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Abstract: Fungi such as Aspergillus flavus and Aspergillus parasiticus are molds infecting food and
animal feed, are responsible for aflatoxin contamination, and cause a significant problem for human
and animal health. The detection of aflatoxin and aflatoxigenic fungi on raw material is a major
concern to protect health, secure food and feed, and preserve their value. The effectiveness of image
processing, combined with computational techniques, has been investigated to detect and segregate
peanut (Arachis hypogaea L.) seeds infected with an aflatoxin producing fungus. After inoculation
with Aspergillus flavus, images of peanuts seeds were taken using various lighting sources (LED, UV,
and fluorescent lights) on two backgrounds (black and white) at 0, 48, and 72 h after inoculation.
Images were post-processed with three different machine learning tools: the artificial neural network
(ANN), the support vector machine (SVM), and the adaptive neuro-fuzzy inference system (ANFIS)
to detect the Aspergillus flavus growth on peanuts. The results of the study show that the combination
of LED light and a white background with ANN had 99.7% accuracy in detecting fungal growth
on peanuts 72 h from infection with Aspergillus. Additionally, UV lights and a black background
with ANFIS achieve 99.9% accuracy in detecting fungal growth on peanuts 48 h after their infection
with Aspergillus.

Keywords: fungal contamination; aflatoxin; groundnut; image processing; non-destructive tests;
post-harvest

1. Introduction

Aflatoxins are highly toxic secondary metabolites produced by Aspergillus flavus Link
and Aspergillus parasiticus Link. These fungi grow on various foods and animal feed, such
as cereals, figs, nuts, and dried fruit, under favourable temperature and humidity [1].
Effects of aflatoxins contamination were discovered in the 1960s after a severe epidemic
on turkey in the United Kingdom attributed to a feed containing peanuts heavily infested
with A. flavus. Following investigations revealed that the aflatoxins were highly hepa-
totoxic and hepatocarcinogenic and with teratogenic and mutagenic effects on humans
and animals [1]. Due to their toxicity and unpredictable contamination of food and feed,
aflatoxins are a concern for producing and importing countries. For these reasons, many
countries worldwide introduced strict regulation on aflatoxin levels on goods [1,2] that
negatively impact international trading and causes economic losses to agricultural and
food and feed industries. Many methods have been developed for the quantification of
aflatoxins: thin-layer chromatography (TLC), high-performance liquid chromatography
(HPLC), liquid chromatography tandem mass spectrometry (LC-MS/MS), immunology-
based semi-quantitative and qualitative methods including enzyme-linked immunosorbent
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assays (ELISAs), and immuno-affinity column assays [3]. These methodologies are accurate
but slow, laborious, expensive, and difficult to automate [2]. Recently, some relatively
inexpensive, simple, and rapid semi-quantitative test kits have been commercially available.
Nevertheless, even in developed countries, food authorities do not test a sufficient fraction
of products, so contaminated products have a high probability of being introduced in the
food and feed chains. Furthermore, even with relatively consistent food and feed testing, it
is difficult to get a representative sample of the product and highly contaminated food and
feed may not be detected.

Different strategies and techniques to avoid the limits of the methods mentioned above
for the detection of aflatoxins presence have been studied with promising results: near-
Infrared spectroscopy (NIR), hyperspectral imaging, photoacoustic spectroscopy (PAS),
transient infrared spectroscopy (TIRS), electronic noses, and other emerging experimental
methods including biosensors [1,3,4]. These techniques have useful results for detecting
infection and visible growth of the fungi, but they do not necessarily directly correlate
with aflatoxin contamination and its concentrations. For example, infection and visible
growth of aflatoxin-producing fungi significantly increase the likelihood that the crop
is contaminated with aflatoxins [5,6]. Thus, detection of the fungus indirectly detects
products that are likely to be contaminated with unacceptable levels of aflatoxin.

Optical methods have been investigated to detect seeds contaminated by aflatoxin-
producing fungi for a long time because they potentially rapidly detect and physically
identify, for removal, products contaminated by fungi [7]. These techniques need high-
resolution image acquisition devices and significant computational power for imaging
processing and computing systems with the learning capability to autonomously identify
infected products. The optical detection is based on bright greenish-yellow fluorescence
(BGYF) under ultraviolet light or laser, which indicates the presence of aflatoxigenic molds
or, possibly, aflatoxin itself [2]. Even if the relationship between A. flavus infection, BGYF,
and aflatoxin has been reported [8], samples emitting fluorescence should be removed and
tested for aflatoxins contamination by more accurate laboratory tests. Techniques based
on BGYF used to detect the presence of aflatoxigenic molds, to some extent, can indicate
aflatoxin contamination [9]. This method is commonly adopted in manual fig-processing
plants where workers in dark rooms under UV light separate BGYF positive fruits [5,6].
The manual selection process highly depends from the availability and expertise of workers.
Furthermore, skin-related problems due to UV radiation may occur to the workers.

One of the most important products affected by aflatoxin contamination is peanut,
Arachis hypogaea L. [10]. It is largely cultivated worldwide for oil extraction, especially in
developing countries, where Aspergillus infection and consequently aflatoxins contamina-
tion can occur after harvesting and during storage because crops are usually sun-dried
in open fields and then stored in poor conditions [1]. Furthermore, it is grown in tropical
and subtropical regions where the warm and humid weather provides optimal conditions
for the molds’ growth [1]. Studies in several areas of the globe on the distribution of
Aspergillus spp. reported the Aspergillus flavus as predominant in soils devoted to peanuts
cultivation [11,12] and on peanuts and similar products available in markets [13,14].

Certain good agricultural practices in groundnut, such as farmyard fertilization,
potash fertilization and gypsum application, irrigation after sowing, drying of pods, and
their protection with tarpaulins after harvest are simple practices proven to reduce A.
flavus infection and, subsequently, aflatoxin contamination [15]. A variety of chemicals
and physical process have been investigated and used to eliminate or degrade aflatoxins
effectively. Still, most of them are impractical or potentially unsafe to use because of the
toxic residues or the effect on nutrient content, flavour, odour, colour, texture, and/or
the product’s functional properties [1]. Biocontrol products formulated with atoxigenic
Aspergillus flavus strains have been studied and developed [16], approved by authorities
(e.g., EPA, Environmental Protection Agency, Washington, D.C., USA), and are commer-
cially available.
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Since product contaminated by Aspergillus may not be effectively removed by cleaning
equipment and aflatoxins destroyed by post-harvesting processes, the systematic and
complete monitoring of the single fruit, seed, grain, or kernel is the major challenge the
food processing technology faces. Harvest and post-harvest technologies are essential for
detecting product contamination [17–19]; in particular, fully automated detection methods
needs to be developed to overcome a skilled labor shortage and avoid unhealthy and
unsafe working conditions when manual selection is adopted [6].

Chaitra and Suresh [20] investigated the effectiveness of different imaging techniques,
such as thermal imaging, fluorescence, and colour imaging, to detect aflatoxin-producing
fungi in peanuts. The results of their study revealed that colour imaging was the best
technique in separating contaminated peanuts.

Magi et al. [21] used image processing to classify peanuts’ morphological and colour
attributes on white background adopting the support vector machine (SVM) method. They
obtained an overall correct classification rate of 83.5%.

Suyantohadi and Masithoh [22] developed a machine vision system for the detection
of aflatoxin-contaminated peanuts. They placed a camera, a Petri, and a UV lamp in an
aluminium box and images were classified by the mean k-clustering algorithm based on the
average pixel value of RGB colour parameters, where they obtained 100% of the accuracy
of the system.

Atas et al. [9] developed a machine vision system based on hyperspectral imaging
and machine learning to detect aflatoxin in chili pepper. They used UV and halogen lamps
for lighting. Multi-layer perceptrons (MLPs) resulted in having better results (85.5%) than
linear discriminant analysis (LDA) as classifiers.

Artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-
fuzzy inference system (ANFIS) are computational techniques that find broad applications
in different fields of science, engineering, and economics [23–31].

This paper reports a study on image processing where these techniques have been
compared to detect and discriminate peanuts seed artificially infected with Aspergillus flavus.
The study is addressed to identify the combination of a light source, image background,
and computational classification method to best detect and segregate peanut seeds infected
by Aspergillus flavus, the most common aflatoxin-producing fungus infecting peanuts.

2. Materials and Methods
2.1. Preparation of Samples

Samples of peanuts pods were retrieved from the local market in Iran. Peanuts seeds
were obtained after the removal of the shell. An isolate of Aspergillus flavus was provided
by Shahid Chamran University, Iran. It was cultured in a dextrose agar medium. Peanut
seeds were disinfected with 75% alcohol solution for 1 min, and then they were washed
with distilled water to ensure that they were not contaminated [32]. Peanut seeds were
inoculated with a water spore suspension with 106 spore/mL of Aspergillus flavus. A Tween
solution was used to prevent spores from sticking to each other. Infected peanut seeds
were placed in an incubator at a temperature between 25 ◦C and 30 ◦C and minimum 80%
humidity, optimal growth conditions of Aspergillus according to [33]. For each of the test
conditions later described 1200 sample (seeds), corresponding approximately to 31 kg of
peanuts, were used.

2.2. Imaging Box

The first operation of image processing and machine vision is to take pictures. An
imaging box (Figure 1) was built with medium-density fibreboard (MDF) panels. The box is
a completely closed volume with a place on the top where a camera is located and a bottom
surface on which the sample is placed at an adjustable distance from the camera. Inside the
box, on the sidewalls, a lighting system is installed: artificial lighting prevents disturbances
from ambient light (such as shadowing when exposed to the object), reduces noise and
reflection, as well as increasing image contrast, thus improving process accuracy [34,35].
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Figure 1. Imaging box.

2.3. Camera

For the study, we used the Sony HX200v camera model with the CCD sensor. For in-
vestigation on agriculture products, CCD cameras are reported as more appropriate [36,37].

2.4. Light Source

Three types of light sources, fluorescent lamps, LED (white), and UV black-light,
were compared. The fluorescent light source consists of two white light 8-Watt bulbs
(330–350 nm wavelength) and two yellow light 8-Watt (290–310 nm wavelength). The LED
light source consists of two 8-Watt bulbs (390 nm wavelength), while the UV black-light
source consists of two 6-Watt bulbs with about 370 nm wavelength.

2.5. Background Selection

The images were taken on two backgrounds: black and white. The background
material should not reflect light as much as possible: it is essential for proper image
processing. Matte black and white cardboard were used as background.

2.6. Optimization of the Image Processing Algorithm

The image processing extracted color and geometric properties from peanut seeds
images that were later used for classification by computational methods. By combining
three light sources and two types of background, six shooting modes were obtained. Due
to light reflection, the images taken with UV light on white background had low quality
and, hence, this combination was not considered for the following steps of the study.

2.7. Image Taking Times

Images of peanut seeds were recorded before infection as a control treatment. Then,
images of peanuts seeds were taken 48 and 72 h after infection. After a longer time, for
example, 96 h, the Aspergillus mold had propagated to all seed, and images were not useful
for the aim of the study.

2.8. Transporting Images to 2D Space

The images were transported to grey space, but the results of the processing were
not satisfactory because there was not a good contrast between the background and the
target (the seed). The images were in RGB space with three, red, green, and blue, color
layers, thus the images’ layers were separated and an image histogram extracted to find
the best contrast. The “histogram” of an image shows the frequency of the occurrence of
“gray surface” in an image; in other words, a histogram is a method to show the brightness
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of each pixel, a graphical representation of the number of occurrences of each gray area
values in an image: the dark points are close to zero (the minimum value) while the bright
points are close to 255 (the maximum value). When examining each layer’s histogram it
was observed that the maximum contrast between seeds and background was in the blue
layer that was, finally, the one adopted for the study (Figure 2). The process was performed
using the ravel order with MATLAB r2015b software.

Agronomy 2021, 11, x FOR PEER REVIEW 5 of 15 
 

 

2.8. Transporting Images to 2D Space  
The images were transported to grey space, but the results of the processing were 

not satisfactory because there was not a good contrast between the background and the 
target (the seed). The images were in RGB space with three, red, green, and blue, color 
layers, thus the images’ layers were separated and an image histogram extracted to find 
the best contrast. The “histogram” of an image shows the frequency of the occurrence of 
“gray surface” in an image; in other words, a histogram is a method to show the bright-
ness of each pixel, a graphical representation of the number of occurrences of each gray 
area values in an image: the dark points are close to zero (the minimum value) while the 
bright points are close to 255 (the maximum value). When examining each layer’s histo-
gram it was observed that the maximum contrast between seeds and background was in 
the blue layer that was, finally, the one adopted for the study (Figure 2). The process was 
performed using the ravel order with MATLAB r2015b software. 

 
Figure 2. Image histogram for different colors and gray layers ((a): red; (b): gray, (c): blue; (d): 
green). 

2.9. Transporting Images to Binary Space 
Images were transported to binary space and the background removed. Direct 

transfer removes portions of the target or leaves a portion of the background. Therefore, 
to avoid this issue, contrast transduction operators were used before the transfer. Specif-
ically, in this study, the gamma operator was used to extend the contrast before trans-
porting images to binary space and remove the background by the histogram process. 
The transport of images to binary space has been performed using the Binary Space Par-
titioning (BSP) method. It recursively subdivides a space into two convex sets by using 
hyperplanes as partitions. This subdividing process gives rise to a representation of ob-
jects within the space in the form of a tree data structure known as a BSP tree. The process 
was performed using MATLAB r2015b software. 

  

Figure 2. Image histogram for different colors and gray layers ((a): red; (b): gray, (c): blue; (d): green).

2.9. Transporting Images to Binary Space

Images were transported to binary space and the background removed. Direct transfer
removes portions of the target or leaves a portion of the background. Therefore, to avoid
this issue, contrast transduction operators were used before the transfer. Specifically, in
this study, the gamma operator was used to extend the contrast before transporting images
to binary space and remove the background by the histogram process. The transport of
images to binary space has been performed using the Binary Space Partitioning (BSP)
method. It recursively subdivides a space into two convex sets by using hyperplanes as
partitions. This subdividing process gives rise to a representation of objects within the
space in the form of a tree data structure known as a BSP tree. The process was performed
using MATLAB r2015b software.

2.10. Transporting to Color Space

Colour images must be used to extract the characteristics of the connectors. Dot-
matrix multiplication was used for removing the background and getting a colour image
of the connectors. The corresponding elements in black dots (zero) were removed, and
the corresponding dots remain in white dots (one). Since the colour image matrix is three-
dimensional, first, the image layers were separated and, then, the binary image matrix was
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multiplied one by one. Finally, the resulting images were combined, and a new colour
image obtained (Figure 3).
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2.11. Computation of Contaminated Surface

To compute the contaminated area, all the image processing steps previously described
are repeated for peanuts and contaminated areas considered as background and target,
respectively. Additionally, the colour and dimensions of the area of seeds and of the
contaminated surfaces were computed (Figure 4).
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2.12. Applying Detection Model

Three detection models ANN, SVM, and ANFIS were tested to determine the seed’s
sporulation area and segregate contaminated from not contaminated (control) seeds.

2.12.1. Artificial Neural Network (ANN)

In this study, a neural network with a feedforward with a backpropagation learning
algorithm was used. The backpropagation learning algorithm uses various functions such
as purelin, sigmoid logarithm, and sigmoid tangent to standardize the data. In this study,
these three functions were used (Equations (1)–(3)) [38].

purelin(n) = n (1)

purelin(n) = n (2)

Logsig(n) =
1

1 + exp(−n)
(3)

where n is the number of input neurons.
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Eighty per cent of the data collected were used to train the model, while 20% of
the data were used for the test. The algorithm was applied in 1000 epochs, and the stop
criteria of the error was 0.001. The trainlm training algorithm was used to train the neural
network. The network has one input layer containing index s (saturation), percentage of the
contaminated area (with sporulation of the fungus) on the image of the seeds, two hidden
layers with the logarithmic transfer, and tangent functions with the different number of
neurons. It also consists of one output layer with an output +1 for contaminated product
and −1 for contaminated seeds (Figure 5).
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2.12.2. Support Vector Machine (SVM)

The support-vector machine is a supervised learning model with associated learning
algorithms that analyze data for classification. In the model, the Gaussian transform
function (Radial-Basis) was adopted using 1500 training steps. The SVM is a training
process easier than artificial intelligence and fuzzy systems, and it does not get stuck at the
optimal local point. Moreover, it works well in transferring data to higher space and has
good performance in a nonlinear system. Therefore, the balance of classification and error
complexity can be controlled. Furthermore, it requires a small number of training samples.

2.12.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The Fuzzy Logical toolbox in MATLAB r2015b software was used for computation
of the adaptive neuro-fuzzy inference system model based on the Sugeno system. The
percentage of contamination and saturation were introduced into the network as inputs.
The network outputs were +1 (contaminated) and −1 (not contaminated), and a fuzzy sys-
tem was created comparing control and infected treatments. Three membership functions
were selected for each entry by trial and error: less than three membership functions led to
lower accuracy while more than three membership functions required a higher amount of
calculations and running time. According to the three membership functions of each input,
nine rules were obtained (Figure 6).
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Different learning techniques, such as a hybrid-learning algorithm [39] or genetic
algorithm (GA) [40], can be adapted to solve the training problem. Better performance
of ANFIS models has been reported through use of the rapid hybrid learning method,
which integrates the gradient descent method and the least-squares method to optimize
parameters [41,42]. Thus, for the purpose of this study, the hybrid learning method has
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been adopted to train the system. The tolerance value of the error was considered zero,
and the training process stopped when the error persisted at this tolerance. The number of
training steps was set at 100.

2.13. Model Evaluation and Statistics

MSE (mean square error), RMSE (root mean square), MAE (mean absolute error), and
MPE (mean per cent error) (Equations (8)–(11)) were used for evaluating the accuracy of
classification methods based on colour indexes Intensity (I), Saturation (S), and Hue (H)
calculated according to equations 4, 5, and 6, respectively.

I =
(R + G + B)

3
(4)

S = 1− 3(min(R.G.B))
(R + G + B)

(5)

H =

{
θ i f B ≤ G
360− θ i f B > G

}
(6)

where R (red) is the first, G (green) the second, and B (blue) the third layer of the colour
image and

θ = cos−1

 1
2 [(R− G) + (R− B)]√

(R− G)2 + (R− B)(G− B)

 (7)

MSE, MAE, RMSE, and MPE were calculated as follows:

MSE =
1
n

n

∑
i=1

(Yi − Y0)
2 (8)

RMSE =
√

MSE (9)

MAE =
1
n

n

∑
i=1
|Yi − Y0| (10)

MPE =
100%

n

n

∑
i=1

αt − ft

αt
(11)

where

Yi is the actual value,
Y0 is the forecast value,
n is the number of forecasts,
αt is the number of correct classification,
ft is the number of incorrect classification.

The statistical difference among treatments was explored with the analysis of variance
and Duncan’s post hoc test.

3. Results

Here, are reported the results of the methods for detection, classification, and, finally
segregation, of peanut seeds infected with Aspergillus flavus. The results are reported based
on the surface of seeds with sporulation of the fungus after 48 and 72 h from infection
detected and computed by image processing, compared with the control treatment (seeds
before contamination) and using different combinations of lighting and background.

The classification accuracy with different methods 48 and 72 h after contamination
using the LED lamps and black background is reported in Table 1. All three methods
(SVM, ANN, and ANFIS) show lower accuracy after 48 than 72 h from contamination with
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Aspergillus. The ANN classifier presents a lower error percentage at both times (48 and 72 h)
after contamination.

Table 1. Comparison in detection and classification of Aspergillus 48 and 72 h after contamination
using the LED lamps and black background with SVM, ANN, and ANFIS method of classification
(1200 peanut seeds for any treatment).

Classifier Control
Treatment

Mean
Square Error

Root Mean
Square

Mean Absolute
Error

Error
Percentage

SVM
Control-48 h 0.067 0.260 0.033 1.699
Control-72 h 0.055 0.236 0.027 1.392

ANN
Control-48 h 0.056 0.238 0.028 1.425
Control-72 h 0.010 0.103 0.005 0.268

ANFIS
Control-48 h 0.077 0.277 0.038 1.927
Control-72 h 0.030 0.173 0.015 0.750

The classification results with the three methods (SVM, ANN, and ANFIS) using the
LED lamps and white background are reported in Table 2. The ANN classifier results in
the least percentage of error in classification after 72 h from infection, while the best results
in classification after 48 are achieved with the SVM method. ANN and ANFIS show a
lower percentage of error in detection and classification after 72 from contamination, while
SVM makes it possible with LED light and a white background to achieve the least error in
detection and classification after 48 h from contamination.

Table 2. Comparison in detection and classification of Aspergillus 48 and 72 after contamination
using the LED lamps and white background with SVM, ANN, and ANFIS methods of classification
(1200 peanut seeds for any treatment).

Classifier Control
Treatment

Mean
Square Error

Root Mean
Square

Mean Absolute
Error

Error
Percentage

SVM
Control-48 h 0.171 0.414 0.085 4.289
Control-72 h 0.281 0.530 0.140 7.046

ANN
Control-48 h 0.244 0.439 0.122 6.100
Control-72 h 0.097 0.312 0.048 2.439

ANFIS
Control-48 h 0.364 0.603 0.182 9.101
Control-72 h 0.128 0.358 0.064 3.209

The classification results with the three methods (SVM, ANN, and ANFIS) 48 and 72
after contamination using the fluorescent lamps and a white background are reported in
Table 3. The ANN method of detection gives the best results in terms of the percentage of
error of classification.

Table 3. Comparison in detection and classification of Aspergillus 48 and 72 after contamination using
the fluorescent lamps and white background with SVM, ANN, and ANFIS methods of classification
(1200 peanut seeds for any treatment).

Classifier Control
Treatment

Mean
Square Error

Root Mean
Square

Mean Absolute
Error

Error
Percentage

SVM
Control-48 h 0.360 0.600 0.180 9.259
Control-72 h 0.075 0.274 0.037 1.881

ANN
Control-48 h 0.288 0.537 0.144 4.479
Control-72 h 0.022 0.151 0.011 0.574

ANFIS
Control-48 h 0.410 0.640 0.205 10.256
Control-72 h 0.082 0.287 0.041 2.073
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The classification results of the three methods (SVM, ANN, and ANFIS) 48 and 72
after contamination using fluorescent light and a black background are shown in Table 4. In
this condition, the least error in detecting and classifying peanuts seed contaminated with
Aspergillus, both after 48 and 72, is obtained with the ANFIS method. The ANN method
show results similar to the ANFIS method, while for the SVM method the error percentage
is significantly higher, in particular after 72 h from the contamination

Table 4. Comparison in detection and classification of Aspergillus 48 and 72 after contamination
using the LED lamps and black background with SVM, ANN, and ANFIS methods of classification
(1200 peanut seeds for any treatment).

Classifier Control
Treatment

Mean
Square Error

Root Mean
Square

Mean Absolute
Error

Error
Percentage

SVM
Control-48 h 0.237 0.487 0.118 5.929
Control-72 h 1.913 1.383 0.956 47.826

ANN
Control-48 h 0.193 0.439 0.096 4.838
Control-72 h 0.097 0.311 0.048 2.425

ANFIS
Control-48 h 0.183 0.427 0.091 4.578
Control-72 h 0.082 0.287 0.041 2.073

The classification results of the three methods (SVM, ANN, and ANFIS) 48 and 72
after contamination from Aspergillus using UV lamp and a black background are reported
in Table 5. Results show that the AMFIS method gives the lowest results in error detection
and classification, both 48 and 72 after contamination of peanut seeds.

Table 5. Comparison in detection and classification of Aspergillus 48 and 72 after contamination
using UV lamp and black background with SVM, ANN, and ANFIS methods of classification (1200
peanut seeds for any treatment).

Classifier Control
Treatment

Mean
Square Error

Root Mean
Square

Mean Absolute
Error

Error
Percentage

SVM
Control-48 h 0.085 0.292 0.042 2.659
Control-72 h 0.116 0.341 0.058 3.421

ANN
Control-48 h 0.081 0.285 0.040 2.035
Control-72 h 0.083 0.289 0.041 2.094

ANFIS
Control-48 h 0.004 0.068 0.002 0.117
Control-72 h 0.033 0.182 0.016 0.836

Comparison of Methods

Table 6 summarizes the 5 five combinations of image detection methods and classifica-
tion with the conditions the images are taken (lights and backgrounds), giving accuracy
larger than 90% for 48 and 72 h after Aspergillus inoculation. According to the experimental
trials’ outcome, the best results in Aspergillus contamination detection are achieved using
UV lamp with a black background: the accuracy is 99.8% and 99.2% after 48 and 72 h,
respectively from the inoculation. The white background with LED light gives better
contrast that makes it possible for ANN image processing to get remarkable accuracy in
detecting Aspergillus contamination, 98.6% and 99.7%, respectively, at early (48 h) and later
(72 h) stages.
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Table 6. Combination of condition (lighting and background) and image processing methods giving
accuracy higher than 90% in both 48 and 72 h after contamination.

Lighting Type and
Background Type Classifier Control Treatment Classification

Accuracy (%)

LED lamp and black
background

ANN Control-72 after 97.561
ANN Control-48 after 93.900

LED lamp and white
background

ANN Control-72 after 99.732
ANN Control-48 after 98.576

Fluorescent and black
background

ANFIS Control-72 after 97.927
ANFIS Control-48 after 95.422

Fluorescent and
white background

ANN Control-72 after 99.426
ANN Control-48 after 92.521

UV lamp and black
background

ANFIS Control-72 after 99.164
ANFIS Control-48 after 99.833

The data collected with the images previously described was submitted to the analysis
of variance to analyze the effect of the type of imaging (the 5 combinations of light and
background summarized in Table 7) and the time (48 and 72 h from infection) the images
have been taken. The results (Table 7) show that the difference between the type of images
(P) and the times the images are taken (T), as well as their interaction (P ∗ T), are statistically
highly significant.

Table 7. Analysis of variance on type of imaging (see Table 8), time images are taken and their interaction.

Source Df Mean Square

Type of imaging (P) 4 5831.012 **
Time of taking the images (T) 2 9666.610 **

Interaction P ∗ T 8 2087.187 **
Error 6191 35.675

** indicates significant effect at 1% probability.

Table 8. The Duncan’s post hoc test results for interaction of time and imaging.

Hours After Contamination (T)

Image (P)
Fluorescent with

Black Background
Fluorescent with

White Background
LED with Black

Background
LED with White

Background
UV with Black

Background

Control treatment 0.17 i 0.06 i 0.11 i 0.11 i 0.22 i

+48 h 1.61 gh 1.14 h 2.60 ef 2.32 fg 11.39 a

+72 h 3.30 de 3.78 d 6.75 b 6.42 b 5.37 c

Different letters indicate a significant effect at 1% probability for the Duncan’s post hoc test.

The Duncan’s post hoc test identified images taken with UV light and black back-
ground as significantly different and superior in detecting A. flavus on contaminated seeds
than those taken with LED light on either a white background and a black background. In
turn, these LED images are better than those taken with a fluorescent light on either a black
background and a white background.

The Duncan’s post hoc highlights significant statistical difference among times the
images are taken: 72 h and 48 h after inoculation.

The Duncan post-hot test results applied to the interaction of type of imaging and
the time the pictures are taken are reported in Table 8. Images taken with UV light and
black background 48 h after inoculation are statistically different and then significantly
superior in detecting A. flavus on contaminated peanut seeds. Images taken with LED
light on both black and white backgrounds are more effective than any other solution in
detecting A. flavus contamination 72 h after inoculation.
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4. Discussion

According to the observation and statistical analysis results, the best combination
for detecting and segregating A. flavus-infected peanuts is obtained using images taken
with the UV light on a black background and ANFISS classification. The technique is
particularly effective, with 99.8% and 99.2% accuracy, in detecting the Aspergillus growth
after 48 h and 72 h after inoculation, respectively. Images taken with LED light on white
background in combination with the ANN classification method effectively detected and
segregated A. flavus-contaminated peanuts at a later (72 h from inoculation) stage while it
is little less efficient at an early stage (48 h from inoculation): the classification accuracy
is 99.7% and 98.6%, respectively. The same classifier, ANN, processes images taken with
fluorescent light on white background attaining 99.4% accuracy in detecting and segre-
gating peanuts after 72 h from A. flavus inoculation while the accuracy drops to 92.5%
for images taken at an early stage (48 h) from inoculation. The accuracy in detection and
segregation of A. flavus growth on peanuts with the combinations of lights, backgrounds,
and classification processing methods investigated is significantly high compared to pre-
vious studies. Chaitra and Suresh [20] achieved an accuracy rate of 96.87% and 84.37%
for classification of aflatoxin-mold contaminated peanuts applying Linear Discriminant
Analysis (LDA) and Feed Forward Neural Network (FFNN) on color images, respectively.
Magi et al. [21] obtained 83.5% of correctness in quality grading of peanuts, based on
their morphological and color attributes, processing images taken on white background
with SVM classifier. This not particularly good performance of the SVM method in the
classification of peanuts images is confirmed by the outcome of our study, where SVM
resulted in being the least appropriate classifier for the purpose of the research and ANFISS
and ANN demonstrated better accuracy in classification and segregation of images of
Aspergillus-contaminated peanuts.

Several experiences have been carried out with UV-based image systems for real-
time detection and separation of dried figs contaminated with aflatoxin because of the
economic relevance of the product, the costs, and the uncomfortable and unhealthy working
conditions of operators employed in the manual sorting. The success rate in detection and
separation for such systems reported by different authors ranges from 83% [43] to 91% [6]
and 98% [44].

Hyperspectral imaging with UV illumination and deep learning techniques have been
investigated to detect and separate different fruits and seed contaminated by aflatoxin-
producing mold. Zhongzhi and Limiao [45] report 95% recognition of mold-infected peanut
seed at pixel-level and higher than 90% at kernel-level, with Random Forest as the best
performing classier among the models considered in their study [46]. In a similar exper-
imental setting on chilli pepper, 87.5% classification accuracy was achieved using Multi
Layer Perceptrons (MLPs), outperforming the classification accuracy rate of other classifier
models involved in the study [9]. Karuppiah et al. [47] investigated the effectiveness of
NIR hyperspectral imaging system to identify fungal infections in seeds from different
leguminous crops. They report accuracy between 98 and 100% in separating healthy from
every stage of infection seeds using Linear Discriminant Analysis (LDA) compared with
Quadratic Discriminant Analysis (QDA), which also showed promising but lower results.
Jiang et al. [48] combined near-Infrared (NIR) hyperspectral images with Principal Com-
ponent Analysis (PCA) and marker-controlled watershed algorithm achieving 87.1% in
learning image and 98.73% in validation image to detect moldy peanuts.

Finally, when compared with the previous studies, we can consider the accuracy in
detection and segregation of peanuts inoculated with Aspergillus flavus obtained adopting the
combinations of lights, backgrounds, and classification and segregation processing methods
investigated in this study, remarkable and with possible future engineering application.

5. Conclusions

Aspergillus flavus and Aspergillus parasitucus fungi are responsible for aflatoxin contam-
ination of several raw materials intended for human and animal consumption. Since the
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contamination from Aspergillus cannot be entirely removed by cleaning equipment, the
systematic and complete monitoring of the single unit of such raw material (fruit, seed,
grain, or kernel) for successful segregation is a significant challenge.

This paper reports the results of an investigation of the detection of A. flavus-contaminated
peanuts using image processing. The effectiveness of three lighting sources (LED, fluores-
cent, and UV) and two backgrounds (white and black) were explored in combination with
three classifiers, SVM, ANN, and ANFIS, to detect and classify the infected peanuts seeds.
Images taken with UV lamp on black background resulted in being the solution having
the least error in detecting the A. flavus contamination. This solution can be effectively
combined with ANFIS image classification to automatically detect and classify the A. flavus
contaminated peanuts with an accuracy greater than 99%.

On peanuts seed at a later contamination stage (72 h), images taken with LED lamps on
white or black background resulted in being more effective in fungi detection. In this case,
the most appropriate image processing method to detect and classify the contaminated
peanuts seed is the ANN. These findings suggest that an effective system (with accuracy
in detection and classification near 100%) based on image analysis to detect and classify
peanuts contaminated by A. flavus, which is potentially dangerous because of the devel-
opment of aflatoxins, should be grounded on a system simultaneously analyzing images
of any single seed taken with LED and UV lights and processed with ANFIS and ANN
methods, respectively. Additional reduction methods, such as principal component analy-
sis (PCA), will be explored in the future to investigate the effectiveness of the classification
technique used in this study. Furthermore, we plan to extend the experience on image
analysis and processing on additional products subjected to A. flavus contamination inves-
tigating the impact of colour and geometric properties and the performances of the three
different classifiers. Since the image processing and machine learning tools described in
this study have been developed to detect and segregate Aspergillus flavus-infected peanuts,
different specific algorithms will be investigated to detect other fungi, such as Aspergillus
parasiticus, with different properties, on further raw materials.
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