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Abstract: Barley is the fourth most important cereal crop and has been domesticated and cultivated
for more than 10,000 years. Breeding climate-smart and stress-tolerant cultivars is considered the
most suitable way to accelerate barley improvement. However, the conventional breeding framework
needs to be changed to facilitate genomics-based breeding of barley. The continuous progress in
genomics has opened up new avenues and tools that are promising for making barley breeding more
precise and efficient. For instance, reference genome assemblies in combination with germplasm
sequencing to delineate breeding have led to the development of more efficient barley cultivars.
Genetic analysis, such as QTL mapping and GWAS studies using sequencing approaches, have led
to the identification of molecular markers, genomic regions and novel genes associated with the
agronomic traits of barley. Furthermore, SNP marker technologies and haplotype-based GWAS
have become the most applied methods for supporting molecular breeding in barley. The genetic
information is also used for high-efficiency gene editing by means of CRISPR-Cas9 technology,
the best example of which is the cv. Golden Promise. In this review, we summarize the genomic
databases that have been developed for barley and explain how the genetic resources of the reference
genome, the available state-of-the-art bioinformatics tools, and the most recent assembly of a barley
pan-genome will boost the genomics-based breeding for barley improvement.

Keywords: barley; genome; next-generation sequencing; databases; genomic breeding

1. Introduction

Barley (Hordeum vulgare, 2n = 2x = 14)—domesticated from its wild relative, Hordeum
spontaneum, which was found at archaeological sites in the Fertile Crescent over 10,000 years
ago—and was the first crop cultivated by humans [1], and today, it ranks as the fourth
largest cereal crop in terms of planting area (http://faostat.fao.org, accessed on 21 January
2021). It is a major food source in some developing countries [2], as it can tolerate more
environmental stresses than wheat and other cereals [3].

Concentrating on the important agronomic traits of barley, such as the number of
tillers [4], grain number [5], plant height [6], disease resistance [7], abiotic stress toler-
ance [8], and malting quality [9], plant breeders have made efforts towards advanced
molecular breeding in order to attain the best combination of traits for satisfying farmers’
and consumers’ demands.

Next-generation sequencing (NGS) technology has sped up the progress of the genome
sequencing and re-sequencing of cereal crops, with huge potential for making a remark-
able impact on breeding [10]. The published genome sequences of rice [11], wheat [12],
maize [13], barley [14], and other cereal crops have supported researchers in determining
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the genetic and physical mapping of molecular markers in specific loci/genes. These iden-
tified markers can be applied on the basis of genotyping technology to conduct molecular
marker-assisted selection (MAS) breeding or to determine the genetic relationships among
diverse accessions. The reference genomes are used for re-sequencing to frame a bulk
segregation analysis (BSA) of individuals and to analyze sequence diversity at the genomic
level [15]. The BSA-Seq combination of whole-genome sequencing (WGS) has been applied
for quick identification of mutations (nucleotide changes) using MutMap and quantitative
trait loci (QTL) in major cereals [16]. Some other sequencing-based genomic approaches
that have been utilized in barley include bulk segregant ribonucleic acid (RNA) sequenc-
ing (BSR-seq) [17], specific-length amplified fragment sequencing (SLAF-seq) [18], and
genome-wide association scan (GWAS) [19]. The development of transcriptome sequences
has improved the interpretation of genes with an understanding of the domestication
and regulation of gene function networks using their expression patterns. In addition to
the identification of genetic markers and the availability of published genomes, clustered
regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) is
promising for application to modern breeding and is a novel technology for genome editing
in major cereals [20]. CRISPR/Cas9-based directional breeding is highly efficient and saves
more time than other breeding techniques that use genome editing [21].

Here, we review the advances in the application of NGS in barley breeding and
outline the applications of genome editing in modern breeding. Moreover, this review
summarizes the genomics-based approaches to gene identification and sheds light on
the availability of genomic resources and databases for barley. This effort can provide a
theoretical groundwork which will help to develop knowledge-based strategies for further
adaptation of barley to our needs.

2. Brief Description of the Available Genomic/Transcriptomic Information
and Databases

The open availability of sequencing data of barley has enhanced the understanding of
the genetic and regulatory functions of genes related to agronomically important pheno-
types. The genome size of barley is almost 5100 Mb (~5.1 Gb) [22], and the first reference
genome was established by the International Barley Sequencing Consortium (IBSC) [23].
There are several databases available for barley genome sequence data (see Figure 1), which
contain different information and offer different tools for the interpretation of genomic
resources and analysis.

2.1. EnsemblPlants

EnsemblPlants is a web database that acquires the genomic and proteomic data of
different plant species, including barley [24], and also offers access for application of the
Basic Local Alignment Search Tool (BLAST) to check the index of similarity of the queried
sequence with the barley genome. It manages data with the collaboration of the Gramene
Database [25].

2.2. Nord-Gen

Nord-Gen (Nordic Genetic Resource Center) is an international database for genetic
stock and mutant data collection that is centered in Sweden. Now, it is a gene bank as
well as a center for genetic resources. It houses information on barley genes, mutants, and
gene nomenclature.

2.3. BARLEX

BARLEX presents the first linearly ordered barley sequence and provides physical
and genetic maps of molecular markers and genes using different version of assembly and
gene set, with the expression profiling data of 16 developmental stages, as well as exome
capture data [14].
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Figure 1. Compilation of quick and short information on the major barley genome databases. Each small, colored circle 
introduces a different database (name under each circle), with the arrows pointing to the addresses of their webpages. The 
yellow-colored text under the webpage links shows the names of the tools offered in that database. 
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2.4. MorexGenes

MorexGenes offers access to gene expression levels from the RNA-seq data of the
barley cultivar, Morex, which are assembled from whole-genome shotgun sequences of
Morex. It also contains a BLAST tool for carrying out basic alignments [26,27].

2.5. GrainGenes

GrainGenes is a genetic database primarily containing data on barley and wheat,
such as genetic markers, gene expression, and QTLs. It also provides tools for BLAST,
genome-specific primer design, and a genetic map display/visualizer [28].

2.6. HvGDB

HvGDB is a barley database provided by PlantGDB (Plant Genome DataBase) that
offers a focus on comparative genomics by using genomic data integration and analysis. It
contains advanced tools for comparative genomics, such as CrowsNest, which is used to
analyze syntenic relationships among grass genomes.

2.7. Bex-DB

Bex-DB was developed by the National Institute of Agrobiological Sciences (NIAS)
with the availability of full-length cDNA libraries of a two-rowed malting barley, Haruna
Nijo. It offers BLAST, a genome viewer for IBSC, and comprehensive analysis of gene
expression data [22].
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2.8. BarleyDB

BarleyDB includes material on barley germplasms and genome resources, as well as
BLAST and extra tools (http://shigen.nig.ac.jp/shigen/tool/tool.jsp?lang=en, accessed on
16 January 2021), such as BLASTscope, which enables the creation of graphical figures of
BLAST query results, and GenomePaint, which enables the creation of graphical figures
(circular or linear) of a specified genomic region.

2.9. BarleyVarDB

BarleyVarDB is a recently established database that provides data related to barley’s
genomic variations in the form of three datasets—SNPs, InDels, and whole-genome se-
quences of wild (eight accessions) and cultivated (13 accessions) barley genomes—with a
web-based application of BLAST with Primer3 [29].

3. Mapping and Identification of Useful Genomic Regions/Genes Using the
Established Genetic Information/Genomic Resources

With the completion of the barley genome sequence and the open availability of the
databases, barley breeding is now in the “genomic” era, while barley research is in the
post-genomic era. Genome-based identification and utilization have progressively become
the core techniques for identifying gene functions. Several genomic databases for barley
have been established, and they are being utilized in different ways to identify or map the
specific genes or genomic regions. The main approaches for the genome-based association
studies utilized in barley are shown in Figure 2 and discussed below.
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population to determine a genetic region (QTL) in complex characters [30]. A number of
QTL statistical models have been developed, such as standard interval mapping (SIM) and
multiple imputation (IMP), which are used when the single QTL is unlinked, and composite
interval mapping (CIM), which is designed to map the genetic linkage for both linked
and unlinked QTLs/genes on the chromosome. The performance of these methods is
measured based on the calculated LOD (logarithms-of-odds) scores, and QTLs are usually
considered significant above the threshold LOD score of 3.0. Open access to reference
genomes helps researchers by providing genetic information on the genes responsible
for QTLs, which are the target of MAS. Traditional QTL mapping requires a balanced
population with known recombination data. Following this, a statistical association can be
inferred between phenotypic and genotypic data through linkage mapping [31,32]. The
location of a QTL can be determined where the allelic variants of a physically or genetically
linked molecular marker display a significant effect on a quantitative trait in the studied
population [32]. The identification of genomic locations facilitates the further identification
of responsible genes and the exploration of the mechanism of genetic variation [33]. Like
in other crop plants, the linkage or QTL mapping approach is widely applied in barley,
and its power to identify QTLs that control target traits in a specific population has been
proven. In barley, dozens of populations have been developed and used for QTL studies
using genetic markers, either RFLPs [34,35] or SSRs [18,36]. NGS dramatically improves
the density of SNPs; thus, researchers are empowered to detect QTLs for various traits. A
sets of 47 introgression lines were used to map drought-tolerance-related QTLs, and 11
out 44 QTLs were found to be involved in the growth rate and water-use efficiency [37]. A
population of 100 recombinant inbred lines (RILs) of barley derived from a cross between
Syrian and European parents was used to identify the grain-yield-related QTLs, and a total
of 60 QTLs were mapped, with the largest number on 2H associated with the heading [38].
The mapping of a population of 93 recombinant inbred lines (RILs) developed from a
cross between the “Rasmusson” cultivar, which was moderately susceptible to fusarium
head blight, and a highly susceptible Japanese landrace was used to identify the QTLs
associated with susceptibility to disease in barley, which resulted in a total of six QTLs being
identified on the 2H, 5H, 6H, and 7H chromosomes [39]. For nutrient-use efficiency, 17
QTLs associated with phosphorus (P) acquisition and P-use efficiency [40] were identified,
and 15 QTLs related to nitrogen-use efficiency under low nitrogen were identified in
94 recombinant inbred lines (RILs) of the Prisma × Apex mapping population [41,42].
Similarly, a number of QTLs related to malting quality were identified [43,44], and phenolic
compounds were found to be associated with agronomic traits [45]. As an example of NGS
application in barley, genotyping by sequencing (GBS) was used for QTL analysis in a
family of recombinant inbred lines (RILs) to detect the Breviaristatum-e (ari-e) locus [46].
QTL mapping remains a strong approach that is recommended for identifying QTLs in
barley, especially with the recent advancements in NGS. QTL mapping requires genetically
diverse biparental segregating populations, and the diversity of the populations may
affect the detected QTLs. In general, QTL mapping shows genomic regions that affect the
genotype through loci associated with a trait, but is unable to identify the specific genomic
loci, i.e., SNPs. The limitations of QTL analysis can be overcome by using GWAS, which
can narrow down the candidate genomic regions using naturally diverse populations based
on linkage disequilibrium (LD).

3.2. Genome-Wide Association Study (GWAS)

Like QTL mapping, GWAS also uses statistical association mapping (AM) between
the molecular marker and the trait of interest. With diverse populations and based on
LD without known recombination, the historical recombination can be handled. The LD
could be the result of physical linkage, as well as genetic drift, selection after mutation,
and population structure [47]. GWAS interprets the associations of each marker and trait
of interest, which are evaluated using the individuals of a diverse population [48]. A major
problem in AM is the control of false positives, which can arise due to the population
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structure and family relatedness. False positives are often controlled by incorporating
covariates for structure and kinship in mixed linear models (MLMs). These MLM-based
methods are single-locus models and can introduce false negatives. A number of statistical
tools ((MLM, compressed MLM (CMLM), ECMLM, multi-locus mixed model (MLMM),
general linear model (GLM), and fixed and random model circulating-probability unifica-
tion (FarmCPU)) were applied for AM in order to find significant markers. It was reported
that the FarmCPU-based GWAS model could perform better compared to the other models,
as it efficiently controlled for false-positive associations [49]. With the fast growth and
availability of sequencing technologies, GWAS is now a prevailing tool for determining
the loci underlying the natural variations in different traits of crops [48]. In GWAS, the
population needs to be genotyped once; subsequently, it can be utilized repeatedly for the
mapping of different traits using new phenotypic data [48]. GWAS has the limitation of its
high rates of false positives due to population structures and genetic relationships.

GWAS studies have been conducted in barley for more than a decade [50]. The
recently developed 9K and 50K iSelect SNP array has strongly enhanced the efficiency of
the GWAS tool for novel QTLs/gene detection in barley [51]. For instance, gene targets
important agronomic traits, such as the HvCO-like genes; some novel QTLs associated
with the heading were identified with the application of GWAS in a mixed spring barley
population with photoperiod sensitivity and reduced photoperiod sensitivity [52]. A
population of 218 accessions of spring barley (mixed two-row and six-row) was employed
in a GWAS-based analysis for the genetic dissection of the effect of the row type on the
number of productive tillers [6]. In another GWAS-based analysis, some yield-related
traits were examined to identify associated novel genes in a population of 615 barley
cultivars, and two novel chromosomal associations with seed germination were found [53].
In addition, GWAS analyses of disease resistance against, for example, spot blotch, leaf
rust, and stripe rust [54], as well as for malting and beer quality traits, were successfully
carried out [55]. In addition to natural populations, family-based populations, such as the
nested association mapping (NAM) population [56] and multi-parent advanced generation
intercross (MAGIC) populations [57], were analyzed through GWAS in barley. They
proved their utility in uncovering the basis of key agronomic traits in barley [58,59]. The
most frequently used markers for GWAS are SNPs, but the exploration of the complex
relationships between quantitative phenotypes and biallelic SNPs is limited [60,61]. Later,
this limitation can be overcome through the analysis of haplotype blocks in targeted regions
associated with complex traits [62]. A recent study was conducted to compare single-SNP-,
multi SNP-, and haplotype-based GWAS analyses in barley, and much better results were
found with the construction of haplotype blocks [63]. A number of studies have focused
on the application of GWAS in barley [64–66]. In a recently presented review, we described
the genetic discoveries in barley and provided a layout about how the GWAS tools can be
utilized in barley breeding programs [67].

3.3. Integration Bridge: A Way to Overcome the Limitations of QTL Mapping and GWAS

Considering the limitations of each approach, an integrative bridge between both
techniques can be a powerful approach for the genetic dissection and identification of the
loci associated with a trait of interest. This combination compensates for the limitations
resulting from false positives and facilitates the detection of rare or small-effect QTLs with
high-resolution identification [68]. The output of GWAS is considered an excellent step
for selecting true segregating parents in order to develop populations depending on their
contrasting situations in specific phenotypes and genomic regions (allele(s)). The detection
of genomic regions for the same trait in both populations with these mapping strategies is a
genetic validation of the QTLs. Hence, it is best to combine both mapping strategies for the
most accurate QTL results, which can be used for further genetic and molecular analyses.
A rapid detection of loci responsible for complex traits was shown by using this approach
in rice; 200 rice varieties in an association population together with 192 RILs were used,
and reliable loci that were responsible for seed vigor were identified with the simultaneous
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application of QTL mapping and GWAS [68]. In barley, the combination of both mapping
populations has not yet been applied, but it is a promising approach that constitutes a step
forward in genetic analysis and in the identification of candidate genes.

3.4. Genome-Wide Analysis or Identification of Gene Families

The robust sequencing technology and openly available genome databases provide a
great opportunity for researchers in genomic analysis. Bioinformaticians are focusing on the
development of new methods for analyzing the available genomic datasets [69]. A number
of strategies and tools have been developed for comparative genomics or genome-wide
analysis [70–72]. Of these, genome-wide identification has been applied to identify the
members of specific gene families of transcription factors by using the reference genomes
and phylogenetic analysis of closely related species [73]. This provides potential insights
for exploring the regulatory mechanism and functional foundation of a gene family that
encodes a specific protein. Several strategies are applied in such studies, including the
following three: (i) identification of gene family members using gene annotations, which
requires a large genome, and the annotation should be correct, as an error in the annotation
raises the chances of false-positive sequences; (ii) family members can be identified by
using the BLAST tool in public databases; the query sequences are usually from model
species, e.g., Arabidopsis; this could result in fewer family members being identified
due to the presence of species-specific genes, but it is beneficial to identify gene family
members with non-canonical domains; (iii) gene family members can be identified using
the HMMER program [74], which is based on hidden Markov models; this program can be
used to generate a file (HMM) of gene families, and it can also identify distant gene family
members with a better gene representation [74]. Several studies have been conducted,
and they focused on genome-wide analysis of the evolution, identification, and regulatory
network, and expression of gene families in barley, such as the signal transduction cascade
(MAPK/KK/KKK; mitogen-activated protein kinase/kinase kinases/kinase kinase kinases)
involved in biotic and abiotic stresses, were subjected to genome-wide identification, and
20 MAPKs, six MAPKKs, and 156 MAPKKKs of the MAPK family were identified in
barley [75]. The potential function of nuclear factor-Ys (NF-Ys), which facilitate salt-stress
tolerance, was determined by identifying the co-expression of 23 members in barley [76].
The epidermal wax-related stress resistance is associated with β-ketoacyl CoA synthetase
(KCS) genes, and 33 KCS gene family members were found to be evenly distributed in
barley chromosomes. [77]. The Hsp20 gene family, which is associated with heat-shock
tolerance, has 38 putative members in barley [78]. Similarly, genes regulated under heavy
metal stress were identified using barley transcriptomic data [79], and plant-phytohormone-
related gene families that are involved in different developmental stages were also subjected
to these bioinformatics-based gene identification techniques [80].

4. Genome-Based Molecular Breeding

The progress in genomics and access to publicly available genomic databases has
enhanced existing breeding methods, which has facilitated the development of novel ap-
proaches to barley breeding. Modern breeding is basically a strategy for evaluating the
genetic gain of a new genotype by separating the genetic effects from the environmental
and noise components [81]. Plant breeding is based on different strategies, such as tradi-
tional selection by using phenotypic data for genetic evaluation [81], MAS based on specific
genetic markers associated with the relevant trait, where individuals are selected based
on their marker scores [82], or genomic selection, which is an advanced way of selecting
individuals based on genetic markers with small effects on phenotypic variation. The steps
involved in the process of genome-based molecular breeding are shown in Figure 3. MAS
breeding has numerous advantages over traditional breeding, such as the lack of the need
to permanently generate phenotypic data if traits are complex, its cost effectiveness, and
time consumption, which impedes phenotyping, for example, with malting quality. MAS
is a quick process that does not require the phenotype testing of huge progeny sets, and
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pyramiding of multiple alleles is possible [83]. In addition, the linkage drag is reduced [84],
and the genetic gain is increased compared to the use of phenotypic selection [85]. The
genetic merit of an individual can be evaluated by using a larger population size without
compromising the genetic gain by narrowing the genetic diversity [85]. MAS-based breed-
ing programs have been extensively conducted in other cereals like wheat and rice, and it is
suggested to further utilize this breeding application in barley for yield-related and stress-
tolerant traits, as MAS has proven to be successful in barley, with the identification of elite
lines of improved malting quality by stable transfer of the thermostable β-amylase from
wild barley into a commercial variety [86]. With the development of NGS technologies,
the number of markers has been increased, and the breeding efficiency has significantly
increased. SSRs, SNPs, InDels, and haplotypes have become the most important markers
to use for efficient genotyping and construction of genetic maps. For example, SSR markers
were employed to map the Als gene on the 3H chromosome of barley, and it was found to
be responsible for the low number of tillers [87]. In a study of barley, a total of 83 significant
marker–trait associations were found to be associated with six different yield-related traits
under drought conditions [88]. A similar thousand-SNP-marker set was used for associa-
tion mapping of salt tolerance in barley [89]. A semi-dwarfness gene in barley, ari-e, was
mapped using SNPs and InDels in a 10 Mb to 0.58 Mb interval on the POPSEQ physical
map [90]. Different strategies (Sections 3.1 and 3.2) have been applied for the identifica-
tion of QTLs of relevant traits in barley for marker identification and utilization, which
strongly enhanced the genomic-based molecular breeding of barley, e.g., through MAS.
Genome-wide selection is also known as genomic selection (GS) and is a new breeding
strategy with potential for significant outcomes in plant breeding [91]. In GS, a genetically
diverse test population is thoroughly genotyped and phenotyped to predict its phenotypic
performance based on genomically estimated breeding values (GEBVs). The large breeding
population is then genotyped, and the GEBVs are used to predict the phenotypes of the
lines of the population. GS has emerged as a valuable tool for improving complex traits
that are controlled by QTLs with small effects. Various simulation models for predicting
the selection accuracy depend largely on the marker density, marker type, size of training
populations, and trait heritability. Compared with QTL mapping and GWAS, GS has more
promise for harnessing genetic gains from genetic resources for quantitative traits, and it is
seen as a more reliable and useful approach [92]. It has been applied in barley breeding,
such as in a study conducted by the University of Minnesota, where six-row barley lines
were evaluated for GS; a significant gain in grain yield of 186.1 kg/ha was obtained, and
1.85 ppm of deoxynivalenol was observed, which is associated with malting quality [93].
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5. Genome Editing, Characterization, and Functional Validation of Identified Genes

Genome editing has a history of challenges, particularly in complex genomic struc-
tures in plant molecular biology. The modern application of genome editing could support
traditional breeding without developing the transgenes by overcoming the limit of muta-
genesis, which induces a random mutation that is not always useful. In crops, there are
several methods of performing mutagenesis in order to develop mutant material for genetic
studies. Some of them are unclear about their underlying genetic mechanisms, which can
be overcome by modern genome editing [94]. In genome editing, three major technologies
are (i) zinc finger nuclease (ZFN), where an endonuclease linked with a multi-zinc-finger
DNA-binding domain specifically recognizes and cuts target DNA [95], (ii) transcription-
activator-like effector nuclease (TALEN), where multiple transcription-factor-like domains
bind an endonuclease domain that recognizes target DNA sequences [96], and (iii) the
widely used CRISPR/Cas9, where multiple genes can be specifically targeted by using
synthetic guide RNA (sgRNA), which can be easily constructed with a chemical synthesis
method [97] using chimeric sgRNA or dual RNA (crRNA:tracrRNA) [98].

CRISPR-Cas9 is, so far, the most promising and versatile genome-editing technology;
the Cas protein uses the sgRNA to bind to a targeted DNA site, followed by dsDNA
cutting [99]. The DNA break can be repaired in two ways: a non-homologous end-joining
(NHEJ) repair that creates random insertions and deletions (indels), resulting in mutations
through targeted gene knock-outs [100,101], and a homology-directed (HR) repair, which is
more precise in the exchange of homologous sequences, resulting in knocked-in genes [102].
Gene-editing knowledge may be used in two ways. First, the detailed molecular and physi-
ological study of edited knock-out and knock-in mutants can assist in further explaining the
molecular functions and interactions of genes that are important in barley breeding. Second,
edited genes that exhibit a proven trait-improving effect without adverse side effects may
be introduced into barley breeding programs, provided that the national legal regulations
permit the release of genome-edited cultivars. In barley, target genes can be knocked out
after selecting the appropriate sgRNA sequence from available genome sequence databases
or after re-sequencing the target gene from a particular barley cultivar [103,104]. Numerous
genome-editing studies have been carried out in barley with CRISPR/Cas9, such as the
increase in phytase activity in seeds by stacking the PAPHY_a gene [105], regulation of
the cytokinin metabolism gene HvCKX1/3 [106], validation of the 2OGO gene responsible
for fusarium head blight disease [107], functional dissection of biosynthesis of vitamin-E-
related genes (HGGT/HPT) [108], and validation of the viral-resistant gene HvMORC1 in
barley [109].

6. Conclusions

Despite steady progress in barley breeding, there is still a great need for improv-
ing barley cultivars that are adapted to diverse growing conditions. Recent progress
in genomics research has provided geneticists, biologists, and breeders with a number
of modern tools and technologies that impart precision and efficiency to breeding pro-
grams. The assembly of the first barley reference genome offered certain opportunities
for the application of genomics in plant breeding. Several molecular, bioinformatics-, and
genomics-based approaches that use genomic information in combination with sequencing,
re-sequencing, and genotyping datasets are being utilized to study important agricultural
traits and their linked genes. Genomic annotation of barley faces the problem of unclear
functional information; for example, knowledge of the biochemical activities of many
agronomic-trait-related genes is lacking, which could be inferable from proteins encoded
with specific domains. A major challenge is to (i) functionally characterize the genes linked
to molecular and morphological traits associated with variant forms and (ii) annotate the
functional data of the causative genes in the appropriate gene databases. Notwithstanding
these challenges, the continuous improvement of gene-editing technologies, with the best
example being CRISPR/Cas9, has provided a strong foundation for overcoming these
limitations. The recently developed high-quality genome assembly of the Golden Promise
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cultivar is an emerging focus for genome-editing experiments by the barley research com-
munity. Future sequencing technologies should drive the further improvement of available
reference assemblies and sequence additional barley cultivars and wild barley accessions.
This will perfectly facilitate the development of a definitive catalogue of genomic diversity
information with large-scale variation and the identification of a rich source of usable genes.
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