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Abstract: Information on crop yield at scales ranging from the field to the global level is imperative
for farmers and decision makers. The current data sources to monitor crop yield, such as regional
agriculture statistics, are often lacking in spatial and temporal resolution. Remotely sensed vegetation
indices (VIs) such as NDVI are able to assess crop yield using empirical modelling strategies. Empiri-
cal NDVI-based crop yield models were evaluated by comparing the model performance with similar
models used in different regions. The integral NDVI and the peak NDVI were weak predictors of
winter wheat yield in northern Belgium. Winter wheat (Triticum aestivum) yield variability was better
predicted by monthly precipitation during tillering and anthesis than by NDVI-derived yield proxies
in the period from 2016 to 2018 (R2 = 0.66). The NDVI series were not sensitive enough to yield
affecting weather conditions during important phenological stages such as tillering and anthesis and
were weak predictors in empirical crop yield models. In conclusion, winter wheat yield modelling
using NDVI-derived yield proxies as predictor variables is dependent on the environment.
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1. Introduction

The availability of reliable crop yield data at scales ranging from the field level to
the global level is imperative. In the first place, farmers need reliable crop yield esti-
mates. Knowledge of crop yield at the field level helps farmers to monitor yield effects of
certain management choices, identify potential threats (e.g., consequences of increasing
drought occurrence during the growing season) and enhance potential opportunities [1].
In addition, for insurance purposes, knowledge of average yield and yield variability is
essential [1]. In the second place, crop yield data are needed for decision making and strate-
gic planning [2,3]. For example, to identify regions appropriate for setting up a specific
agricultural development program, regional crop yield data are indispensable for policy
and decision makers.

Currently, crop yield statistics are the main source of crop yield data [4]. However,
the spatial and temporal scale of these crop yield statistics are not adequate, since these
data are typically only available at regional or country levels and are assessed yearly [5]. In
order to evaluate the effect of local environmental conditions on crop yield, crop yield data
at higher resolution than regional or country levels are needed.

Crop yield data derived from remote-sensed vegetation indices (VIs) could offer crop
yield data at a higher spatial and temporal resolution. The spatial resolution of VIs can
be as high as a few meters, and some VIs are available at a daily scale [4]. VIs monitor
particular properties of crops that can be related to final crop yield. A VI that is often used
to monitor crop yield is the normalized difference vegetation index (NDVI), an indicator
of the photosynthetic active biomass [6]. Several studies have shown that information on
the photosynthetic active biomass (i.e., NDVI) during the growing season or at particular
stages of the crop growing season is related to crop yield [4,6–8].
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Monitoring crop yield from space using VIs sounds promising, and several studies
have already shown the potential of VI-derived crop yield estimates [2,4–6,9–12]. Empirical
or mechanistic modeling strategies are used to derive crop yield from VIs [13]. Mechanistic
crop yield models are more data intensive compared to empirical crop yield models.
Mechanistic models require crop growth parameters such as VIs, soil properties, and
management information to calibrate plant growth models used to derive crop yield.
Empirical crop yield models are less data intensive, since they relate VIs to crop yield using
statistical techniques such as simple linear regressions or random forests. The methodology
to calculate NDVI-derived yield predictors used in empirical crop yield models varies from
study to study. For example, NDVI-derived yield predictors used in empirical crop yield
models range from the peak NDVI during the growing season to time-integrated NDVI
values during the growing season and growing-degree-integrated NDVI values [3,4,6,14].
This raises the issue of environmental dependency in terms of the methodology used to
determine VI-derived yield predictors in empirical crop models.

The aim of this paper is to evaluate the integral NDVI, peak NDVI, monthly precipita-
tion, and monthly temperature for setting up an empirical winter wheat (Triticum aestivum)
yield model for northern Belgium. Winter wheat is an important crop in northern Belgium.
In 2018, winter wheat accounted for 60,909 ha, making it the third most cultivated crop in
northern Belgium [15]. Winter wheat yield in northern Belgium was on average 7.1 Mg/ha
between 2016 and 2018. The empirical model results were compared to similar models
used in different regions to evaluate environment dependency of NDVI-based empirical
winter wheat yield models. The importance of the predictor variables in the winter wheat
yield empirical model was used to provide insight into which variables impact winter
wheat yield changes in northern Belgium.

2. Materials and Methods
2.1. Study Area

Information on the location, shape and yield of 1485 winter wheat fields was available
through the land use parcel database from the Department of Agriculture and Fisheries
(Figure 1). Yearly winter wheat yield data at the farm level was available for 2016, 2017
and 2018. This information was used to determine the yield at field level. A parcel area
threshold of 0.01 km2 was set to ensure that the extracted NDVI profiles for each field were
pure. The total number of winter wheat fields was equal to 666 in 2016, 609 in 2017 and 210
in 2018.

2.2. Remote Sensing Data: NDVI

A 10 m inwards buffer was applied to each field to ensure that the extracted NDVI
series represented the fields. The platform https://openeo.org/ (accessed on 27 January
2021) was used to extract 5 daily Sentinel-2 NDVI pixels (10 m resolution) within each
buffered winter wheat field, apply a cloud mask based on the scene classification layer from
Sentinel-2 and compute the average NDVI series for each field from the extracted NDVI
pixels [16]. The obtained results were cloud-free NDVI series for each winter wheat field.

The NDVI series were used to calculate the integral NDVI (hereafter referred to as
aNDVI) and the peak NDVI (hereafter referred to as maxNDVI) for each field. NDVI
values were considered from 1 January until harvest on 12 July for the calculation of
aNDVI and maxNDVI. The aNDVI was calculated using the trapezoidal rule, following [4].
For the calculation of aNDVI and maxNDVI, NDVI values below 0.2 were discarded,
following [4,6]. In addition, only NDVI series that had at least 10 NDVI observations were
retained for the calculation of aNDVI and maxNDVI. A total of 543 of the initial number of
wheat fields (36%) were discarded because their NDVI series had less than 10 observations.
aNDVI and maxNDVI were calculated for 942 winter wheat fields.

https://openeo.org/
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Figure 1. Location of the studied winter wheat fields in northern Belgium from 2016 (n = 666), 2017 (n = 609) and 2018
(n = 210). The seven agricultural regions of northern Belgium are also visualized.

2.3. Data Analysis

Two separate random forest models were built to predict winter wheat yield based on
the NDVI yield predictors aNDVI and maxNDVI. The first model used aNDVI as a pre-
dictor variable (henceforth, Model 1) and the second model used maxNDVI as a predictor
variable to predict winter wheat yield in northern Belgium (henceforth, Model 2). These
two models were used to evaluate (i) which NDVI-derived yield predictor (i.e., aNDVI or
maxNDVI) better predicts winter wheat yield in northern Belgium and (ii) the environ-
mental dependency of NDVI-derived yield proxies. The latter was done by comparing the
model performances to the model performance of the winter wheat yield model for Latvia
published by [4], which used the same methodology to model winter wheat yield. In a
second stage, a random forest winter wheat yield model with weather variables at field
level, aNDVI and maxNDVI as predictor variables was built. Monthly precipitation values
and maximum temperature values during the winter wheat growing season from January
to July were used in this model (henceforth referred to as Model 3). Monthly minimum
temperature values were not included in Model 3 to avoid collinearity. Variable importance
was calculated for each predictor variable of Model 3, which allowed for the evaluation
of the yield predictiveness of weather variables in comparison to the NDVI-derived yield
predictors (i.e., aNDVI and maxNDVI). The random forest models were built based on
500 trees. The out of bag prediction error (MSE) and the explained variance (R2) computed
on the out of bag data were used to evaluate model performance of the random forests.
The R package ranger was used to build the random forests regression models [17]. This
package applies Breiman’s random forest algorithm. Variable importance was evaluated by
the permutation accuracy importance. This variable importance measure has been shown
to be less biased than variable importance measures based on the Gini (for classification
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forests) or variance of the response (for regression forests) indices [18]. Significance of the
permutation accuracy importance was evaluated by applying the methodology of [19],
which applies a permutation test of the computed variable importance.

2.4. Effect of Weather on Wheat Yield

For each field, monthly minimum temperature, maximum temperature and precipita-
tion (Tmin, Tmax and P) were extracted from a 5 km resolution grid for the years 2016–2018,
as provided by the Royal Meteorological Institute [20]. The Pearson correlation between
winter wheat yield and the monthly weather variables was calculated for the growing
season from January to July. The change in Pearson correlation throughout the wheat yield
growing season was used to identify the months and weather variables that influenced
wheat yield the most. In addition, the Pearson correlation between the NDVI-derived yield
proxies (i.e., aNDVI and maxNDVI) and the monthly weather variables for the winter
wheat growing season from January to July were calculated. The correlation patterns
between winter wheat yield and weather variables, aNDVI and weather variables, and
maxNDVI and monthly weather variables were compared in order to evaluate if aNDVI
and maxNDVI capture the winter wheat yield weather sensitivity.

3. Results
3.1. NDVI Series of Winter Wheat in Northern Belgium

The average NDVI series of the winter wheat fields for the years 2016 to 2018 in
northern Belgium is presented in Figure 2. The average NDVI for the years 2016 to 2018
peaked around the end of May (DOY (day of year) 151) and dropped around the end of
July (DOY 212).
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3.2. aNDVI, maxNDVI and Crop Yield

The NDVI series used for the calculation of aNDVI and maxNDVI for the years 2016 to
2018 is presented in Figure 3. The number of fields used to calculate aNDVI and maxNDVI
was equal to 335, 409 and 198 in 2016, 2017 and 2018, respectively. Higher NDVI values
early in the growing season (before the end of March (DOY 90)) were observed in 2016
compared to 2017 and 2018 (Figure 3). The percentage of NDVI observations available
in early (defined as January to the end of March (DOY < 90)), mid (defined as the end of
March (DOY > 90) to the end of May (DOY < 151)) and end (defined as the end of May
(DOY > 151) to 21 July (DOY < 202)) of the winter wheat growing season was similar in
2016, 2017 and 2018. The percentage of NDVI observations available in the early growing
season was equal to 40%, 32% and 32% in 2016, 2017 and 2018, respectively. The percentage
of NDVI observations available in mid growing season was equal to 37%, 39% and 32% in
2016, 2017 and 2018, respectively. The percentage of NDVI observations available in late
growing season was equal to 22%, 30% and 34% in 2016, 2017 and 2018, respectively.
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The black points represent the average NDVI profile of all fields in a particular year. DOY: day of year.

Winter wheat yield, aNDVI and maxNDVI from 2016 to 2018 is visualized in Figure 4.
Winter wheat yield was lowest in 2016 and highest in 2017 (Figure 4a). The variation in
aNDVI for the years 2016 to 2018 does not align with the variation in winter wheat yield for
the same period (Figure 4a,b). aNDVI was lowest in 2017 and highest in 2016. maxNDVI
for the years 2016 to 2018 showed a similar pattern as the winter wheat yield (Figure 4a,c).
Similar to the observed winter wheat yield, maxNDVI was lowest in 2016 and highest
in 2017. In Figure 5, winter wheat yield is plotted as a function of the calculated aNDVI
and maxNDVI.
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3.3. Wheat Yield Random Forest Models

The model performance metrics of the random forest models to predict winter wheat
yield with predictor variable(s) aNDVI (Model 1), maxNDVI (Model 2), and monthly
precipitation and maximum temperatures from January to July, aNDVI and maxNDVI,
(Model 3) are presented in Table 1. The model performance metrics of the random forests
Model 1 and Model 2 indicated that both aNDVI and maxNDVI were poor predictors
of winter wheat yield in northern Belgium. When weather variables were added to the
random forest wheat yield model, the model performance increased strongly (Model 3,
Table 1).
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Table 1. Model performance metrics of Model 1: yield~aNDVI, Model 2: yield~maxNDVI, and
Model 3: yield~aNDVI + maxNDVI + Jan_P + Feb_P + Mar_P + Apr_P + May_P + Jun_P + Jul_P +
Jan_Tmax + Feb_Tmax + Mar_Tmax + Apr_Tmax + May_Tmax + Jun_Tmax + Jul_Tmax (where P is
precipitation; Tmax is maximum temperature; months from January to July are indicated by the first
three letters of each month).

Model Performance Metrics Model 1 Model 2 Model 3

Out of bag prediction error (MSE) 3.54 2.78 0.95
R squared (out of bag) −0.2752 0.0013 0.6593

The importance scores of the predictor variables for Model 3 are visualized in Figure 6.
Precipitation in June had the highest variable importance score in Model 3. In addition,
precipitation in the months January, February and May had high importance scores. Precip-
itation in these months thus played an important role in Model 3. Maximum temperature
in the months June, February, January and May had also high importance scores. The
NDVI-derived yield proxies aNDVI and maxNDVI had an importance score equal to 0.15
and 0.30, respectively. With these scores, aNDVI and maxNDVI had the lowest importance
scores of all predictor variables, pointing at their poor predictor value for winter wheat
yield. This was already indicated by the model performance of Model 1 and Model 2
(Table 1). The p-values of the permutation variable importance scores were smaller than
0.05 for all predictor variables except for the predictor variable aNDVI, which had a p-value
equal to 0.14.
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3.4. Effect of Weather on Winter Wheat Yield

The Pearson correlation between winter wheat yield and the monthly precipitation
(P) and minimum and maximum temperatures (Tmin and Tmax) is presented in Figure 7a.
Winter wheat yield was negatively correlated with precipitation in June, January and
February, indicating that high precipitation values in these months resulted in low winter
wheat yield. The negative correlation between precipitation and winter wheat yield was
strongest in June and weaker in the months of January and February. Precipitation in the
other months (except for the month of July) had lower, but also negative, correlation values
with winter wheat yield. A positive correlation between winter wheat yield and minimum
and maximum temperature in March and maximum temperature in June was observed.
This indicates that high temperatures in these months resulted in higher winter wheat
yield. The correlation values between minimum and maximum temperature and winter
wheat yield were smaller than the negative correlation values between precipitation and
winter wheat yield (Figure 7a).

The pattern in correlation values between monthly precipitation, minimum and maxi-
mum temperature and aNDVI was dissimilar to the correlation pattern observed between
winter wheat yield and the considered monthly weather variables (Figure 7a,b). This
indicates that aNDVI was influenced in another way by the considered weather vari-
ables. However, for maxNDVI, a similar correlation pattern between monthly weather
variables and winter wheat yield was observed (Figure 7a,c). Similar to winter wheat yield,
maxNDVI was negatively correlated with precipitation in June, January and February. In
addition, maxNDVI was positively correlated with minimum and maximum temperature
in March and maximum temperature in June. These were also the months where a posi-
tive correlation between winter wheat yield and minimum and maximum temperatures
was observed.

Agronomy 2021, 11, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 7. (a) Pearson correlation between winter wheat yield and monthly precipitation (P), minimum temperature (Tmin) 
and maximum temperature (Tmax) for the months from January to July); (b) Pearson correlation between aNDVI and 
monthly precipitation (P), minimum temperature (Tmin) and maximum temperature (Tmax) for the months from January 
to July; (c) Pearson correlation between maxNDVI and monthly precipitation (P), minimum temperature (Tmin) and max-
imum temperature (Tmax) for the months from January to July. The months from January to July are indicated by the first 
three letters of each month. Significant correlation values (i.e., p-value < 0.01) and non-significant correlation values (i.e., 
p-value > 0.01) are indicated with triangles and circles, respectively. 

The pattern in correlation values between monthly precipitation, minimum and max-
imum temperature and aNDVI was dissimilar to the correlation pattern observed between 
winter wheat yield and the considered monthly weather variables (Figure 7a,b). This in-
dicates that aNDVI was influenced in another way by the considered weather variables. 
However, for maxNDVI, a similar correlation pattern between monthly weather variables 
and winter wheat yield was observed (Figure 7a,c). Similar to winter wheat yield, 
maxNDVI was negatively correlated with precipitation in June, January and February. In 
addition, maxNDVI was positively correlated with minimum and maximum temperature 
in March and maximum temperature in June. These were also the months where a positive 
correlation between winter wheat yield and minimum and maximum temperatures was 
observed. 

Figure 7. Cont.



Agronomy 2021, 11, 946 9 of 13

Agronomy 2021, 11, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 7. (a) Pearson correlation between winter wheat yield and monthly precipitation (P), minimum temperature (Tmin) 
and maximum temperature (Tmax) for the months from January to July); (b) Pearson correlation between aNDVI and 
monthly precipitation (P), minimum temperature (Tmin) and maximum temperature (Tmax) for the months from January 
to July; (c) Pearson correlation between maxNDVI and monthly precipitation (P), minimum temperature (Tmin) and max-
imum temperature (Tmax) for the months from January to July. The months from January to July are indicated by the first 
three letters of each month. Significant correlation values (i.e., p-value < 0.01) and non-significant correlation values (i.e., 
p-value > 0.01) are indicated with triangles and circles, respectively. 

The pattern in correlation values between monthly precipitation, minimum and max-
imum temperature and aNDVI was dissimilar to the correlation pattern observed between 
winter wheat yield and the considered monthly weather variables (Figure 7a,b). This in-
dicates that aNDVI was influenced in another way by the considered weather variables. 
However, for maxNDVI, a similar correlation pattern between monthly weather variables 
and winter wheat yield was observed (Figure 7a,c). Similar to winter wheat yield, 
maxNDVI was negatively correlated with precipitation in June, January and February. In 
addition, maxNDVI was positively correlated with minimum and maximum temperature 
in March and maximum temperature in June. These were also the months where a positive 
correlation between winter wheat yield and minimum and maximum temperatures was 
observed. 

Figure 7. (a) Pearson correlation between winter wheat yield and monthly precipitation (P), minimum temperature (Tmin)
and maximum temperature (Tmax) for the months from January to July); (b) Pearson correlation between aNDVI and
monthly precipitation (P), minimum temperature (Tmin) and maximum temperature (Tmax) for the months from January
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maximum temperature (Tmax) for the months from January to July. The months from January to July are indicated by the
first three letters of each month. Significant correlation values (i.e., p-value < 0.01) and non-significant correlation values
(i.e., p-value > 0.01) are indicated with triangles and circles, respectively.

In Figure 8, NDVI for the months of January, February and June is plotted as a function
of the monthly precipitation in these months. These are the three months that showed
the strongest negative correlation between winter wheat yield and monthly precipitation
(Figure 7). High precipitation values in the month of June did not correspond to lower
NDVI values, despite the negative correlation between winter wheat yield and precipitation
during this month (Figure 7c). Interestingly, the variability in NDVI observations in
June decreased with increasing precipitation. Expected lower NDVI values caused by
higher precipitation values were not observed for the months of January and February
(Figure 7a,b).
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4. Discussion

The model performance metrics of the yield model using aNDVI as a predictor variable
for winter wheat yield modelling in northern Belgium indicated that the integral NDVI
during the growing season (aNDVI) was not a good predictor of winter wheat yield
(Table 1, Model 1), which is in contrast to a study in Latvia [4]. The variance explained for
winter wheat yield at the regional scale in Latvia using aNDVI as a predictor reached 27%
and 16% using a linear regression method and random forest model, respectively [4]. When
the weather predictors of precipitation and temperature and information on the location
of the field were added to the models, the variance explained for winter wheat yield in
Latvia reached 84% and 96% using a linear regression method and random forest model,
respectively [4]. Adding information on the location of the field, by including which of
the seven agricultural regions of northern Belgium the field was located in (Figure 1), to
Model 1 had a negligible effect on the model performance (R2 = 0.09). Each agricultural
region is characterized by a distinctive mixture of soil and terrain conditions. A similar
approach was developed by [6] in northern France, where the combined use of NDVI
and meteorological variables performed well for different soils and management regimes
without incorporating these variables directly into the yield model.

When maxNDVI instead of aNDVI was used as a predictor in the winter wheat yield
model of northern Belgium, the model performance did not improve (Table 1, Model 2).
The model performance increased slightly when information on the location of the field
was added to Model 2; however, the model performance remained poor (R2 = 0.25). This
is in contrast to studies in other regions, where peak NDVI has been shown to capture
wheat yield variability well [3,21]. In the present study, maxNDVI occurred on average
on 24 May 2016 [DOY 145], 24 May 2017 [DOY 144] and 13 May 2018 [DOY 133]. Winter
wheat anthesis, which is a crucial stage for final wheat yield, typically takes place in June in
Belgium [22]. The observed maxNDVI occurred on average close to winter wheat anthesis.
Therefore, maxNDVI was expected to be a better predictor of winter wheat yield. However,
the scatterplot of maxNDVI and winter wheat yield for the years 2016 to 2018 indicated
that maxNDVI was close to NDVI saturation for most fields, irrespective of the final yields
(Figure 5). The low yield prediction power of maxNDVI was likely caused by dense green
biomass in the studied fields. Therefore the NDVI likely saturated prior to capturing the
seasonal green biomass peak, resulting in a poor predictor of winter wheat yield [3].

The poor model evaluation metrics of winter wheat yield models based on aNDVI
and maxNDVI in northern Belgium compared to other regions suggest that NDVI does not
capture winter wheat yield variability well in northern Belgium. From these results we
concluded that modelling winter wheat yield based on NDVI using an empirical model is
environmentally dependent. The environmental dependency of wheat yield models based
on fAPAR, another vegetation index, was already demonstrated by [23,24]. In rain-fed
regions with high yields in Europe, the correlations between fAPAR and yield were low,
whereas in regions where yield is water-limited, high correlations between fAPAR and
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yield were found [23]. In the former case, the addition of stress factors improved the model
performance [24]. The higher average yields in northern Belgium (i.e., 8.2 Mg/ha from
2016 to 2018) compared to Latvia (i.e., 5.2 Mg/ha from 2014 to 2018) might also partly
explain the low performance of the wheat yield model based on NDVI in northern Belgium.
The authors of [25] found that the model performance of soybean and corn yield models
based on surface reflectance and vegetation indices decreased with increasing yield. The
decrease in model performance is related to the saturation of multi-spectral data (including
NDVI) at high yields [25].

The correlation pattern between aNDVI and monthly weather variables did not align
with the correlation pattern between winter wheat yield and monthly weather variables
(Figure 7a,b). However, in a previous study in Latvia [4], aNDVI was correlated with
monthly temperature data in a similar way to winter wheat yield. Winter wheat yield
was negatively correlated with monthly precipitation from January to June (Figure 7a). In
contrast, aNDVI of the studied winter wheat fields was positively correlated with monthly
precipitation from January to June (Figure 7b). NDVI values during the months of January,
February and June had no negative effect of high precipitation values (Figure 8). Other
studies have shown that waterlogging resulted in lower NDVI values of wheat [26–28]. In
contrast, ref. [29] found that wheat leaf physiology and shoot growth were not significantly
affected by waterlogging in early or late crop growth stages, whereas seed production did
decrease. The non-response of wheat leaf physiology to flooding shown in this experiment
could also explain the non-response of NDVI to high precipitation values in the present
study. NDVI values in January and February 2016 were higher compared to 2017 and
2018 (Figure 8a,b). The high NDVI values in January and February 2016 could be related
to favorable winter conditions in 2015. Temperatures in November and December and
precipitation in November 2015 were higher than the long-term average values from 1981
to 2010 [30]. The positive effect of the favorable winter conditions in 2015 on the NDVI were
not offset by the high precipitation values in January and February in 2016. In addition, the
negative effects of high June precipitation may not have been captured by NDVI because
NDVI values were close to saturation in June (Figure 3). Therefore aNDVI was not a
good predictor for winter wheat yield in northern Belgium because it did not capture the
negative effect of high precipitation on winter wheat yield in the months January, February
and June.

The correlation pattern between maxNDVI and monthly weather variables aligned
with the correlation pattern between winter wheat yield and monthly weather variables
(Figure 7a,c). The negative correlation between maxNDVI and precipitation in June, January
and February is, however, not as strong as the correlation between winter wheat yield and
precipitation during these months. maxNDVI occurred, on average, before June in 2016,
2017 and 2018. Therefore, the causality of the observed correlation between maxNDVI and
weather variables in June and July is unlikely.

The winter wheat yield model with monthly weather variables indicated that pre-
cipitation in the months of June, January and February was the most important variable
explaining winter wheat yield variability in the period from 2016 to 2018 in northern
Belgium (Figure 6). This was also confirmed by the Pearson correlation between winter
wheat yield and precipitation in June, January and February (Figure 7). These Pearson
correlation values indicated that high precipitation values in June, January and February
resulted in low winter wheat yield. June is an important month for winter wheat in north-
ern Belgium, as it is in this month that wheat anthesis occurs [22], which is a sensitive
crop stage. Adverse weather conditions during this important phenological stage impact
wheat yield [22]. Winter wheat yield losses between 34 and 92% caused by waterlogging
around anthesis have been reported [22,31]. On average, precipitation in June was equal
to 119 mm in 2016, 36 mm in 2017 and 14 mm in 2018 during the wheat tillering phase.
In January and February, precipitation was 109 mm in 2016 compared to 59 mm in 2017
and 92 mm in 2018. Average precipitation in February was equal to 81 mm in 2016, 53 mm
in 2017 and 31 mm in 2018. The high precipitation in June, January and February in 2016
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caused the low winter wheat yield in 2016 (Figure 4). The results of Model 3 confirmed
that easily accessible weather variables explained winter wheat yield variability better than
NDVI-derived variables in northern Belgium from 2016 to 2018.

5. Conclusions

This research demonstrates that the applicability of empirical winter wheat yield
modelling using NDVI-derived yield proxies as predictor variables is environmentally
dependent. For the period from 2016 to 2018, the NDVI-derived yield proxies aNDVI and
maxNDVI were not able to explain winter wheat yield variability. This was caused by
the lack of sensitivity of the NDVI series to monthly precipitation in June, January and
February, which were shown to influence wheat yield the most in the period from 2016 to
2018. In conclusion, the effect of adverse weather conditions during important phenological
stages such as tillering and anthesis on winter wheat yield was not captured by the NDVI
series. Winter wheat yield variability was better predicted by monthly precipitation and
temperature data than by NDVI-derived yield proxies in the period from 2016 to 2018 in
northern Belgium.
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