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Abstract: Volatile organic compounds (VOCs), with negative impacts on the aquatic ecosystem, are
increasingly released into the environment by anthropogenic activities. Water samples were collected
from five areas of the Han River Watershed (HRW) tributaries, South Korea, to detect 11 VOCs, which
were classified as halogenated aliphatic hydrocarbons (HAHs) and aromatic hydrocarbons (AHs).
Among the 11 VOCs, 1,1-dichloroethylene, 1,1,1-trichloroethane, and vinyl chloride were undetected.
The highest concentration compounds were chloroform (0.0596 ± 0.1312 µg/L), trichloroethylene
(0.0253 ± 0.0781 µg/L), and toluene (0.0054 ± 0.0139 µg/L). The mean concentration (0.0234 µg/L)
and detection frequency (37.0%) of HAHs were higher than those of AHs (0.0036 µg/L, 21.0%,
respectively). The Imjin Hantan River area exhibited the highest mean concentration (0.2432 µg/L)
and detection frequency (22.9%), because it is located near industrial complexes, thus, highlighting
their role as important VOC sources. However, the detected VOCs had lower concentrations than
those permitted by the EU, WHO, USA, and South Korea drinking water guidelines. Ecological
risks associated with the VOCs were estimated by risk quotient (RQ); consequently, the predicted
no-effect concentration was 0.0029 mg/L, and the toluene and styrene RQ values were >1 and >0.5,
respectively. The findings may facilitate policymakers in designing pollution control strategies.

Keywords: halogenated aliphatic hydrocarbons; aromatic hydrocarbons; Han River watershed;
industrial complexes; wastewater treatment facilities

1. Introduction

Owing to the rapid development achieved in recent years, human activities (industrial,
agricultural production, and urbanization) have increased, and a significant amount of
artificial organic pollutants have been released into rivers [1,2]. These rivers are regularly
subjected to elevated levels of micropollutants arising from anthropogenic activities and
natural processes [3]. Among the various micropollutants, volatile organic compounds
(VOCs) are primarily recognized as atmospheric pollutants, yet water pollution caused by
these compounds is also gaining increasing interest [4].

The anthropogenic sources of VOC pollutants evoke more concern than natural
sources. Paint and coatings, oil, solvents, agricultural and municipal wastewater, ur-
ban and rural effluents, and atmospheric deposits are the primary sources of anthropogenic
VOCs in aquatic ecosystems [5,6].

When VOCs are introduced into water, they can be diluted, become toxic, and
biodegradable due to the physical and chemical properties of the water, which can have
various effects on the aquatic environment. In particular, VOCs are not readily degraded in
water systems, such as surface water and groundwater due to their mobility [7,8].

The most common VOCs are halogenated organics, monocyclic aromatic hydrocar-
bons (AHs), organic sulfides, BTEXs (benzene, toluene, ethylbenzene and xylenes), and
trihalomethanes (THMs) [9]. Due to their chemical properties of low water solubility, high
lipid solubility, and semi-volatility, VOCs are widely associated with the manufacture
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and use of clothes, toys, paints and inks, adhesives, cosmetics, interior and automotive
decoration items, etc. [10]. As it is primarily used in household goods, it is often detected
in municipal wastewater treatment plants (MWTPs) [11].

VOC exposure can cause sensory irritability, liver and kidney toxicity, nervous system
dysfunction, asthma, cancer, and other health hazards. To protect human health, VOCs
have been classified as priority pollutants and are considered in drinking water quality
requirements [12]. They are included in the category of aesthetic and hazardous organic
compounds in the national water quality standard for domestic drinking water in Korea.
Thus, pollution caused by VOCs in the water systems has received considerable attention
with the advancement of VOC research [13].

The quality of surface water is deteriorating because of high population density
and industrial development [12]. Currently, several studies have been investigating the
concentration of VOCs in surface water [14–18].

Much information is lacking on the reduction of currently controlled VOCs and the
possible health effects of untreated pollutants. Thus, present concentration data and relative
risk statistics are inadequate to define the most critical parameters and do not include
detailed hazard information [19]. Recently, studies on possible ecological risk and exposure
to aquatic species have been conducted to obtain an in-depth understanding of the risks
associated with individual VOCs, particularly through ecological risk assessments [17].

In the Han River Watershed (HRW), VOCs could be discharged into surface water
in downstream areas, specifically as non-point pollutants in agricultural areas and point
pollutants in wastewater discharge facilities in industrial complexes. Therefore, extensive
analysis is required to determine the toxic effects of VOCs on surface water quality. A
study was conducted in 2010 by Cho et al. [5] on VOCs in water. Although 11 VOCs
were investigated in the main streams of the four major rivers of South Korea, additional
investigations for new VOCs, as well as studies on the tributaries where pollutants are
generated, are needed. Therefore, the present study was conducted as part of a national
research project to understand the current status of VOC concentrations in surface water in
the HRW by investigating 11 VOCs, namely halogenated aliphatic hydrocarbons (HAHs)
and AHs. The objectives were to: (1) evaluate the general trends of VOCs and compare
them with VOC standards in different countries, (2) determine the distribution of VOC
concentrations of HAHs and AHs, (3) evaluate the geographical distribution and causes
of VOC pollutants and identify potential pollution sources, such as MWTP and industrial
wastewater treatment plants (IWTPs), and (4) perform an ecological risk assessment. The
findings of this study may help identify the VOC distribution in the HRW and contribute
to the design of pollution control strategies by policymakers.

2. Literature Review of VOCs in Water

With industrialization and urbanization, VOCs have been widely produced and used
in the United States since the 1940s. Therefore, the concentration of VOCs in the environ-
ment is increasing, and most VOCs that have been studied are in the atmosphere [4,20,21].
Recently, research on various environmental media has been conducted in the order of
atmosphere > water > indoor > groundwater > sediment > rainwater (Figure S1). However,
VOCs in the atmosphere are not only soluble in water in their natural state, but also act as
pollutants in the aquatic ecosystem, as well as affecting human health. Such VOCs can have
negative effects, so it is necessary to also study VOCs in the water environment [12–14,17].

Research is being conducted in the water environment in various countries: the
Netherlands (surface water and river) [22], Greece (surface water) [23], Portugal (surface
water) [24], Belgium (surface water) [25], Japan (rainwater) [26,27], the USA (rainwa-
ter) [28], Austria (rainwater) [29], Serbia (rainwater) [30], Nigeria (surface water, effluent
of M/IWTP) [18], Taiwan (effluent of M/IWTP, rainwater, surface water) [31,32], China
(effluent of M/IWTP) [6], and South Korea (surface water, effluent of M/IWTP) [5]. The
reported concentration range of VOCs in the water environment ranged from several ng/L
to mg/L, and was mainly the highest in the effluent of IWTP.
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The most important aspects of monitoring research are that well-managed analytical
equipment, and various application methods for gas and liquid chromatography (GC and
LC) are used. The method detection limit (MDL) and limit of quantitation (LOQ) differ
for each compound, but are mainly between several ng/L and tens of ng/L [5,6,18,22–32].
The most important method for water environment management is obtaining accurate
monitoring and analysis results, and the accumulated results will be used as important
data for policy decisions.

3. Materials and Methods
3.1. Chemicals Used

The 11 target VOCs belong to two different groups: (1) HAHs, namely 1,1-dichloroethylene
(1,1-DCE), 1,1,1-trichloroethane (1,1,1-TCA), bromoform, chloroform, tetrachloroethylene
(PCE), trichloroethylene (TCE), and vinyl chloride; and (2) AHs, including naphthalene,
styrene, toluene, and (m,p,o-)xylenes. Table S1 lists their compositions and chemical formu-
las. Internal standards used in the experiments were fluorobenzene, 1,4-dichlorobenzene-
d4, and chlorobenzene-d5 purchased from Accu Standard Chemicals (New Haven, CT,
USA). All the standards and internal standards were prepared in methanol and refrigerated
before use; however, they were also used fairly quickly. A Purelab DV35 water filtration
device generated ultrapure deionized water (ELGA LabWater, Buckinghamshire, UK). The
chemicals used in this study were of analytical grade or higher, unless stated otherwise.

3.2. Sample Collection

Among the four major watersheds in South Korea, the HRW is an important drinking
water source for the largest number of people in the region, including the capital. In
this study, the watershed was geographically divided into five areas: seven sites at the
South Han River (S), five at the North Han River (N), eight at the Han River (H), 12 at the
Imjin Hantan River (I) and four at the Anseong Stream (A). Thus, a total of 36 sites were
selected to represent the upstream and downstream sites of MWTP and IWTP, as well as the
confluence of tributaries (Figure 1). One water sampling was conducted in October 2016.
Geographic coordinates were measured at each sampling site using a handheld global
positioning system and summarized in Table S2. The sampling points and the coordinates
of the MWTP and IWTP are described in Table S3.

Water samples were collected in a Teflon bailer (1536-STDB-VT, ESS, San Jose, CA,
USA), transferred to pre-cleaned 40 mL brown amber glass vials with open-top screwcaps
and Teflon-lined septa without headspace. Collected samples were immediately stored
at 4 ◦C in the ice-filled cooler transported to the laboratory prior to analysis and were
analyzed after four days. Water quality was measured with a YSI-556 MPS water quality
meter (YSI Inc., Yellow Springs, OH, USA) during sampling, and the results are shown in
Table S4.
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Figure 1. Distribution of sampling sites in the Han River watershed, South Korea.

3.3. Analytical Method and Quality Analysis

Before the analysis, 50 µL of IS mixed solution (0.2 µg/mL in methanol) was added
to each 40 mL sample. The analytes were separated using an Agilent DB-624 column
(length = 60 m, internal diameter = 0.32, and film thickness = 1.8 µm) installed in a Scion SQ
456-gas chromatography/mass spectrometry (GC/MS) system (Bruker, Billerica, MA, USA)
combined with purge-and-trap (P and T) automatic sampler (AQUATek 100, Teledyne
Tekmar, Mason, OH, USA) and by following the standard methods in US EPA 524.2/8260.
The injector was run in splitless mode at 250 ◦C for 5 min before being purged. The carrier
gas used was 1.0 mL helium (air gas, 99.999% purity) at a steady flow rate. The temperature
of the column was varied as follows: set at 30 ◦C for 2 min, then raised to 140 ◦C at
8 ◦C/min for 10 min, and finally raised to 220 ◦C at 30 ◦C/min for 4 min. The ionization
was achieved at 70 eV in the electron impact mode and the data were obtained in selected
ion monitoring mode (Table 1). VOCs were detected by comparing retention times between
samples and a standard solution containing individual VOCs. To test and determine
the precision of the VOCs analysis, we performed spike and recovery tests and verified
the linearity of the dilution experiment. Field samples and quality assurance/quality
control (QA/QC) samples were processed similarly. Linear calibrations were obtained
with correlation coefficients greater than 0.99 in the range of 0.03–100 µg/L. The average
recoveries for the target VOCs ranged from 89–118%, with relative standard deviations
ranging from 1.1% to 6.7%, and the MDL and LOQ for the target compounds ranged
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from 0.005–0.012 µg/L and from 0.016–0.038 µg/L, respectively. Reagent blank analysis
shows no pollutant in the analysis system and glass products. Table 1 presents detailed
information on the aforementioned experiments.

Table 1. Quantification ion, method detection limit (MDL), limit of quantitation (LOQ), recovery, and precision of the
target VOCs.

Classification Retention Time
(min)

Quantification
Ion (m/z)

MDL
(µg/L)

LOQ
(µg/L)

Recovery
(%)

Precision
(%)

1,1-Dichloroethylene (1,1-DCE) 8.27 60.7 0.006 0.020 94 1, 105 2 4.2 1, 2.8 2

1,1,1-Trichloroethane (1,1,1-TCA) 13.01 96.8 0.011 0.036 108, 89 6.7, 2.9
Bromoform 22.93 172.6 0.010 0.031 105, 92 5.9, 1.1
Chloroform 12.68 82.7 0.012 0.038 118, 96 6.4, 1.3

Naphthalene 30.93 127.8 0.007 0.024 106, 104 4.5, 1.9
Styrene 22.36 103.9 0.005 0.016 100, 99 3.1, 1.4

Tetrachloroethylene (PCE) 18.90 165.7 0.010 0.030 97, 94 6.3, 2.3
Toluene 17.75 90.9 0.009 0.030 105, 98 5.7, 1.4

Trichloroethylene (TCE) 15.05 94.8 0.005 0.016 101, 101 3.2, 1.9
Vinyl chloride 5.21 62.0 0.009 0.029 100, 90 5.8, 2.4

m,p-Xylene 21.36 90.9 0.007 0.021 103, 98 4.0, 0.9
o-Xylene 22.32 90.9 0.005 0.016 102, 97 3.1, 1.4

1 0.05 µg/L (n = 7) and 2 0.5 µg/L (n = 7) concentration of spike test samples.

3.4. Data Analyses

Excel 2016 (Microsoft Co., Redmond, WA, USA) was used to compute descriptive
statistics (minimum, maximum, mean, and frequency of detection), while Sigmaplot 12.0
(Systat Inc., Point Richmond, CA, USA) was used to plot graphs. To assess variations in
prescription residual quantities, a one-way analysis of variation and two-sample paired
t-test were used. Using Minitab 15 (Minitab Inc., State College, PA, USA), variations were
deemed significant if they were less than 0.05. ArcGIS 9.2 (ESRI, Redlands, CA, USA) was
used to construct a visual map of the HRW.

3.5. Evaluation of Ecological Risks

Based on the maximum value of measured environmental concentration (MEC),
we calculated the risk quotients (RQs) of the detected VOCs to estimate their ecologi-
cal risks. Briefly, the predicted no-effect concentration (PNEC) value was derived us-
ing toxicity data from the US Environmental Protection Agency (US EPA) ECOTOX
database (http://cfpub.epa.gov/ecotox (accessed on 26 March 2021)) and the assessment
factor (AF) was determined based on the technical guidance of the European Commission
(2018) [33]. The RQ values of each VOC were obtained by dividing the highest MECs by
the PNEC. If the RQ value was greater than one, the existence of a potential ecological risk
can be inferred. Detailed calculations are described in Table 2.

Table 2. Aquatic toxicity data and PNEC values for VOCs on aquatic organisms.

Classification Species Effect Parameter Conc.
(mg/L)

Test Duration
(Days) Ref. AF PNEC *

(µg/L)

Bromoform Cyprinus carpio Mortality LC50 52 NR 1 [34] 100 520
Chloroform Daphnia magna Mortality NOEC 1.8 21 [35] 50 36

Naphthalene Oncorhynchus mykiss Mortality LC50 0.11 27 [36] 1000 0.110
Styrene Pseudokirchneriella subcapitata Population NOEC 0.063 4 [37] 1000 0.063

PCE Pimephales promelas Growth NOEC 0.5 32 [38] 50 10
Toluene Oncorhynchus mykiss Mortality LC10 0.0029 27 [39] 50 0.058

TCE Ceriodaphnia dubia Reproduction NOEL 7.26 7 [40] 50 145
Xylenes Lepomis macrochirus Mortality LC50 10.4 1 [41] 1000 10.4

1 NR: not recorded. * PNEC values were only available in detected VOCs, except 1,1-DCE, 1,1,1-TCA and vinyl chloride.

http://cfpub.epa.gov/ecotox
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4. Results and Discussion
4.1. General Trends

The concentrations and detection frequencies of all target VOCs detected in the sam-
ples collected from the HRW are shown in Table 3. All the analyzed VOCs, except for
1,1-DCE, 1,1,1-TCA and vinyl chloride, were detected indicating the widespread occurrence
of VOCs in the tributaries in the HRW. In contrast with our results, 1,1-DCE in the HRW
and in the Yeongsan River Watershed ranging from 0.014 to 0.231 µg/L with a median
concentration of 0.03 ± 0.0525 µg/L at frequencies of 11.5% and 2.2%, respectively, were
detected by Cho et al. [5].

Table 3. Quantification ion, method detection limit (MDL), limit of quantitation (LOQ), recovery, and precision of the
target VOCs.

Classification Mean
Conc. ± Std (µg L−1)

Min
Conc. (µg L−1)

Max
Conc. (µg L−1)

Total
Conc. (µg L−1)

Frequency
Detected (%)

1,1-DCE NA NA NA NA 1 NA
1,1,1-TCA NA NA NA NA NA

Bromoform 0.0036 ± 0.0076 0.0000 0.0210 0.1310 19.4
Chloroform 0.0596 ± 0.1312 0.0000 0.5940 2.1450 47.2

Naphthalene 0.0004 ± 0.0025 0.0000 0.0150 0.0150 2.8
Styrene 0.0033 ± 0.0095 0.0000 0.0340 0.1180 11.1

PCE 0.0049 ± 0.0203 0.0000 0.115 0.1780 8.3
Toluene 0.0054 ± 0.0139 0.0000 0.0670 0.1960 19.4

TCE 0.0253 ± 0.0781 0.0000 0.4150 0.9110 27.8
Vinyl chloride NA NA NA NA NA

Xylenes 0.0027 ± 0.0072 0.0000 0.0300 0.1940 15.3
1 NA: Not applicable.

Of the 11 detected VOCs at 36 sites, chloroform had the highest concentration level at
a mean of 0.0596 ± 0.1312 µg/L, followed by TCE with a mean of 0.0253 ± 0.0781 µg/L,
and toluene with a mean of 0.0054 µg/L. This showed that the three high total VOC
concentrations accounted for 83.6% of all the VOC concentrations, which may be attributed
to their extensive use and pseudo-persistence in aquatic environments [6,42].

On the basis of the detection frequencies, the five most frequently detected compounds
(>15%) were chloroform, TCE, xylenes, bromoform, and toluene. Meanwhile, naphthalene,
styrene, and PCE were detected less frequently.

Target VOCs were classified into HAH and AH according to the properties of the com-
pound, and the mean concentration and detection frequency of HAHs (0.0234 µg/L, 37.0%)
were comparatively higher than those of AHs (0.0036 µg/L, 21%). These results could be
attributed to the considerably high-water solubility of HAHs, despite their high vapor
pressures. This occurrence is consistent with the results of numerous studies conducted
outside Korea [43–45].

4.2. Halogenated Aliphatic Hydrocarbons (HAHs)

HAHs are organic chemicals in which one or more hydrogen atoms have been sub-
stituted by a halogen and they do not contain a benzene ring [46]. The HAHs commonly
used in industries are mostly volatile liquids. Most HAHs are not flammable and explosive,
commonly used as solvents, chemical raw materials or intermediates, and widely used in
industries [6].

Furthermore, as their use and production are governed by the Montreal and Kyoto Pro-
tocols, halogen-containing VOCs are possible greenhouse gases and ozone depletors [47].

The detected HAHs were 19.4% of bromoform, 47.2% of chloroform, 8.3% of PCE, and
27.8% of TCE, with the total concentrations at 2.1450 µg/L for chloroform and 0.1310 µg/L
for bromoform (Table 3). These compounds are highly volatile and have a high resistance
to degradation [6].
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For several years, PCE and TCE were widely used as synthetic solvents, degreasing
agents, and dry-cleaning agents. Moreover, the intermediate vinyl chloride is commonly
observed in both anaerobic and aerobic conditions [48]. It is more easily biodegraded
through oxidative pathways, either cometabolically or metabolically [49], than its highly
chlorinated parent compounds (PCE and TCE). Therefore, despite the presence of PCE and
TCE, the intermediate vinyl chloride was not detected in the study sites.

Among the HAHs in all industrial areas, chloroform was detected at maximum
concentration. As the pollutant has anthropogenic sources, this finding can be explained
by the results of McCulloch’s study, which shows that chloroform occurs in pulp and paper
manufacturing, waste incinerators, and other industrial activities [42,50]. The chloroform
generated in water diffuses into the atmosphere because of its low solubility in water and
high vapor pressure [51]. An overall overview of environmental monitoring throughout
different sites across China, including the Beijing, Shanghai, and Yangtze delta and Pearl
River delta, indicates that HAHs, particularly chloroform, PCE, and TCE, are among
the most commonly recognized pollutants [43,44,52,53]. Furthermore, chloroform is a
representative pollutant recognized by more than half of the sites in the United States
Environmental Protection Agency (US EPA) National Priority List (NPL), and it is the
most commonly-identified pollutant, as indicated by the US Geographical Survey [54–56].
Another possible reason for the highest chloroform concentration in water may be partly
due to natural emissions, such as from marine seawater [57,58], soil processes [59], and
geological distribution [60]. The concentrations of HAHs detected in this study were below
the water quality guidelines of EU, USA, WHO, and South Korea (Table S4).

Target VOCs were classified in HAH and AH according to the properties of the
compound, and the mean concentration and detection frequency of HAHs (0.0234 µg/L,
37.0%) were comparatively higher than those of AHs (0.0036 µg/L, 21%). These results
could be attributed to the considerably high water solubility of HAHs, despite their
high vapor pressures. This occurrence is consistent with the results of numerous studies
conducted outside Korea [43–45].

4.3. Aromatic Hydrocarbons (AHs)

Among the VOCs investigated in this study, AHs are a typical class of priority organic
pollutants, produced in substantial amounts by human activities, that are carcinogenic and
prioritized due to their persistence and long-distance transport properties [46]. AHs com-
monly occur in various components of global ecosystems [61]. They are ubiquitous in the
environment due to various anthropogenic activities in industrial and agricultural produc-
tion processes [1,62]. The frequency of target AHs varied from 2.8% to 25.0%, with mean
concentrations ranging from 0.0004 ± 0.0025 µg/L (naphthalene) to 0.0054 ± 0.0139 µg/L
(toluene) (Table 3). Although AHs have a lower concentration and frequency rate than
HAHs, they are toxic, mutagenic, and carcinogenic to ecosystems and humans, which
generates an increasing attention to their environmental and public health impacts [1,63].
Toluene, also known as a BTEX compound, is a monocyclic aromatic compound present
in crude oil. It is a VOC and a major component of petrochemicals [64], BTEX, when
discharged into a water body, alters its chemical structure, and causes adverse impacts on
biota [65].

The toluene and xylenes concentrations in the HRW surface water were lower by
several orders than those of not only the Netherland surface water from Rhine, Meuse,
Northern Delta area, Western Scheldt rivers [22], surface waters of Greece [23], Portu-
gal [24], Belgium [25], Taiwan [32], and Nigeria [18], but also the rainwater of Japan [26,27],
USA [28], Australia [29], and Serbia [30]. This implied that wet deposition could be partially
considered as a reason for the increased VOC concentrations in surface water and rainwater.
In this study, the HRW could be affected by numerous factors, including the volatility of
emissions, distance from the emission source, biodegradation instability, and photochem-
ical systems. The comparatively low concentrations of BTEX observed in surface water
could be attributed to BTEX oxidation and reduction by natural microbial biodegradation
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activity [66,67] or the photochemical conversion of BTEX into other compounds, such as
benzaldehyde, benzoic acids, phenol, and formic acid, which are finally mineralized [68,69].
The surface water concentrations of naphthalene, styrene, toluene, and xylenes in the HRW
were lower than all the listed standards (Table S5). Although low concentrations of VOCs
and BTEX were detected, as in Iordache [70], it is necessary to assess pollutant dynamics
using a fugacity-based model to comprehensively understand the transport of pollutants
in the environment in the future.

4.4. Geographic Distribution and Sources of VOCs

The geographic distribution of VOCs in the HRW is shown in Figure 2 and Table S6.
The VOC concentrations of collected water samples and the main sources are listed in
Tables S2 and S3. At the sampling sites S-1–S-7, N-1–N-5, H-1–H-8, and A-1–A-4, the
concentrations of 11 target VOCs were n.d.–0.0400 µg/L (at a mean of 0.0133 µg L−1),
n.d.–0.0900 µg/L (at a mean of 0.0490 µg/L), n.d.–0.0270 µg/L (at a mean of 0.0145 µg/L),
and n.d.–0.2710 µg/L (at a mean of 0.1290 µg/L). In contrast, at the sampling sites of
I-1–I-12 located near the numerous industrial complexes in the Gyenggi province area, the
concentrations ranged from 0.0200–0.6820 µg/L, with a mean of 0.2432 µg/L (Figure 3).
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Figure 2. Cumulative concentration of VOCs at 36 sites in the Han River watershed.

Among the different areas, the highest mean concentrations (0.2432 µg/L) and de-
tection frequencies (22.9%) were found in the Imjin-Hantan River area. Most of the
sites were in close proximity to commercial areas (I-5–I-12) and downstream of MWTPs
and IWTPs, except for I-3 and I-4. Thus, low VOC concentrations were detected at I-1
(0.0025 ± 0.0087 µg/L) and I-2 (0.0070 ± 0.0105 µg/L), downstream of the MWTPs (of
capacities 2.1 × 103 m3/d and 86 × 103 m3/d, respectively), and no pollutant was present
in the upstream at I-3 (0.0053 ± 0.0126 µg/L) and I-4 (0.0023 ± 0.0081 µg/L). The highest
concentrations of VOCs were detected at I-12 (0.6820 µg/L), at a 25.0% detection frequency.
I-12 t located downstream of IWTP-27 (185 × 103 m3/d in capacity), which is the main
wastewater treatment facility in the Gyeonggi province. In addition, the Paju LCD general
industrial complex, located upstream of the I-12, covers an area of 1,740,554.8 m2, and com-
prises industries including chemicals, electronic components, computers, video, audio and
communication equipment. Thus, this site (I-12) directly receives the treated wastewater
from these industrial facilities.

The VOC concentrations of I-5 influenced by IWTP-31 (18.8 × 103 m3/d in capacity)
were approximately seven times higher than that of I-6 located downstream of I-5. The
IWTP-31 belongs to the Pocheon Jangja Industrial complex (area of 484,000 m2, 1.34 km from
IWTP-31 to I-5), which includes leather, bag, shoe manufacturing, chemical and chemical
product manufacturing industries, and has a treatment capacity of 18.8 × 103 m3/d. The
low concentration at I-6 could be attributed to the effects of natural attenuation, such as
dilution [71,72], adsorption [73,74], volatilization [75,76], and microbial degradation [77,78].
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Figure 3. Average concentration of volatile organic compounds in each area in the Han River watershed.

The lowest concentration detected at I-7 showed that IWTP-30 located upstream had
little effect on the VOC concentration. I-9 had 2.9 times higher VOC concentration than that
of I-8, which may be because I-9 is adjacent to the industrial complexes (Yangju Geomjun
and Yangju Hongjuk). The Yangju Doha Industrial Complex and Yangju Doha 2 Industrial
Complex located upstream of I-8, do not discharge the generated wastewater to nearby
rivers, but collect and treat them at other IWTPs. Hence, these industrial complexes can
be considered to have no effect. I-11 and I-10 were in locations similar to I-9 and I-8, thus,
I-11, adjacent to the industrial complex, showed significantly high VOC concentrations.
According to the above results, the highest concentrations of VOCs were detected in the
Imjin-Hantan River area, which could be because the various industrial complexes and
their wastewater treatment facilities acted as the main sources of pollution. This result is
consistent with the findings of other studies conducted outside Korea [5,6,18,79].

A-1–A-4, which is the second highest concentration area, had a range of n.d.–0.2710 µg/L,
with the highest concentration of VOCs detected in the order A-1, A-2 and A-3, which are
located in the order of closest distance from each industrial complex. However, no VOCs
were detected in A-4, because it was not affected by the industrial complex.

The N-1–N-5 sites belong to rural areas, where the VOCs concentrations ranged
n.d.–0.0900 µg/L, with the highest and next highest concentrations detected at N-4 and
N-5, respectively. In addition, low concentrations were detected at N-2 and N-3, and no
pollutant was present in the upstream. Notably, there is a park near N-1, where no VOCs
were detected, and this may have rendered the pollution from the population insufficient
to generate VOCs.

All the South Han River sites correspond to rural areas, similar to the North Han River
sites. Three (S-4, S-5, and S-6) of these sites with detected VOCs are located downstream of
the MWTP. Among the three sites, S-6 was only slightly affected, as the MWTP is 24 km
above the upstream, and the effect may be attributed to the non-point source. Among the
five investigated areas, the South Han River area was found to have the lowest pollution
from VOCs. Therefore, it was determined to be the cleanest area.

Han River is an area in Seoul with a high population density and large MWTPs.
However, the second lowest VOC concentrations among the five areas were detected in
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the Han River area, with a range of n.d.–0.0270 µg/L and not detected in H-3 and H-4.
The detection frequencies at each of the other Han River sites (H-1, -2, -5, -6, -7, and -8)
were equal to 8.3%, and the concentrations at these sites were also detected at similar
levels. The reason for the low VOC concentrations in the Han River area must be identified
through further investigation. This is because, in some studies, high concentrations of
VOCs were observed in large cities with high population density and many commercial
facilities [6,15,80]. However, the possible causes may be the high removal rate of pollutants
of MWTPs, well-managed modern facilities, and no large industrial complexes.

4.5. Risk Assessment

The calculated RQ values obtained in the present study based on the highest MECs
are depicted in Figure 4 and Table 2. Among the eight VOCs detected in our samples,
only one compound, toluene, had an RQ value greater than one (RQ = 1.2), indicating its
ecological risk in the Han River. The PNEC of toluene was determined as 0.0580 µg/L,
based on the lethal concentration at 10% (LC10) of 0.0029 mg/L in embryo-larval stages of
rainbow trout [39] and at AF of 50 [33]. Adverse effects of toluene on survival, growth, and
reproduction in other aquatic species, including algae, daphnia, and fathead minnow, have
also been reported previously [81–83]. In human beings, exposure to toluene could lead to
long term health effects, such as neurotoxicity [84]. Styrene exhibited a considerably high
RQ value of 0.54 in this study. Although the value was below one, this implied considerable
potential ecological risk from this compound as well. For other VOCs, the potential risk in
aquatic environments was significantly low (RQ < 0.2). However, the calculated risk in this
study must be carefully interpreted, because the monitoring data must be verified through
repeated sampling and the available ecotoxicological information is not adequate.
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Figure 4. Risk quotients for eight VOCs in the Han River watershed.

5. Conclusions

In this study, 11 VOCs were investigated at 36 sites in five areas of the HRW in October
2016. Tributaries susceptible to the effects of pollutants were focused on, and the general
trends, distribution of HAHs and AHs, geographic distribution, potential sources, and risks
of VOCs were observed. The considerably high concentrations and detection frequencies
in these areas were investigated, and the results showed maximum concentrations of
0.5940, 0.9110, and 0.1960 µg/L and detection frequencies of 47.2%, 27.8%, and 19.4% for
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chloroform, TCE and toluene, respectively. However, three VOCs (1,1-DCE, 1,1,1-TCA, and
vinyl chloride) were not detected at all.

VOCs belonging to HAHs were observed with a considerably high mean concentra-
tion (0.0234 µg/L) and detection frequency (37.0%) than those of AHs (0.0036 µg/L, 21%).
Significant concentration differences were observed among the five areas (p < 0.001). In par-
ticular, the Imjin-Hantan River area recorded the highest mean concentration (0.2432 µg/L)
and detection frequency (22.9%). This could be attributed to the presence of large industrial
complexes and IWTPs around it. Thus, industrial facilities were found to have a high
possibility of being a major source of VOC pollution. Nevertheless, the concentrations of
VOCs detected in the HRW were lower than those of the drinking water quality standards
by the EU, WHO, USA, and South Korea. Most VOCs showed negligible risks in this study,
however, our risk assessment results implied that certain VOCs, particularly toluene, may
pose a threat to the ambient ecosystem. Continuous monitoring and regulation of emissions
are required to manage these risks. The calculated risk in this study must be carefully
interpreted, because the monitoring data must be verified through repeated sampling ex-
periments and the available ecotoxicological information is not adequate. Moreover, future
studies should further investigate the reason for the low VOC concentrations detected in
the Han River area in this study and should plan for new VOC investigations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11050956/s1, Figure S1: Published articles in various environmental media re-
searched from Web of Science, Table S1: Physiochemical properties of target VOCs, Table S2: Informa-
tion of sampling sites and its coordinates, Table S3: Information of municipal/industrial wastewater
treatment plants, Table S4: Water quality at the sampling sites, Table S5: Water quality standards for
VOCs at each country, Table S6: Concentration of VOCs detected at each site.
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