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Abstract: Locust outbreaks usually begin in remote unpopulated areas following higher than average
rainfall. The need to survey such areas has suggested that unmanned aerial vehicles (UAVs), often
referred to as drones, might be a suitable means of surveying areas with suitable detection devices to
survey areas and detect important locust concentrations. This would facilitate determining where
sprays need to be applied at this early stage and would minimise the risk of swarms developing and
migrating to feed on large areas of crops. Ideally, a drone could also spray groups of hoppers and
adults at this stage. To date, tests have shown limitations in their use to apply sprays, although it has
been suggested that using a fleet of drones might be possible. The use of biopesticide in these areas
has the advantage of being more environmentally acceptable as the spray has no adverse impact
on birds.
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1. Introduction

Since biblical times, vast numbers of desert locusts (Schistocerca gregaria Forskål, 1775)
have periodically increased to such an extent that the plagues cause extensive damage
to major crops. Locust upsurges occur infrequently and during a recession period, inter-
national organisations have not prioritized research, nor have governments in countries
subject to locust plagues maintained in-country research, due to years of under-funding, so
they are not prepared for locust surveillance and the control of locust swarms when they
do occur.

Over the last 60 years, the onset of a plague has been detected at an early stage, but
in 2019, the early onset of locusts was following cyclones in 2018 which resulted in heavy
rain in the inhospitable deserts of Arabia. This allowed locusts to breed unseen in the wet
sands. Strong winds in 2019 blew the growing swarms into the Yemen where they were
undetected as the country was beset with a war.

Initially, the solitary insects typically occur at low densities across a recession area, but
following a period of good rainfall, the locusts thrived and soon aggregated and formed
swarms, which spread both eastwards to Iran, India and Pakistan, and westwards to
East Africa, with Kenya experiencing its worst outbreak in 70 years. Back in the 1950s,
despite vast areas being invaded by swarms, it was possible to use aircraft to spray
insecticides, including dieldrin to protect crops and eventually reduce the plague [1]
(Figure 1). Dieldrin was used to kill hopper bands that crossed barrier strips and as a very
low dose in very fine sprays to kill swarms of desert locust. However, due to increased
concern over persistent insecticides affecting non-target species, the use of dieldrin was
banned at meeting organised by FAO in 1988 [2]. Following this meeting, the FAO Pesticide
Referee Group was established to advise which insecticides could be used. At the same
time, CABI organised the international LUBILOSA Programme project, which led to the
production of a biopesticide, based on Metarhizium acridum, to control locusts. This major
development provides control of locusts that does not harm people or the environment [3,4].
Today, we need to bring together new technology to improve the detection of locusts in
remote areas and use biopesticide to control locusts before populations build up and
swarms invade extensive farming areas. Once swarms arrive in new areas, the control
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of adult locusts is rapidly needed before crop damage occurs. Biopesticide acts slowly
so insecticides that can achieve high mortality within 24 h are needed. Nevertheless,
the least hazardous insecticides should be selected in terms of mammalian toxicity and
environmental protection.
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2. The Initial Signs of a New Upsurge

During a recession, locusts survive in small numbers as solitary insects in arid areas
in sparsely populated areas from the Atlantic Ocean to Northwest India, but particularly
in the Middle East. After a period of above average rainfall that provides the vegetation,
the locust population in these areas can increase rapidly, which translates into spectacular
hopper band movements and swarms which migrate. Using phenomenological models
using gridded monthly data, Tratalos et al. [7] suggested that desert locust dynamics are
influenced by endogenous factors and rainfall, and that broad patterns of locust upsurges
and declines can be forecast with some degree of success using data on only these factors.

Locust monitoring has relied on ground-based surveys, which have required individ-
ual searches in areas with a history of locust activity, albeit at long and irregular intervals
to notify the national locust control units and share the information with neighbouring
countries and international agencies [8]. As the population increases, and desert locusts
often aggregate to lay eggs, and as they are extremely sensitive to density changes, this
rapidly triggers their phase transformation, resulting in their movement in swarms to new
areas. The phase transition is a continuous, cumulative, and easily reversible process that
can take place within a short period (from 4 h to 32 h) in the desert locust [9,10]. Studies in
China have indicated the presence of an aggregation pheromone in the migratory locust,
Locusta migratoria (Linnaeus, 1758) [11], but as Vosshall [12] discusses, it is not clear whether
pheromone traps could assist in detecting the presence of locusts, or whether a chemical
could be found to block the receptor to prevent aggregation. The latter may not be desirable
as it would not reduce locust populations but rather disperse large numbers of locusts over
even larger areas, making the control of locust concentrations nearly impossible.
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3. Detecting Where the Locusts Can Be Found after a Recession Period

Satellite imagery has been used for finding and mapping emerging vegetation in the
desert. Data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS)
on NASA’s Terra Satellite and the Normalized Difference Vegetation Index (NDVI) are
measures of the health and greenness of vegetation based on how much red and near-
infrared light is reflected. According to Tratalos and Cheke [13], there is evidence of a
positive relationship between NDVI and the presence of grasshopper populations, probably
because grasshoppers were found in areas with higher rainfall. This helps to monitor and
forecast the desert locust [14] by assessing whether the ecological conditions are favourable
to locust survival, breeding, and gregarization, but needs to be accompanied by thorough
observations on the ground for making decisions regarding control interventions against
the initial locust congregations. This significantly reduces the costs and contributes towards
changing the paradigm of locust control from curative to preventive [15]. According
to FAO, current satellites can provide continuous estimates of rain-producing clouds
and ecological conditions, such as vegetation development and soil moisture, which are
important factors for monitoring desert locust habitats and forecasting locust development.
Related to soil moisture, observed differences in grass abundance and size contribute to
locust gregarization [16]. The temporal, spectral and spatial characteristics of the sensor
instruments onboard these earth observation satellites provide a wide range of sensing
capabilities [17].

In 2018, the FAO initiated trials with a long-range fixed-wing drone to examine areas
where locusts could be present by mapping areas of green annual vegetation. Ideally, the
drone needs a range of at least 100 km or more and should be solar powered. Searching veg-
etation is possible with lightweight multispectral sensors with near-infrared (NIR) and/or
red-edge bands, as well as hyperspectral sensors that provide spectral separability [18].
For locust work, the drone initially needs to detect green vegetation by flying at optimal
heights to obtain imagery that can be processed easily and rapidly in the field, so the
team can decide where to intensify survey efforts, again with the drone, to detect locust
concentrations using optical images that could warrant control [19,20]. The drones need to
be easy to operate both manually and automatically, as well as be robust, affordable and
simple to maintain locally in locust-affected countries. As a result of three years of trials
and refinement, the dLocust drone developed by HEMAV (Figure 2) became available
for use in locust-affected countries in 2020 [21]. Imagery is processed in-flight so that
when dLocust completes its long-distance survey, the results are immediately available
and handed over to the eLocust3 tablet used by field teams for recording and transmitting
survey and control data in real time [22,23]. In this way, the team does not need to carry an
additional computer to the field. The eLocust3 tablet was also used to plan the dLocust
flight and operate the drone. Using drones for surveillance with appropriate detection
equipment will enable larger areas to be surveyed in contrast to using ground teams which
may only be able to survey limited accessible areas.

Small multi-rotor drones with propellers positioned parallel to the ground may pro-
vide a more stable flight and vertical take-off ability, but these are liable to damage from
flying locusts. At present, small drones are restricted to carry a limited quantity of spray
(only 10 kg) and have a limited endurance of around 10–15 min productivity for locust
control, due their small size and limited battery life. The drones need to be easy to control
both manually and automatically, as well as be robust, affordable and easy to maintain
locally in locust-affected countries.
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Figure 2. Fixed wing drone for desert locust monitoring (source: FAO [24]).

4. Applying the Biopesticide in Remote Areas at the Initial Stage of
Hopper Development

Studies have been carried out in West Africa to establish the importance of using
the biopesticide known as “Green Muscle®”, and based on the entomopathogenic fungus
Metarhizium acridum [25,26]. The storage methods for fungi would be as dry conidia,
perhaps with clay diluents, or in oils [27]. The LUBILOSA project focused on developing an
oil formulation [28] suitable for ultra-low volume (ULV) application, a technique already
well established for locust control. Early studies in South Africa in trials against Vth instar
Brown locusts (Locustana pardalina Walker, 1870) used a large micro-light aircraft fitted
with Micronair AU7000 atomisers to apply Metarhizium flavoviride isolate IMI 330189. Dry
conidial powder was formulated in a paraffinic oil to apply approximately 2.0 × 1012

conidia per hectare with volume application rates of 1.0 and 2.5 L/ha with the atomiser
blades set at three angles (25, 35 and 45◦). Up to 98% mortality was obtained where locusts
were in open top field enclosures, with the 2.5 L/ha apparently obtaining more consistent
results [29]. As pointed out by Bateman [30], the key problems for further research and
development would be the logistics and supply of consistently reliable formulations for
application at a large scale, and the determination of mechanisms for effective dose transfer
in the field. Since the development of the mycopesticide known as “Green Guard®”, more
than 100,000 ha have been treated with the FI-985 isolate of the fungus Metarhizium anisoplae
var. acridum, since operational use began in Australia in 2000 [31].

At present, attempts to control locusts have been limited to using ground equipment
with hand-carried spinning disc sprayers or using truck mounted equipment. Devel-
opments with ground equipment now include a ground positioning system (GPS) on
truck-mounted sprayers to provide precision while applying ULV insecticide sprays along
parallel tracks whilst also recording the position of the sprayer so that a record of the
treatment is obtained and analysed.
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The biopesticide, now marketed as Novacrid® from Elephant Vert (isolate EVCH077
of Metarhizium acridum), is a dry powder supplied in sachets, which is mixed with an
appropriate oil before application at ULV rates of 1 L/ha and 0.5 L/ha. Oil formulations
were tested in a range of commonly used spinning-disk sprayers, including the hand-held
Micron Ulva-Plus and vehicle-mounted Ulva-Mast [3].

The enormous advantage of using the biopesticide for locust control is that it lacks
adverse side-effects on biodiversity. In a study in Niger, Green Muscle® was sprayed opera-
tionally, using 107 g viable conidia per hectare, where the population of adult locusts, birds
and vegetation greenness were previously simultaneously assessed along two transects
from 12 days until 23 days after treatment [32]. Locusts started dying five days post-spray
and the biopesticide reached its maximum effect one–two weeks after the spray, with 80%
efficacy at day 21. After spraying, kestrels took significantly more of the larger female
(75–80%) than smaller male (20–25%) locusts. This indicated that avian predation increased
the impact of the biopesticide by removing more of the adult female locusts. No direct
or indirect adverse side-effects were observed on non-target organisms including locust
predators, such as ants and birds.

Where areas are accessible, ground equipment can spray up to 300 ha a day at a
fraction of the cost and logistical effort. Similarly, aircraft can spray large areas at relatively
low cost, but substantial logistics are required to support aerial operations.

Using a drone at present requires a trained operator, transportation for the drone
with the spray formulation, an engine-powered generator and fuel for recharging the
batteries. Drone battery technologies are expensive, and the number of charges is limited
with existing technologies to less than an estimated 500 charges or only 75 h actual spraying
before new batteries are required. Clearly, more research and development are needed
to determine the most effective design, and operating procedures are needed to facilitate
the control of hoppers prior to the expansion of the locust reaching plague status, with
appropriate guidance and standard operating procedures (SOPs) for training to enable
drones to be used effectively in certain situations to minimise the formation of swarms.

At present, there is little information available on how to treat desert locusts with
drones in a safe and effective way. Solid scientific-based field testing is required. From
there, guidelines and standard operating procedures (SOPs) can be developed, and training
provided before using drones. The FAO is clear that these are very important steps that
cannot be omitted.

5. Current Trials
5.1. Kenya

Drones were tentatively used in 2020 to determine whether their use would be effective.
In Kenya, the main focus was to target hoppers and roosting locusts with better efficiency
to develop SOPs for the optimal use of the technology. A DJI Agras T16 drone, fitted with
a 16 L tank, six rotors, and programmed for operation in Auto and manual modes, was
used to treat a 6.5 m swath applying 4.8 L/minute and treat 10 hectares. According to
the manufacturer, the drone was fitted with either XR11001VS or XR110015VS fan nozzles
which can apply 3.6 to 4.8 L/min, respectively.

The drone (Figure 3) can be operated at up to 3 km at a flight altitude of 2.5 m from the
operator and spray at a maximum operational flight speed of 7 m/s. There were 16 nozzles
operating from the height of 2.5 m above the canopy, so the drones automatically adjusted
to maintain this height. As per the manual, the pilot controls the flight and the volume
sprayed. The intention was to spray as per the recommendation on the pesticide label,
so various flight parameters to determine which one results closest to the recommended
dosage were tried with different heights and flying speeds.
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5.2. India

The operation of drones was examined by deploying them initially for spot application,
including high trees, dense plantation and inaccessible areas in association with ground
control teams for effective control operation. Fifteen drones were each equipped with a
10 L tank and supplied with eight batteries so that 1 hectare could be treated in 15 min,
and a drone could cover 12–15 hectares during a day. Flat fan nozzles were used for
spraying a mixture of two insecticides, supplied as per EC formulations. They contained
5% lambdacyhalothrin and 2.8% deltamethrin. Insecticide in the range of 100–120 mL was
mixed with 10 L of water. A total of 1753 L of the mixture was applied using 15 drones
over 60 days, covering 7017 hectares in a total of 2007 h.

The flight height was 12.2–13.7 m. Flying speed depended on the whether the target
was in a tree or in fields and ranged from 10 to 20 km/h. Swath width depended on wind
speed and ranged from 1 to 5 m. The volume of spray applied was 10 L per ha. The
mortality of locusts was between 50 and 90% at various locust stages.

No ULV formulations were sprayed and no ULV nozzles were used in drone spraying,
but if used, the area coverage would increase 10 times.

The overall indications to date are that:

(a) The small multi-copter drones do not have an adequate lifting and endurance capacity
to treat more than a small area;

(b) Most have hydraulic pressure nozzles that spray too high a volume so the area that
can be treated is very limited. The power requirement to pump the volume of water
would be better deployed by using ULV sprays applied with a rotary atomiser;

(c) Even when applying a ULV spray with rotary atomisers, the small payload (10–15
kg) carried by drones limits the area that can be treated with significantly higher
operating costs than existing ground sprayers. Spraying small areas of trees on which
locusts can be resting is one example as the target is not easily accessible with ground
equipment;
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(d) Most commercial drones are not designed for ULV products, as pumps, hoses and
plastic materials are not compatible with the formulations being used;

(e) There is a question over durability in desert environments with sand and dust drawn
across exposed electric motors from multi-rotor types;

(f) Battery cost and operating costs are high with limited duty cycle—400 × before they
need to be changed;

(g) A larger payload drone (100 kg+) may offer better potential to fill the gap between
using ground equipment and manned aircraft.

Ideally, locusts are controlled by the aerial application of ultra-low volume (ULV)
sprays from c. 10 m height applied at one litre per hectare, using a spray with droplets
of 120 µm volume median diameter (VMD) [34], while smaller droplets using 70–100 µm
VMD sprays are applied with ground equipment. A narrower and more effective droplet
spectrum is provided by rotary atomisation.

6. Conclusions

At present, the main use of drones will be to improve the surveillance of remote areas
where locust populations can increase following more intense rainfall, especially when
improvements in the effectiveness of deep learning and computer vision algorithms facili-
tate the efficiency of spotting the build-up of locusts to form swarms so that appropriate
measures can be taken sooner [35]. Further research is needed to examine the effectiveness
of drones which carry an increased payload of spray and are equipped with rotary nozzles
to apply ultra-low volume sprays in remote areas and extend surveillance over larger areas,
but also target sprays at hoppers to reduce the development of swarms. Where swarms
have invaded new territories, rapid action insecticides applied as ULV sprays will continue
to be needed. With concerns over climate change, surveillance and the ability to minimise
the formation of swarms will be more important. In addition, in war or insecurity zones,
any control of locusts will remain difficult and realistic mitigation measures will need to be
carefully designed and implemented [36].
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