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Abstract: Background: early blight disease caused by Alternaria solani is one of the most destruc-
tive diseases of the tomato, reducing tomato production globally. Methods: four fungal isolates
were collected from four tomato cultivars and identified through morphological characteriza-
tion and polymerase chain reaction (PCR) amplification of the internal transcript spacer (ITS)
region. Plectranthus neochilus and Parthenocissus quinquefolia methanol extracts and the bioagents
Trichoderma viride and Pseudomonas fluorescens were used as antifungal agents in vitro and in vivo and
compared with chlorothalonil, a reference chemical fungicide. HPLC analysis of the plant extracts
was used to identify the main flavonoid compounds, namely, rutin and myricetin. Results: molecular
characterization showed that the fungal isolates belonged to A. solani. The results of in vitro antifun-
gal activity studies revealed that chlorothalonil, at a concentration of 2500 mg/L, showed the highest
inhibition percentage of fungal growth (IPFG) against A. solani (84.4%), followed by the bioagents
T. viride and P. fluorescens, with IPFG values of 72.9% and 67.9%, respectively. Moderate to weak
activity was found against A. solani when P. neochilus and P. quinquefolia extracts were applied at a
concentration of 2500 mg/L, with an IPFG value of 54% for both extracts. The results of in vivo spray
application showed that T. viride and chlorothalonil, as well as P. fluorescens, significantly reduced the
disease index of early blight, and followed by the P. neochilus and P. quinquefolia extracts. By HPLC,
the flavonoid compounds rutin and myricetin were identified in P. neochilus (leaf) with amounts of
2429.60 and 75.92 mg/100 g of extract, and in P. quinquefolia (fruit), with amounts of 1891.60 and
241.06 mg/100 g of extract, respectively. Conclusions: the results of the bioactivity of plant extracts
and the bioagents indicate a vital role as antifungal activity against A. solani.

Keywords: Plectranthus neochilus; Parthenocissus quinquefolia; antifungal activity; Trichoderma viride;
Pseudomonas fluorescens; flavonoid compounds

1. Introduction

The tomato (Solanum lycopersicum L.) is one of the most important vegetable crops [1].
It is susceptible to various diseases caused by different pathogens, such as bacteria, viruses,
nematodes, and fungi [2]. Early blight disease, one of the most common tomato diseases, is
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caused by the fungal pathogen Alternaria solani, which usually infects solanaceous crops,
including tomato, potato, pepper, and eggplant [3,4]. The common symptoms of Alternaria
diseases are the creation of necrotic spots in concentric rings with a yellow chlorotic halo,
which affects plants by reducing the photosynthetic area [5,6]. This pathogen causes
significant damage at all growth stages and in all aerial parts of tomato, leading to a 35–78%
loss in fruit yield [7,8].

Morphological and pathological variations among A. solani isolates have been widely
studied by many researchers [9–11]. Most of the assays used in the disease diagnosis of
early blight depend on visual assessment of the symptoms, spore load counting, and lesion
diameter measurement [12]. Recently, PCR was used for the detection of Alternaria spp.
in tomato samples based on ribosomal internal transcribed spacer (ITS) DNA sequence
analysis [13].

There are various methods to control A. solani, such as cultivation of disease-free
transplants (resistant varieties), crop rotation, and application of biological control agents,
such as Trichoderma viride and Pseudomonas fluorescens [14]. In nature, these are harmless
bacterial and fungal species that protect the roots of plants from diseases [15,16]. Moreover,
protective fungicides and plant extracts have been used [14,17–20]. Plant extracts such
as Parthenocissus quinquefolia and Plectranthus neochilus extracts are used as antifungal
agents [21–23]. Long-term effective management strategies usually use a combination of
two or more measures for disease control [24].

Plectranthus neochilus is a perennial, aromatic, succulent herb [25], and its essential
oil is used for antifungal activity against Rhizopus stolonifer [26], and its antimicrobial [23],
antischistosomal [27], and insecticidal activities [28]. The major essential oil constituents
are β-caryophyllene, α-thujene, α-pinene, β-pinene, germacrene D, and caryophyllene
oxide [27], as well as the fatty acid esters α-amyrin, sitosterol, and stigmasterol. In addition,
flavone cirsimaritin was isolated from the ethanol extract [29]. Extracts of P. neochilus were
found to be rich in polyphenols and flavonoid glycosides (rutin and naringin) [30].

Parthenocissus quinquefolia (L.) Planch. (Virginia creeper) is a deciduous climber plant
that belongs to the Vitaceae family and is native to North America, and can be found
in Southern Africa, and Australia [31,32]. This plant has been used medically to treat
scrofula and chronic cutaneous affections due to its antibacterial, antifungal, and antioxi-
dant properties [22,33]. The chemical constituents include 3,4,5-trihydroxy-benzoic acid,
pallidol, piceatannol, resveratrol, resveratrol trans-dehydrodimer, cyphostemmin A and B,
quercetin-3-O-α-L-rhamnoside, and myricetin-3-O-α-L-rhamnoside [34]. Reducing sugars,
anthraquinones, alkaloids, flavonoids, saponins, tannins, terpenoids, and some glycosides
were identified in the plant extracts [35]. Moreover, P. quinquefolia is considered a dye
resource because it is rich in pigments such as anthocyanins [36]. Anthocyanins are partic-
ularly abundant in the fruits and flowers, as well as in stems, roots, and leaves [37,38]. The
flavonoid content of P. quinquefolia leaves (4.07%) and seeds (2.3%) is important for further
development and utilization of the biologically active components of P. quinquefolia [39,40].

This study is designed and carried out for the documentation and evaluation the
activity of two bioagents Trichoderma viride and Pseudomonas fluorescens as well as natural
extracts from P. neochilus and P. quinquefolia against the growth of molecularly identified
Alternaria solani isolates, the causal pathogen of tomato early blight in vitro and in vivo.
The obtained resulted were compared to those for chemical fungicide (chlorothalonil).
Furthermore, and for the characterization of two main flavonoid compounds, rutin and
myricetin, were identified by chromatographic analysis, HPLC.

2. Materials and Methods
2.1. Isolation of the Fungal Pathogen

A standard tissue isolation technique was used to obtain fungal pathogen cultures
as described by Naik et al. [41]. The leaves were microscopically examined to confirm the
presence of the early blight fungi. Isolation trials were performed on field-infected tomato
plant cultivars Dosera 023, Ajyad 7, and Marina HajinF2, and small-infected samples were
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washed with sterile distilled water (SDW). These pieces were placed on potato dextrose
agar (PDA) medium, and incubated for 5 days at 25 ± 2 ◦C. The culture was purified by a
single-spore isolation technique [42].

2.2. Pathogenicity Test
2.2.1. Tomato Fruit

Pure cultures of the fungal pathogen were obtained by the single-spore isolation
method, and these cultures were used for pathogenicity tests by following Koch’s postu-
lates [43]. Healthy tomato fruit were taken, and their surfaces were sterilized with ethanol
(70%). Artificial infection was carried out using 5 µL of the fungal spore suspension; a
spore suspension with a concentration of 3 × 106 spore/mL was used to inoculate each
tomato, where the suspension was placed on each fruit, and the fruit was placed under
humidified conditions in an incubator at 27 ◦C for one week [44].

2.2.2. Tomato Seedlings

Seeds of the tomato cultivar Dosera were grown in a greenhouse, and the soil used
for cultivation was sterilized by an autoclave. The temperature for plant growth was
maintained at 28 ◦C to 32 ◦C, and the relative humidity was maintained at 40 to 60%; the
plants were allowed to attain a height of 150–200 mm. The collection of tomato plants have
been done under the permission at Agriculture Research Center (ARC), Alexandria, Egypt.

Four replications were used in the pathogenicity test. A spore suspension with a
concentration of 3 × 106 spore/mL (containing 0.01% Tween 20) was sprayed on leaves,
and the degree of leaf infection was studied by visual observation of the extent of lesion
development on the leaves, which was assessed for 10 days after inoculation [45]. Obser-
vations of the severity of the disease on the foliage were recorded using a 0–5 scale, as
shown in Table 1 [46], and the percentage disease index (PDI) was determined by using the
following formula and the description of the disease scale [47]: PDI = (A/B × C) × 100,
where A is the sum of all ratings, B is the number of plants, and C is the maximum rating.

Table 1. Description of disease scale.

Number Symptoms

0 No symptom spot on the leaf
1 1–20% leaf area infected and covered by spot
2 21–40% leaf area infected and covered by spot
3 41–60% leaf area infected and covered by spot
4 61–80% leaf area infected and covered by spot
5 80% leaf area infected and covered by spot

2.3. Identification of the Fungal Pathogen
2.3.1. Cultural and Morphological Characteristics

The fungal isolates were identified by microscopic examination, including examination
of the structure, size, and shape of the conidia. The isolates were identified according to
the criterial for cultural and morphological characteristics described by Naik et al. [41].

2.3.2. Molecular Characterization via Polymerase Chain Reaction (PCR) Amplification of
the Internal Transcript Spacer (ITS) Region

After obtaining pure cultures of the fungal isolates, DNA was extracted from these isolates
using a rapid mini-preparation procedure [48,49]. The ITS DNA region of these isolates was
amplified via PCR using the universal primers ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′)
and ITS4 (5′-TCCTCCGCTTATTGA TATGC-3′), which amplified the ITS regions and 5.8S
genes encoded by fungal species. Amplification of the ITS rDNA was performed in a
total volume of 25 µL, containing 12.5 µL of PCR Green Master Mix (Thermo Scientific™,
Gloucester, United Kingdom), 3 µL of template DNA, 8.5 µL of molecular-grade water,
and 0.5 µL each of the universal forward primer (ITS1) and reverse primer (ITS4). The
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optimized thermal profile for PCR was as follows: initial denaturation at 95 ◦C for 3 min;
35 cycles of denaturation at 94 ◦C for 30 s, and annealing at 55 ◦C for 2 min; and a final
extension at 72 ◦C for 10 min. The PCR products were separated on a 1.5% agarose gel in
0.5X Tris-borate-EDTA (TBE) buffer at 65 volts for 15 min, run parallel to a standard DNA
molecular marker, and visualized under a UV transilluminator.

2.4. Sequencing of the ITS Region and Phylogenetic Analysis

The obtained ITS rDNA (500–700 bp) regions of selected isolates were sent for sequenc-
ing (Macrogen, Scientific Services Company, Seoul, Korea). The sequences were compared
to those in GenBank (http://www.ncbi.nlm.nih.gov, accessed on 4 April 2020) using NCBI
BLAST. The sequences obtained were submitted to GenBank. The ITS sequences of fun-
gal strains were downloaded from the GenBank database and used in the phylogenetic
analyses as reference sequences. All the DNA sequences were aligned with the program
CLUSTALW [50]. The resulting multiple-alignment file was used for phylogenetic analyses.
The evolutionary history was inferred using the Maximum Parsimony method. The evolu-
tionary history was inferred using the Maximum Parsimony method. The consensus tree
inferred from 10 most parsimonious trees is shown. Branches corresponding to partitions re-
produced in less than 50% trees are collapsed. The consistency index is 1.000000 (1.000000),
the retention index is 1.000000 (1.000000), and the composite index is 1.000000 (1.000000) for
all sites and parsimony-informative sites (in parentheses). The percentage of parsimonious
trees in which the associated taxa clustered together are shown next to the branches. The
MP tree was obtained using the subtree–pruning–regrafting (SPR) algorithm [51] with
search level 0, in which the initial trees were obtained by the random addition of sequences
(10 replicates). The analysis involved 10 nucleotide sequences. Sequence gaps were treated
as missing data. There were a total of 288 positions in the final dataset.

2.5. Evaluation of Bioagents and Plant Extracts against the Early Blight Pathogen Compared to a
Chemical Fungicide In Vitro and In Vivo
2.5.1. Efficacy of Biological Control Agents In Vitro

Two biological control agents, namely, Trichoderma viride (accession no. MW647090)
and Pseudomonas fluorescens (accession no. MW647093), were evaluated for their efficacy
against the fungal pathogen using a dual-culture technique [19,49]. Fifteen milliliters of
PDA was poured into 9-cm-diameter Petri dishes and allowed to solidify. A 0.5-cm disc of
the pathogen was taken from growing margins of a 7-day-old culture and placed at one
end of the Petri dish. The T. viride strain isolated in this study from an infected tomato
field (0.5 cm disc) was inoculated on the opposite side of the same Petri dish. In the case of
the bacterial antagonist, the fungus was centered between two P. fluorescens lines in Petri
dishes and incubated for 7 days at 27 ◦C. The activity of the antagonistic organisms was
recorded by measuring the colony diameter in each treatment and comparing it to the
control value [52].

2.5.2. Plant Extracts and Their Bioactivity In Vitro

P. quinquefolia fruit and P. neochilus leaves were collected from Alexandria, Egypt. The
samples were air-dried under laboratory conditions and ground using a small laboratory
Wiley mill. Approximately 50 g each of the P. quinquefolia fruit and P. neochilus leaf samples
were extracted with 200 mL of methanol for three days at room temperature and then
filtered using Whatman No. 1 filter paper [53]. Subsequently, the solvent was evaporated,
and the extracts were concentrated under vacuum using a rotary evaporator at 45 ◦C.
Furthermore, the crude extracts were stored in sealed vials at 4 ◦C until further use for
in vitro screening of antimicrobial activity [54].

The extracts were prepared at concentrations of 2500, 1250, and 625 mg/L by dissolv-
ing the extract in dimethyl sulfoxide (DMSO 99.99%) and tested against the growth of the
isolated fungus. Wells with a 6-mm diameter were cut out from the PDA medium and
filled with 80 µL of each extract. Fungal isolates were grown on PDA and placed at one

http://www.ncbi.nlm.nih.gov
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end of the Petri dish. Each antimicrobial assay was performed in triplicate. The plates
were incubated at an appropriate growth temperature (27 ◦C) for 7 days. The assessment
of antimicrobial activity was based on the measurement of linear growth of fungi on the
agar surface around the well [55].

2.6. HPLC Analysis of Flavonoids

An HPLC instrument (Smartline, Knauer, Germany), equipped with a binary pump
and a Zorbax Eclipse plus C18 column (150 mm× 4.6 mm i.d.) (Agilent Technologies, Santa
Clara, CA, USA) and operated at 35 ◦C, was used to identify the flavonoid compounds in
the methanol extracts of P. quinquefolia fruit and P. neochilus leaves. The conditions used
were as follows: eluent methanol:H2O with 0.5% H3PO4, 50:50; flow rate, 0.7 mL/min;
and injected volume, 20 µL. The UV detector was set at 273 nm, and data integration was
performed using ClarityChrom@ chromatography software, version 7.2.0 (KnauerWis-
senschaftlicheGeräte GmbH, HegauerWeg 38, 14163 Berlin, Germany) [20,56,57]. Standard
flavonoids rutin, myricetin, quercetin, naringenin, kaempferol, and apigenin were used.

2.7. In Vitro Evaluation of Fungicide

The efficacy of the fungicide chlorothalonil (Brado 72% SC®) as a chemical positive
control was tested against the isolated fungus at three concentrations: 2500 (1×) Ministry
of Agriculture Recommendation), 1250, and 625 mg/L. The fungicide was added to PDA
medium after sterilization. A 0.5-cm disc of the fungal isolate was removed and placed at
the center of a Petri dish and incubated for 7 days at 27 ◦C, and the activity of the fungicide
was recorded by measuring the colony diameter of the tested fungus in each treatment and
comparing it to the control value [58,59].

The bioagents, plant extracts, and chemical positive control (chlorothalonil) were
tested with a completely randomized design in triplicate. Then, the plates were incubated
until fungal growth covered the surface of PDA medium in the control treatment [60]. The
efficacy of each treatment was determined by measuring linear growth (cm), and the data
are expressed as the percentage of mycelial growth inhibition compared with the control
using the following formula [19,61]: mycelial growth inhibition (%) = (T0 − Ta/T0) × 100;
where T0 and Ta are the average diameters (mm) of fungal colonies under the control and
experimental treatments, respectively.

2.8. Control of Early Blight Disease in Tomato In Vivo

The biocontrol agents and plant extracts as well as the chemical fungicide were
screened on tomato seedlings. After the plants attained a height of 20 cm, a spore sus-
pension of the fungal isolate (A.s.1) containing 3 × 106 spore/mL was sprayed on the
tomato seedlings. T. viride (106 spore/mL), and P. fluorescens (108 CFU/mL), as well as the
plant extracts and fungicide (2500 mg/L), were sprayed onto the tomato seedlings one
day after inoculation. The experiment was conducted in a randomized complete block
design with four replications. Data on disease severity were obtained after three weeks of
all treatments [62]. The percent disease index (PDI) was calculated [63], as was the percent
reduction in PDI (%) [2].

2.9. Statistical Analysis

The reduction in linear growth of the pathogen as an effect of treatment with biotic
and biocontrol agents was analyzed using analysis of variance in a completely randomized
design using a computer program, Statistical Analysis System (SAS), and compared with
the values for of the control. Means among the treatments were compared using minimum
significant difference measured by Tukey’s Studentized Range (HSD) Test at Alpha 0.05 [64].
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3. Results
3.1. Isolation of the Fungal Pathogen

Four fungal isolates of the early blight disease pathogen (Alternaria spp.) were obtained
from field-infected plants of the tomato cultivars Dosera, 023, Marina Hajin F2, and Ajyad7.

3.2. Pathogenicity Test
3.2.1. Tomato Fruits

The pathogenicity test of the four isolates showed their ability to infect artificially
inoculated tomato fruits after one week, in which black spots appeared around the infected
area, and fungal growth increased as the incubation period increased (Figure 1).
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Figure 1. Artificially inoculated tomato fruits with Alternaria spp. isolates (A.s.1, A.s.2, A.s.3, and A.s.4) showing black
spots and gray mycelial fungal growth compared to healthy control after one week from the inoculation.

3.2.2. Tomato Seedlings

Artificial infection of tomato seedlings was carried out under greenhouse conditions on
15-day-old seedlings of the tomato cultivar Dosera. The disease symptoms were observed
one week after inoculation as browning of the tissue followed by necrosis. The spots
produced were oval in shape, and in the later stage, these spots expanded, and concentric
circles were formed and were surrounded by a yellow halo. Finally, the spots changed
from brown to dark brown (Figure 2), and the non-inoculated plants did not exhibit disease
symptoms. Table 2 shows the percent disease index (PDI), and the degree of leaf infection
was investigated by visual observation.

Table 2. Origin, percent disease index and accession numbers of four isolates of Alternaria solani used in this study.

Isolates Codes Cultivars Plant Parts Accession Number Percent Disease Index (PDI) *

A.s.1 Dosera Tomato fruit MT279570 45%
A.s.2 023 Tomato fruit MT279571 30%
A.s.3 Marina Hajin F2 Tomato leaves MT279572 25%
A.s.4 Ajyad 7 Tomato leaves MT279573 20%

* Average of four replicates.

3.3. Identification of the Fungal Pathogen
3.3.1. Cultural and Morphological Characteristics

Four purified fungal isolates, namely, A.s.1, A.s.2, A.s.3, and A.s.4, were identified
based on morphological characteristics. The conidia were brown to olivaceous brown, were
solitary and straight or exhibited ellipsoidal tapering, and had transverse and longitudinal
septate. According to the microscopic images of the four pathogenic fungi and preliminary
evaluation, all the isolates belonged to A. solani. The color of the observed colonies was dark
brown or olivaceous brown, and the colonies were smooth on PDA medium (Figure 3).
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Figure 3. Colonial morphology and growth pattern of Alternaria solani on PDA medium (left), and microscopic examination
of conidial spores at 40×magnification (right).

3.3.2. Molecular Characterization through Sequence Analysis of the ITS Region and
Phylogenetic Tree of Alternaria Solani Isolates

The fungal isolates were identified via amplification and sequencing of the ITS re-
gion. The four isolates produced a PCR product of approximately 500–700 bp, and the
ITS sequences were submitted to GenBank. The accession numbers are listed in Table 2.
The accession numbers of the ITS sequences were MT279570, MT279571, MT279572, and
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MT279573. The DNA sequence obtained for each fungal isolate showed 99.5% homol-
ogy with the A. solani sequences available in GenBank, as determined by utilizing the
BLAST tool. The level of similarity reported here confirms the morphological identifi-
cation of the isolates. In the phylogenetic tree of the ITS region, four A. solani isolates
obtained in this study were compared with six isolates collected from GenBank (GU395512,
MT135014, KX452728, KF999007, HQ270456, and MT199327), and high genetic similarity to
the reported isolates was found (Figure 4).
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obtained in this study compared with ITS sequences by maximum parsimony. A. solani isolates 326 collected from GenBank
(Acc. numbers, GU395512, MT135014, KX452728, KF999007, HQ270456 327, and MT199327).

3.4. Evaluation of Bioagents, Plant Extracts and a Chemical Fungicide against A. solani Isolates
In Vitro

The data presented in Table 3 show the highly significant effects of the tested biocontrol
agents T. viride (Accession no. MW647090) and P. fluorescens (accession no. MW647093)
and plant extracts (P. neochilus and P. quinquefolia) against the growth of A. solani isolates
compared with the effect of chlorothalonil 72% as a chemical positive control.
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Table 3. Antifungal activity of T. viride and P. fluorescens bioagents, P. neochilus and P. quinquefolia plant extracts and
Chlorothalonil fungicide (Brado72%SC®) on A. solani isolates under in vitro condition.

Treatment Concentration
Inhibition Percentage of Fungal Growth (IPFG) %

A.s.1 A.s.2 A.s.3 A.s.4

T. viride 106 spore/mL 72.99 ± 0.42 b * 71.43 ± 0.75 c 65.26 ± 0.47 c 63.98 ± 1.42 c
P. fluorescens 108 CFU/mL 67.93 ± 0.42 c 64.93 ± 0.74 d 49.76 ± 0.93 d 53.76 ± 0.53 d

P. neochilus extract
625 mg/L 48.11 ± 0.73 e 28.57 ± 0.75 h 23.94 ± 1.62 g 10.21 ± 0.53 g

1250 mg/L 51.89 ± 0.73 de 41.56 ± 0.75 fg 28.17 ± 0.81 ef 31.18 ± 1.42 f
2500 mg/L 54.01 ± 1.69 d 50.21 ± 1.56 e 31.45 ± 0.46 e 37.09 ± 0.93 e

P. quinquefolia extract
625 mg/L 48.52 ± 0.84 e 39.39 ± 1.56 g 26.76 ± 0.81 fg 7.52± 1.42 g

1250 mg/L 50.63 ± 0.73 de 45.45 ± 1.98 ef 28.17 ± 0.81 ef 30.64 ± 0.93 f
2500 mg/L 54.01 ± 1.11 d 48.05 ± 0.74 e 30.98 ± 0.81 e 35.48 ± 0.93 ef

Chlorothalonil
fungicide (Chemical

positive control)

625 mg/L 73.70 ± 0.37 b 73.71 ± 0.98 bc 75.93 ± 0.37 b 74.44 ± 1.28 b
1250 mg/L 76.67 ± 0.00 ab 77.78 ± 0.64 ab 80.74 ± 0.37 a 78.89 ± 0.64 ab
2500 mg/L 77.78 ± 0.64 a 82.59 ± 0.97 a 84.44 ± 0.64 a 81.85 ± 0.74 a

Control 0 0.0 f 0.0 i 0.0 h 0.0 h

Minimum Significant Difference * 3.98 5.49 3.97 5.07

p-value <0.0001 0.0005 <0.0001 <0.0001

*: Means with the same letter/s within the same column are not significant difference according to minimum significant difference measured
by Tukey’s studentized range (HSD) test at Alpha 0.05.

It is evident that chlorothalonil 72% was the most suppressive agent against all the
A. solani isolates, with inhibition percentage of fungal growth (IPFG) values that ranged
from 84.44% against the isolate A.s.3 at a concentration 2500 mg/L to 77.78% against
the isolate A.s.1 at the same concentration. In addition to the positive chemical control
(chlorothalonil), the biocontrol agents T. viride and P. fluorescens were found to have high
IPFG values of 72.99% and 67.93%, respectively. Moderate to weak activity was found
against the A. solani isolate when the P. neochilus and P. quinquefolia extracts were applied
at a concentration of 2500 mg/L, and the highest IPFG value (54.01%) of both extracts
was observed against the A. solani isolate (A.s.1). The lowest IPFG value (31%) of both
extracts was observed against the A.s.3 isolate at the same concentration (2500 mg/L)
(Figure 5). Moreover, as shown in Table 3, as the concentrations of chlorothalonil and the
P. neochilus and P. quinquefolia extracts increased, the IPFG values against the growth of
A. solani isolates increased.

3.5. HPLC Analysis of Flavonoids in P. neochilus and P. quinquefolia Extracts

The main flavonoid compounds identified in the P. neochilus (leaf) and P. quinquefolia
(fruit) methanolic extracts by HPLC analysis were rutin (2429.60 and 1891.60 mg/100 g
of plant extract, respectively) and myricetin (75.92 and 241.06 mg/100 g of plant extract,
respectively) (Table 4). The HPLC chromatograms of the flavonoids identified in the P.
neochilus and P. quinquefolia extracts are summarized in Figure 6a,b.

Table 4. Flavonoid compounds identified of the methanol extracts from P. neochilus leaves
and P. quinquefolia fruits by HPLC.

Flavonoid Compound
Flavonoids (mg/100 g of Plant Extract)

P. neochilus (Leaves) P. quinquefolia (Fruits)

Rutin 2429.60 1891.60
Myricetin 75.92 241.06
Quercetin ND * ND

Naringenin ND ND
Kaempferol ND ND

Apigenin ND ND
* ND: Not detected.



Agronomy 2021, 11, 911 10 of 17Agronomy 2021, 11, x FOR PEER REVIEW 11 of 19 
 

 

Figure 5. Antagonistic activity of bioagents (T. viride, P. fluorescens), Chlorothalonil fungicide at concentration 625 mg/L, 

P. neochilus and P. quinquefolia extracts at concentration of 2500 mg/L against A. solani compared to the control in vitro. 
Figure 5. Antagonistic activity of bioagents (T. viride, P. fluorescens), Chlorothalonil fungicide at concentration 625 mg/L,
P. neochilus and P. quinquefolia extracts at concentration of 2500 mg/L against A. solani compared to the control in vitro.



Agronomy 2021, 11, 911 11 of 17

Agronomy 2021, 11, x FOR PEER REVIEW 12 of 19 
 

3.5. HPLC Analysis of Flavonoids in P. neochilus and P. quinquefolia Extracts 

The main flavonoid compounds identified in the P. neochilus (leaf) and P. quinquefolia 

(fruit) methanolic extracts by HPLC analysis were rutin (2429.60 and 1891.60 mg/100 g of 

plant extract, respectively) and myricetin (75.92 and 241.06 mg/100 g of plant extract, re-

spectively) (Table 4). The HPLC chromatograms of the flavonoids identified in the P. ne-

ochilus and P. quinquefolia extracts are summarized in Figure 6a,b. 

Table 4. Flavonoid compounds identified of the methanol extracts from P. neochilus leaves and P. 

quinquefolia fruits by HPLC. 

Flavonoid Compound 
Flavonoids (mg/100 g of Plant Extract) 

P. neochilus (Leaves) P. quinquefolia (Fruits) 

Rutin 2429.60 1891.60 

Myricetin 75.92 241.06 

Quercetin ND * ND 

Naringenin ND ND 

Kaempferol ND ND 

Apigenin ND ND 

* ND: Not detected. 

 

Agronomy 2021, 11, x FOR PEER REVIEW 13 of 19 
 

 

Figure 6. HPLC chromatograms for quantification of rutin and myricetin in (A) Plectranthus neochilus and (B) Parthenocissus 

quinquefolia extracts. 

3.6. Evaluation of Bioagents, Plant Extracts and a Chemical Fungicide against A. solani Isolates 

In Vivo 

Table 5 shows the efficacy of the bioagents T. viride and P. fluorescens, as well as the 

P. neochilus and P. quinquefolia plant extracts and the fungicide chlorothalonil, in reducing 

the severity of early blight disease in vivo. The data were recorded after 21 days of appli-

cation. Table 5 shows that all the bioagents and plant extracts tested, in addition to the 

fungicide chlorothalonil, reduced, though to different extents, the disease index of A. 

solani compared to that of the inoculated control. It was evident that T. viride and chloro-

thalonil were superior to all the other treatments in reducing the disease severity (80%) of 

A. solani, followed by P. fluorescens (70%). The plant extracts of P. neochilus and P. quinque-

folia showed moderate effects on the reduction in the disease index (70 and 65%), respec-

tively, compared to the control (Table 5). 

Table 5. Efficacy of bio-agents, plant extracts, and chemical fungicide tested as foliar spray on se-

verity of early blight disease. 

Treatments Concentration PDI * % Reduction in PDI % 

T. viride 106 spore/mL 20 80 

P. fluorescens 108 CFU/mL 25 75 

P. neochilus extract 2500 mg/L 30 70 

P. quinquefolia extract 2500 mg/L 35 65 

Chlorothalonil fungicide 2500 mg/L 20 80 

Control Alternaria 3 × 106 spore/mL 100 -- 

PDI *, percent disease index. 

4. Discussion 

Early blight disease in tomato caused by Alternaria species is known as a severe and 

destructive fungal disease in Egypt [65]. Four isolates of the fungus A. solani, which is 

associated with early blight in tomato plants, were investigated. These isolates were ob-

tained from different tomato fields in Egypt. Morphological identification of the fungal 

isolates was performed according to the morphological characteristics reported by Sim-

Figure 6. HPLC chromatograms for quantification of rutin and myricetin in (A) Plectranthus neochilus and (B) Parthenocissus
quinquefolia extracts.

3.6. Evaluation of Bioagents, Plant Extracts and a Chemical Fungicide against A. solani Isolates
In Vivo

Table 5 shows the efficacy of the bioagents T. viride and P. fluorescens, as well as the
P. neochilus and P. quinquefolia plant extracts and the fungicide chlorothalonil, in reducing
the severity of early blight disease in vivo. The data were recorded after 21 days of
application. Table 5 shows that all the bioagents and plant extracts tested, in addition to the
fungicide chlorothalonil, reduced, though to different extents, the disease index of A. solani
compared to that of the inoculated control. It was evident that T. viride and chlorothalonil
were superior to all the other treatments in reducing the disease severity (80%) of A. solani,
followed by P. fluorescens (70%). The plant extracts of P. neochilus and P. quinquefolia showed
moderate effects on the reduction in the disease index (70 and 65%), respectively, compared
to the control (Table 5).
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Table 5. Efficacy of bio-agents, plant extracts, and chemical fungicide tested as foliar spray on severity of early blight disease.

Treatments Concentration PDI * % Reduction in PDI %

T. viride 106 spore/mL 20 80
P. fluorescens 108 CFU/mL 25 75

P. neochilus extract 2500 mg/L 30 70
P. quinquefolia extract 2500 mg/L 35 65

Chlorothalonil fungicide 2500 mg/L 20 80
Control Alternaria 3 × 106 spore/mL 100 –

PDI *, percent disease index.

4. Discussion

Early blight disease in tomato caused by Alternaria species is known as a severe and
destructive fungal disease in Egypt [65]. Four isolates of the fungus A. solani, which is
associated with early blight in tomato plants, were investigated. These isolates were
obtained from different tomato fields in Egypt. Morphological identification of the fun-
gal isolates was performed according to the morphological characteristics reported by
Simmons, such as colony morphology, size, and shape of conidia and pattern of conidial
septation among the tested isolates [66]. The characteristics of this pathogen were con-
sistent with the characteristics described by the Commonwealth Mycological Institute,
Kew, Surrey, England [67]. Thus, the pathogen was identified as A. solani [68], according
to morphological characterization and amplification and sequencing of the ITS region.
Based on previous studies, A. solani is the main cause of early blight disease in the family
Solanaceae [69]. Furthermore, molecular techniques are suitable methods for analysis,
particularly for researchers who are not familiar with the conventional characterization of
fungi [70]. One of these methods is sequencing of the ITS region of ribosomal DNA, which
distinguishes Alternaria spp. from other pathogens very well [71,72]. The data obtained
from molecular studies confirmed the morphological characterization of the tested fungal
isolates obtained in this research [7,73,74].

Recently, there has been increasing concern regarding the use of ecofriendly bioagents
to control plant pathogens [19,75,76]. Moreover, biological control of early blight pathogens
is an attractive alternative to conventional chemical control through the selection and
exploitation of fungal and bacterial strains antagonistic to the pathogens that cause early
blight in tomato [77–79]. The genus Pseudomonas contains a number of strains that are
useful for plant protection [80], for example, strains with the ability to produce antibiotics
and siderophores [81]. The results obtained from in vitro and in vivo studies revealed that
T. viride and P. fluorescens isolates were suppressive to A. solani isolates, and disease severity
was investigated [82–84]. Additionally, these results are consistent with those of Casida
and Lukezie, who reported that Pseudomonas strain 679-2 was able to reduce the severity of
early blight disease caused by A. solani [85].

Furthermore, Trichoderma viride, due to its antagonistic activity, is considered a po-
tential biological control agent against many plant pathogenic fungi [49,86]. Trichoderma
sp. controls pathogen growth via the production of extracellular enzymes, antibiotics,
and antifungal metabolites [16,84,87,88]. The results of this study are consistent with
the observed effectiveness of four fungicides, chlorothalonil, copper chloride oxide, and
azoxystrobin, at different concentrations against A. solani; the results showed that the
fungicides significantly reduced the radial growth of the tested isolates of A. solani [89,90].

Plant defense responses involve the activation of multiple coordinated and apparently
complementary defense reactions involving the production of phytoalexins or other antimi-
crobial compounds, the formation of physical barriers through increased cross-linking, and
elicitation of the hypersensitive response [91–93]. The induction of plant defense responses
also seems to involve several signal transduction cascades [94].

Many attempts have been made to biologically control plant diseases through induc-
tion of resistance in the host against the corresponding pathogen by saprophytic bacte-
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ria [95], including the use of Pseudomonas fluorescens to control of tobacco mosaic virus [96]
and in rice against sheath blight disease [97].

A number of biochemical alterations observed following treatment with bacterial
inducers of systemic resistance, such as induction of phytoalexins; induction and/or
stimulation of key enzymes, including peroxidase, phenylalanine ammonia lyase, chalcone
synthase, chitinase, and β-1,3-glucanase [98–100]; and stress-related proteins, have been
implicated in the mechanism of resistance [100]. The accumulation of phenolics, callose
deposition, and lignification have also been reported and linked to the phenomenon of
acquired resistance [101–103].

The P. neochilus and P. quinquefolia extracts showed moderate effects against the early
blight pathogen A. solani in vitro and in vivo. These results are in line with those of El-Hefny
et al. [56], who used an acetone extract of Withania somnifera fruit, which contains flavonoids
(rutin and myricetin) at 3%, to inhibit the growth of fungal mycelia of Fusarium culmorum
by 84.07% and Rhizoctonia solani by 67.03%.

Flavonoids have been proposed to control fungal pathogens via their inhibitory effect
on fungal spore germination [104,105]. Moreover, they cause disruption of the fungal
plasma membrane, induction of mitochondrial dysfunction and inhibition of cell wall
formation, cell division, RNA, and protein synthesis and the efflux-mediated pumping
system [106]. Furthermore, flavonoid compounds, such as catechin and rutin extracted
from pomegranate peel, have potent inhibitory effects against Colletotrichum gloeosporioides,
a fungus that infects Persea americana [107]. Flavonoids inhibit many varieties of eukaryotic
enzymes, and this inhibition of enzymes may be due to the interaction of enzymes with
different parts of the flavonoid molecule, such as carbohydrates, phenyl rings, phenols, and
benzopyrone rings [108]. Moreover, the antimicrobial activity of P. neochilus extracts has
been associated with the lipophilicity of their chemical constituents, mainly monoterpenes
and sesquiterpenes, which are often the main chemicals therein [23,109]. The antimicrobial
activity of P. quinquefolia may be due to some phenolic compounds in these extracts [110].

5. Conclusions

In agriculture, there is an important need for alternate ecofriendly materials to control
plant diseases. This study provides insights for the development of new phytosanitary
products based on plant extracts of Plectranthus neochilus and Parthenocissus quinquefolia and
on the bioagents Trichoderma viride and Pseudomonas fluorescens for the control of A. solani in
tomato plants. The tested bioagents, plant extracts, and the fungicide chlorothalonil were
significantly reduced disease index of A. solani. T. viride and chlorothalonil were suggested
to be superior in the reduction of disease severity of A. solani followed by P. fluorescens
extract. In vivo, and with spray application of the tested agents, T. viride, chlorothalonil
followed by P. fluorescens extract were observed the most reduction in the disease index of
early blight. This study suggested and recommended alternatives to chemical pesticides to
achieve organic production.
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