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Abstract: Climate is a limiting factor in viticulture, as it defines favorable areas, grape cultivars, and
agrotechnical activities. In the Sevastopol region, viticulture is the main and promising agricultural
branch. Using the outputs of the regional climate models from the CORDEX project, the projections
of agroclimatic conditions in the Sevastopol region for two future periods (2021–2045 and 2046–2070)
under two representative concentration pathways (RCP4.5 and RCP8.5) were obtained. The results in
our study show the trend of temperature indices rise (average growing season temperature, effective
heat sum, Winkler and Huglin indices) and the region’s transition to higher classes, especially
during the second future period (2046–2070). However, despite the higher temperature indices, the
Sevastopol region will remain suitable for the growing of grapes cultivars with all ripening periods.

Keywords: viticulture; climate change; projections; Sevastopol region

1. Introduction

Climate has a great impact on the vineyard productivity [1,2]. Increasing air temper-
ature in connection with climate change impacts the grapes yield and composition and,
consequently, wine organoleptic properties [3–6]. The expected rise in air temperature by
approximately 1.0–3.7 ◦C [7] by the end of the 21st century will significantly change the
geographic distribution and status of a grape production [8]. The climatic changes will
likely affect all wine-producing regions at in one form or another [9].

In the future, the issue of grapes adaptation to the changing temperatures and moisture
conditions should be addressed for the Mediterranean region, making up 40% of the global
vineyard area [10,11]. The reduced production of table and wine grapes is expected for
Southern Europe due to the future increase in the aggregate heat stress and dryness during
a growing season [12–14]. In addition, the forecasted reduction in precipitation and a higher
evapotranspiration rate due to a warm climate will probably cause the increased demand
for water. In such regions as Greece (located in a warmer part of the Mediterranean Basin),
a need may arise to move vineyards to the locations of higher elevation depending on the
global warming rate and range [15]. In the future, wine making in Greece and Croatia
is expected to experience additional pressure because of the shift of the grapes ripening
phase toward warmer summer days. This could negatively affect the composition of grapes
and, eventually, the wine quality [16,17]. On the other hand, high-quality territories for
viticulture will significantly extend to the north of Western and Central Europe [12,18–23].
The change of grapes cultivars will be necessary even in those European areas that remain
suitable for viticulture in future (by 2050) [21]. The most suitable viticulture areas are
forecast to reduce (41–83% reduction) by 2070 in France under the scenarios RCP4.5 and
RCP6.0 [24] are dependent on the current vineyard location.

Numerous studies of the potential climate change impact on viticulture have been con-
ducted in North and South America. It is expected that a warmer and more humid climate
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of winemaking regions in Canada will extend the growing season, increase the growth
potential, reduce the risk of damage caused by cold temperatures in winter; however, it
will intensify summer heat stress [25,26]. The results of climatic projections of the models
IPSL-CM5A-MR show a significant displacement of wine-making regions in Argentina to-
ward the southwest and higher locations, mainly in 2075–2099, under the scenario RCP8.5.
Correspondingly, the Argentinian viticulture may face both new opportunities and new
problems connected with the forecast warmer climatic conditions [27].

The analysis of agroclimatic conditions in the Sevastopol region for a historic period
by the data of observations showed the region suitability for the growing of grape cultivars
with various ripening seasons (from the very early ones to very late ones) while the
observed solar indices illustrate the change in the conditions and the displacement of
areas suitable for viticulture [28]. Viticulture is one of the key agricultural branches of
the Sevastopol region. The area is projected to expand the area occupied by vineyards to
10,000 hectares by 2030, while the current vineyard area is 4300 ha [29]. Taking into account
the economic significance of the viticulture for the region, it is necessary to increase and
improve the forecasts on climate change to study their impact on wine-making zoning.

The purpose of this study is to provide predictive estimates for future change of
climatic conditions at various representative pathways of greenhouse gases emission
(RCP4.5 and RCP8.5) for two future periods (2021–2045 and 2046–2070) with the use of
ensemble projections of eight regional climatic models. The results will provide insights
into how temperature changes can affect future agroclimatic conditions and facilitate the
assessment of the region’s suitability for high quality grape production in the mid and
long term.

2. Materials and Methods

Meteorological observation data were taken from the station Sevastopol (44.62◦ N,
33.53◦ E). The Sevastopol region is located in the southwest of the Crimean peninsula
(Figure 1). The analysis of future change in the agroclimatic conditions is made with the
help of daily data of the simulation of the mean, minimum and maximum air temperature.
The simulation results were taken from the Data Extraction Application for Regional
Climate (DEAR-Clima) with open access (http://meteo3.geo.auth.gr:3838/, accessed date
21 January 2021) obtained on the basis of the simulated regional climate models from the
research program Coordinated Regional Downscaling Experiment (CORDEX). The data of
regional climate models (RCM) have a high spatial resolution (0.11◦) over the European
region and cover a period of 1950–2100. The simulation experiments are a product of
various RCMs driven by several Global Climate Models (GCMs).

Agronomy 2021, 11, 954 3 of 11 
 

 

 
Figure 1. Location of the Sevastopol region. 

The results for a future period have been obtained under the impact of three repre-
sentative concentration pathways (RCP) adopted by IPCC in the fifth assessment report 
(AR5)—rcp26, rcp45, and rcp85 [7]. The paper uses the calculated data under the scenarios 
RCP4.5 (moderately optimistic) and RCP8.5 (pessimistic). As a base period, the authors 
selected the period of 1981–2005 as well as two future periods: 2021–2045 and 2046–2070. 
The selection of these particular periods in the future is explained by the duration of vine-
yard renewal, which is 25–30 years. The ensemble of eight climate models from the simu-
lation results is calculated for each meteorological parameter. The application of the 
model results’ ensemble facilitates reducing the uncertainty relating to any separate 
model [30]. The list of regional models used in the research paper is provided in Table 1. 

Table 1. Global and regional climate models used by the research. 

Driving GCM RCM 
ICHEC-EC-EARTH KNMI-RACMO22E 

MPI-M-MPI-ESM-LR MPI-CSC-REMO2009 
 CLMcom-CCLM4-8-17 

CNRM-CERFACS-CNRM-CM5 CNRM-ALADIN53 
 CLMcom-CCLM4-8-17 
 SMHI-RCA4 

IPSL-IPSL-CM5A-MR IPSL-INERIS-WRF331F 
 SMHI-RCA4 

To assess the agroclimatic conditions in the Sevastopol region, the authors used the 
following indicators and indices: 
- The mean annual air temperature; 
- The average growing season temperature (April–October) [4,19,31]; 
- The Huglin heliothermal index is used to define the suitability of cultivars for the re-

gion and to classify wine-making regions [32]. The index is calculated on the basis of 
such factors as the mean duration of daylight and biologically effective temperatures 
for 1 April–30 September in the Northern hemisphere [31]; 

- The Winkler index provides information on the temperatures necessary to ensure the 
vine growth and grape ripening [33,34]. It is based on daily minimum and maximum 
air temperatures where one degree-day is equal to the excess of the mean daily tem-
perature 10 °C; 

- The sum of active air temperatures above 10 °С. 

Figure 1. Location of the Sevastopol region.

http://meteo3.geo.auth.gr:3838/


Agronomy 2021, 11, 954 3 of 10

The results for a future period have been obtained under the impact of three repre-
sentative concentration pathways (RCP) adopted by IPCC in the fifth assessment report
(AR5)—rcp26, rcp45, and rcp85 [7]. The paper uses the calculated data under the scenarios
RCP4.5 (moderately optimistic) and RCP8.5 (pessimistic). As a base period, the authors se-
lected the period of 1981–2005 as well as two future periods: 2021–2045 and 2046–2070. The
selection of these particular periods in the future is explained by the duration of vineyard
renewal, which is 25–30 years. The ensemble of eight climate models from the simulation
results is calculated for each meteorological parameter. The application of the model results’
ensemble facilitates reducing the uncertainty relating to any separate model [30]. The list
of regional models used in the research paper is provided in Table 1.

Table 1. Global and regional climate models used by the research.

Driving GCM RCM

ICHEC-EC-EARTH KNMI-RACMO22E

MPI-M-MPI-ESM-LR MPI-CSC-REMO2009
CLMcom-CCLM4-8-17

CNRM-CERFACS-CNRM-CM5 CNRM-ALADIN53
CLMcom-CCLM4-8-17

SMHI-RCA4

IPSL-IPSL-CM5A-MR IPSL-INERIS-WRF331F
SMHI-RCA4

To assess the agroclimatic conditions in the Sevastopol region, the authors used the
following indicators and indices:

- The mean annual air temperature;
- The average growing season temperature (April–October) [4,19,31];
- The Huglin heliothermal index is used to define the suitability of cultivars for the

region and to classify wine-making regions [32]. The index is calculated on the basis of
such factors as the mean duration of daylight and biologically effective temperatures
for 1 April–30 September in the Northern hemisphere [31];

- The Winkler index provides information on the temperatures necessary to ensure the
vine growth and grape ripening [33,34]. It is based on daily minimum and maximum
air temperatures where one degree-day is equal to the excess of the mean daily
temperature 10 ◦C;

- The sum of active air temperatures above 10 ◦C.

The materials applied were a vector map of the Crimean Peninsula, a digital model
of the terrain SRTM-3, and a climatic model Worldclim 2.0. The simulation of spatial
distribution of heat supply conditions was conducted by the Sofroni–Entenzon formula
considering the corrections suggested for the territory of the Crimean Peninsula [35]. The
authors applied ArcGIS to simulate agroclimatic indices and visualize the results on the
Sevastopol region territory with a high resolution (approximately 80 m).

3. Results

Comparison of the average air temperature for the growing season according to
the observational data and the data of the ensemble of regional climate models made it
possible to assess the reproducibility of the initial data by the ensemble of models. Average
values, linear trends, and their statistical significance showed a high similarity, which
made it possible to further use the modeling data to calculate the base and future values of
agroclimatic indices.

Air temperature is key for all wine-making aspects [36,37]. Temperatures affect the
grapes’ physiology, vegetation, and reproductive cycles as well as the quality of the grapes
harvested [5,38]. Traditionally, the distribution of wine-making regions in the world is
limited by the isotherms 13 ◦C and 22–24 ◦C of average growing season temperature [39].
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For Russia, temperature is a key factor limiting the growth and development of agricultural
crop types [40], including grapes.

The mean annual air temperature for a base period was equal to 12.8 ◦C. For the first
future period under both RCP scenarios, the mean temperature will probably increase
up to 13.8 ◦C. For the second future period, the mean temperature will keep growing to
14.4 ◦C first under RCP4.5 and up to 15.0 ◦C under RCP8.5.

In compliance with the data of model ensemble calculations, the average growing
season temperature will increase during the first and second future periods (Figure 2). This
indicator is used for defining the latitudinal borders of vineyard areas and assessing the
ripeness of vine grape cultivars [4,41]. During the base period (1981–2005), a quarter of
the regional territory belongs to the intermediate class (15–17 ◦C) in terms of the average
growing season temperature (southeast, foothill part), while the remaining 75% of the
areas are located in the warm class zone (17–19 ◦C). For the first future period under both
RCPs, the average growing season temperature falls within the range 17–19 ◦C, which
corresponds to a warm class [4,42] over almost a whole area of the region under study. For
the second future period under the moderately optimistic scenario (RCP4.5), the region
is divided into two equal subzones: the north and west coastal lands will transit to a hot
class (19–21 ◦C), while the southeast foothill part will remain within the warm class range.
Under RCP8.5, 84% of the regional area will be within the territory of the hot class zone,
including the values of the average growing season temperature.
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Figure 2. Spatial distribution of the average growing season temperature (◦C) over the Sevastopol
region obtained by the ensemble of RCMs for the base (1981–2005) and two future periods (2021–2045
and 2046–2070).

Taking into consideration the terrain morphometric characteristics (above sea level,
exposition, and slope angle) as well as the territory geographical latitude and solar elevation
at the apparent noon, we obtained the maps of distribution of regional heat supply, i.e., the
sum of active temperatures above 10 ◦C by the results of ensemble calculations for base
and two future periods. The change in the areas belonging to various classes during future
periods under various scenarios is provided in Figure 3. In the territory of the Sevastopol
region, the authors identified seven heat supply zones in compliance with the gradation
of requirements of various grape cultivars to this indicator [43] (Table 2). During the base
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period, approximately 70% of the area has a sum of active temperatures being higher than
3500 ◦C. Such conditions facilitate growing the grapes cultivars from the very early to the
very late ripening periods. During the first future period under RCP4.5, the share of the
area with a sum of active temperatures being higher than 3500 ◦C increases up to 85%;
under RCP8.5, it increases up to 88%. By the end of the second future period (2046–2070),
the share of the Sevastopol region area, having the conditions for the growing of cultivars
with all ripening terms, will probably increase up to 92% and 96% under RCP4.5 and
RCP8.5, respectively. The heat supply growth forecast by the end of the second future
period may negatively affect the quality of table wines, which will require the change of
the grapes application (for example, manufacture of sweet wines).
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Figure 3. Spatial distribution of the sum of active temperatures above 10 ◦C over the Sevastopol
region obtained by the ensemble of RCMs for the base (1981–2005) and two future periods (2021–2045
and 2046–2070).

Table 2. Distribution of the area (%) of the sum of active temperatures above 10 ◦C for future periods under various RCP.

Sum of Effective
Temperature (◦C)

Base Period
(1981–2005)

Future Period 1 (2021–2045) Future Period 2 (2046–2070)
RCP4.5 RCP8.5 RCP4.5 RCP8.5

<2300 0.7 0.2 0.1 0.0 0.0
2300–2700 2.5 1.1 0.7 0.3 0.1
2700–3100 7.6 3.8 2.8 1.8 0.8
3100–3500 18.8 10.1 8.3 5.7 3.0
3500–3900 59.3 32.2 21.7 13.0 8.7
3900–4300 9.8 48.3 58.3 50.9 24.5

>4300 1.2 4.4 8.1 28.3 62.9

By the results of the ensemble calculations of RCMs in the base period (1981–2005),
the distribution of the area corresponding to various classes of the Winkler index is char-
acterized by the predominance of the interval Region 2 (1390–1670 units) (approximately
70%) (Table 3, Figure 4). Approximately 15% of the territory belongs to the classes Region 1
and Region 3. For the first future period under various RCP, the distribution of the area
by classes is virtually the same. More than 70% of the Sevastopol region territories are
located in Region 3 (1670–1940 units). In the period 2046–2070 under RCP4.5, the share of
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the Region 4 area increases due to the reduction of the territories belonging to Region 3.
The zones with the temperature interval of 1940–2220 units emerge in the north and west of
the study region (coastal zone). Under RCP8.5 for the second future period, it is expected
that more than 70% of the territory will belong to the class Region 4 (1940–2220 units). This
class will cover almost a whole area of the Sevastopol region except for the southeast part
(foothill zones).

Table 3. Area (%) corresponding to various classes of the Winkler index for the Sevastopol region for two future periods
under different RCP.

WI Classes
Base Period
(1981–2005)

Future Period 1 (2021–2045) Future Period 2 (2046–2070)
RCP4.5 RCP8.5 RCP4.5 RCP8.5

<850 Too cool 0.2 0.0 0.0 0.0 0.0
850–1390 Region 1 15.3 5.1 3.8 1.8 0.4

1390–1670 Region 2 67.1 20.4 16.0 10.3 4.5
1670–1940 Region 3 16.9 70.3 72.7 48.2 18.3
1940–2220 Region 4 0.4 3.9 7.2 38.7 72.4
2220–2700 Region 5 0.0 0.2 0.3 1.1 4.4
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Figure 4. Spatial distribution of the Winkler index over the Sevastopol region obtained by the
ensemble of RCMs for the base (1981–2005) and two future periods (2021–2045 and 2046–2070).

The dominant class (about 66%) of the Huglin heliothermal index within the base
period is the class HI–1 “moderate” with the range of 1800–2100 units (Table 4). About 30%
of the regional territory is covered by the class “cool” HI–2. It is associated with elevated
areas (southeast part of the region). For the first future period (2021–2045), the territory is
redistributed by index classes: the shares of classes “cool” and “temperate” reduce, the
class “warm temperate” emerges; under RCP4.5, the latter class is expected to occupy 40%
and 48% under RCP8.5 (Figure 5). For the second future period, the percentage belonging
to the class HI + 1 (2100–2400 units) will increase up to 65% and 82% under RCP4.5 and
RCP8.5, respectively. Therefore, by the forecast values of the Huglin index in the first and
second future periods, there are no heliothermal limitations for the ripening of all cultural
grape cultivars on the Sevastopol region territory [44].
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Table 4. Area (%) corresponding to various classes of the Huglin index for the Sevastopol region for two future periods
under different RCP.

HI Classes
Base Period
(1981–2005)

Future Period 1 (2021–2045) Future Period 2 (2046–2070)
RCP4.5 RCP8.5 RCP4.5 RCP8.5

1200–1500 Very cool 6.3 1.6 1.4 0.8 0.2
1500–1800 Cool 27.9 12.0 9.9 5.8 2.2

1800–2100 Temperate 65.8 47.3 40.3 28.8 15.9
2100–2400 Warm temperate 0.0 39.0 48.4 64.6 81.7
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4. Discussion and Conclusions

As mentioned above, air temperature is a key parameter affecting the growth and
development of grapes, territorial specialization, and harvest [4,42,45]. Temperature vari-
ability could be the main factor affecting the quality of wine [46] in the future due to the
global warming [47]. The expected growth of the air temperatures by the mid to late 21th
century will affect the agroclimatic conditions of the Sevastopol region. In the current
climatic conditions, the study region is a viticulture area with a good potential. The analysis
of climate projections for the 21st century carried out in the article showed an increase in
temperature agroclimatic indices (GST, HI, and WI) for the study region. Similar results
were previously obtained for different regions of Europe (e.g., [46,48,49]). By the mid-21st
century, the entire Sevastopol region will have optimal conditions under both RCPs by
the values of the mean air temperature. In the second future period, the increase in the
average growing season temperature (2046–2070) provided the pessimistic scenario RCP8.5,
which up to a hot class (higher than 19 ◦C) will exceed the optimal values for a vegetation
period [12]. Such a change can lead to an increase in heat stress on the plants. To reduce
heat stress, for example, north-facing slopes for planting vineyards can be chosen [50].

In future periods, the change in the territory distribution by the classes of the Winkler
index can change the region suitability for different grape cultivars growing. By the authors’
results, in the first future period under both RCPs, a larger part of the Sevastopol region
territory will be located in Region 3 that is suitable for the production of standard and
high-quality table wines [34]. In the second future period under RCP8.5, the change for
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Region 4 is possible with the conditions favorable for high productivity; however, the table
wine quality will be at its most acceptable. According to the calculations of the HadCM3
and CSIRO MK3 models until 2050, the Sevastopol region belongs to the areas where the
grapevines can potentially grow well both in the present and in the future climate [21].

The increase in the Huglin index values during future periods will facilitate a warmer
growing season and the reduction in the number of freezing cases and, consequently,
in the reduction in limitations on the fruit ripening of all cultivars [11]. The Huglin
index values above 1500 units in the future periods under both RSPs allow concluding
that the Sevastopol region has a good potential for wine production [19]. The observed
trends toward the change of agroclimatic conditions in the Black Sea zone for the last
decades [28,51] generally comply with the forecasts for climate change in the 21st century
on the basis of global and regional climate models obtained herein. The results of predictive
estimates obtained in the paper correspond to the conclusions drawn by other authors for
wine-making areas in Europe [2,12,21]. A shift in bioclimatic indices toward higher classes
and areas suitable for growing grapes to the north in the near future are obtained for many
wine-growing regions of Europe using different models and scenarios of greenhouse gas
emissions: e.g., in France [24], in Portugal [48], in Italy [52], in Mediterranean [11], for a
whole Europe [12,21,53,54].

The agroclimatic indices for the future climate were calculated and analyzed for the
territory of Sevastopol region in the paper. To accomplish this task, we applied an ensemble
consisting of eight regional climate models driven by GCMs from the CORDEX project for
two greenhouse gases’ representative concentration pathways (RCP4.5 and RCP8.5).

The obtained results for agroclimatic conditions point to a further temperature rise
during future periods under both RCPs. Under the current climatic conditions and during
the first future period (2021–2046), the territory of the Sevastopol region is a wine-producing
area with a good potential. During the second future period, especially under pessimistic
RCP8.5, dominating index classes shift toward higher (warm) intervals which will likely
cause additional heat stress for plants.

The main recommendation that can be made on the basis of the results obtained on
the transition of agroclimatic indices to the upper classes in the future is to replace grape
cultivars with more thermophilic ones and to select the optimal areas for these cultivars.
Taking into account the plans on increasing the vineyard areas in the Sevastopol region it is
also important to consider the climate changes in future. These accurate air temperature
projects will help the efficient allocation of grape plantings and the selection of optimal
grape cultivars.
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