquez, D.G. Simultaneous estimation of deterministic and fractal stochastic

components in non-stationary time series. Phys. D Nonlinear Phenom. 2018, 374–375, 45–57. [CrossRef]
34. Aich, U.; Banerjee, S. Characterizing topography of EDM generated surface by time series and autocorrelation function. Tribol.

Int. 2017, 111, 73–90. [CrossRef]
35. Bakar, N.A.; Rosbi, S. Autoregressive integrated moving average (ARIMA) model for forecasting cryptocurrency exchange rate in

high volatility environment: A new insight of bitcoin transaction. Int. J. Adv. Eng. Res. Sci. 2017, 4, 237–311. [CrossRef]

http://dx.doi.org/10.1016/j.physa.2020.124197
http://dx.doi.org/10.1016/j.compeleceng.2019.06.018
http://dx.doi.org/10.1016/j.scienta.2019.108886
http://dx.doi.org/10.1016/j.landusepol.2020.104889
http://dx.doi.org/10.1016/j.compag.2020.105502
http://dx.doi.org/10.1016/j.inpa.2019.06.002
http://dx.doi.org/10.1016/j.agrformet.2018.08.019
http://dx.doi.org/10.1016/j.compag.2020.105507
http://dx.doi.org/10.1016/j.biosystemseng.2018.04.011
http://dx.doi.org/10.1016/j.econlet.2017.12.029
http://dx.doi.org/10.1016/j.jeconom.2018.09.020
http://dx.doi.org/10.1016/j.jeconom.2018.09.019
http://dx.doi.org/10.1016/j.ecoinf.2020.101136
http://dx.doi.org/10.1016/j.ecoinf.2020.101136
http://dx.doi.org/10.3390/agronomy10071016
http://dx.doi.org/10.3390/w12030760
http://dx.doi.org/10.5004/dwt.2018.23239
http://dx.doi.org/10.1016/j.advwatres.2020.103656
http://dx.doi.org/10.1016/j.jbankfin.2010.05.010
http://dx.doi.org/10.1016/j.econlet.2017.07.016
http://dx.doi.org/10.1016/j.ecolind.2018.06.011
http://dx.doi.org/10.1016/j.neucom.2017.11.053
http://dx.doi.org/10.1016/j.fss.2018.09.010
http://dx.doi.org/10.1016/j.ref.2020.04.001
http://dx.doi.org/10.1016/j.asoc.2020.106825
http://dx.doi.org/10.1016/j.physd.2018.04.002
http://dx.doi.org/10.1016/j.triboint.2017.02.016
http://dx.doi.org/10.22161/ijaers.4.11.20


Agronomy 2021, 11, 1235 15 of 15

36. Afyouni, S.; Smith, S.M.; Nichols, T.E. Effective degrees of freedom of the Pearson’s correlation coefficient under autocorrelation.
NeuroImage 2019, 199, 609–625. [CrossRef]
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