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Abstract: Potato is an important food crop with high water-use-efficiency but low drought tolerance.
The bottleneck in drought tolerance breeding is phenotyping in managed field environments. Fun-
damental research on drought tolerance is predominantly done in container-based test systems in
controlled environments. However, the portability of results from these systems to performance
under field conditions is debated. Thus, we analyzed the effects of climate conditions, container size,
starting material, and substrate on yield and drought tolerance assessment of potato genotypes com-
pared to field trials. A leave one out assessment indicated a minimum of three field trials for stable
tolerance prediction. The tolerance ranking was highly reproducible under controlled-conditions,
but weakly correlated with field performance. Changing to variable climate conditions, increasing
container size, and substituting cuttings by seed tubers did not improve the correlation. Substituting
horticultural substrate by sandy soil resulted in yield and tuber size distributions similar to those
under field conditions. However, as the effect of the treatment × genotype × substrate interaction on
yield was low, drought tolerance indices that depend on relative yields can be assessed on horticul-
tural substrate also. Realistic estimates of tuber yield and tuber size distribution, however, require
the use of soil-based substrates.

Keywords: drought tolerance; potato; phenotyping; managed environments; yield; controlled
environment; sample size; breeding

1. Introduction

Global climate change models predict altered precipitation patterns and increased
air temperatures, which result in more arid conditions during the cultivation period of
many crops [1]. The alleviation of drought effects by irrigation meets restrictions by rising
competition for decreased fresh water resources by industry and domestic use [2]. Wa-
ter saving irrigation techniques like drip-irrigation and deficit irrigation provide partial
solutions [3]. Thus, there is a high demand for water-efficient crops [4,5]. Among the
most important crops, potato (Solanum tuberosum) has the highest water use efficiency
with regard to the food calories produced per water volume [3,6]. However, tetraploid
potatoes (Solanum tuberosum ssp. tuberosum L.) are drought-sensitive because of shallow
rooting and low recovery capacity after drought stress [7–10]. Studies on wild ances-
tors of S. tuberosum and on modern European potato cultivars found significant genetic
variation for drought tolerance as a basis for the breeding of drought tolerant potato geno-
types [11–15]. Traditionally, potato breeding is based on rather slow phenotypic recurrent
selection [6,16,17]. In wheat and maize, selection on yield in arid environments has proved
to result in a significant improvement of yield under arid conditions [18,19]. However,
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although these traditional techniques are effective, they are too slow to meet the press-
ing demand for an improved water-efficiency of crops within the next decade. Modern
methods like marker-assisted selection based on genetic or metabolic marker or genomic
selection can be employed in the early breeding and reduce the breeding cycle from ten to
four years [6,20–22]. The identification of markers and the training of marker models for
the target population requires the phenotyping of many genotypes for drought tolerance.
Ideally, the phenotyping is done in multi-environment trials and managed environments,
where field trials in arid target environments are repeated over several years [2]. Thus,
plants are exposed to the timing and degree of drought stress, the combination with heat or
salinity stress, and the agricultural management, which is typical for on-farm production
in the target environment [2,23,24]. Large scientific consortia and commercial companies
have shown the power of this approach, especially for maize [2,24]. However, smaller
companies and scientific settings need proxy methods that allow mimicking agricultural
drought stress scenarios under climate chamber or greenhouse conditions.

Fundamental research on drought stress, especially on the molecular drought stress re-
sponse of Arabidopsis thaliana, mainly relies on axenic agar culture. In these systems,
drought stress is applied by removing plants from the medium and exposing them
to intense short-term drought stress [25]. Alternatively, plants are cultivated on agar
plates, in which the medium’s water potential is decreased by osmolytes like mannitol or
PEG [26–28]. The latter system differs from the situation in the field by the high humid-
ity/low water vapor pressure deficit (VPD) of the air space in agar plates and by the high
osmotic component of the substrate water potential. In contrast, low water potentials in
natural soils have a small osmotic component unless they are also saline. Furthermore,
dry soils have a high resistance to water movement [29]. As drought stress researchers are
generally aware of the shortcomings of agar-based systems, findings from these systems
are checked in soil-grown plants. In these approaches, plants are grown on peat-based hor-
ticultural substrate under climate chamber conditions, in climate-controlled glasshouses,
or screenhouses with variable climate conditions [14,30–32].

In the fastest screens, drought tolerance is quantified by assessing physiological
response or the survival after stopping the irrigation and reapplying water after a set
period [33–35]. This approach can be misleading if the size of the compared genotypes
differ significantly, as the lower transpiration of smaller plants will result in a higher soil
water content at the end of the period without irrigation. Furthermore, survival assays are
very far from the agricultural situation, in which yield not survival is the target trait [36].
Thus, most researchers perform drought tolerance assessment by measuring the plant’s
response to a reduced soil water potential that is kept constant by adding the water lost by
evapotranspiration. Controlled irrigation is done laboriously by manual weighting and
watering or automatically in phenotyping platforms [32,37,38]. This approach compensates
for the effect of plant size on water-use. The results on drought tolerance QTL in maize
and barley found in these systems are similar to those found under field conditions [38,39].
Mimicking this approach by manual weighing and watering is possible but laborious,
which imposes a considerable restriction on the number of testable genotypes [40,41].
Furthermore, the constant water content approach differs from the field setting. In the field,
all plants receive the same amount of water by precipitation or irrigation. The plants can
only reach more water if they extend their roots into deeper soil layers and thus make use
of excess precipitation in humid times. The impact of this drought avoidance adaptation
on yield under drought stress is very difficult to assess in experiments, where plants grow
in rather small pots [42,43].
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However, not every researcher interested in drought tolerance in potato has access
either to large managed field trials or to sophisticated phenotyping platforms. Thus,
we like to establish, which factors are critical for the assessment of drought tolerance
in container trials. Therefore, we performed a meta-analysis on the yield and drought
tolerance data of potato genotypes in container-based experiments and field trials. Drought
stress was applied by deficit irrigation, in which stressed plants received a fixed per-
centage of the irrigation volume required for optimal growth. Drought tolerance was
assessed by the DRYMp (deviation of relative starch yield from the median of parent check
genotypes) [14,21]. Drought trials were conducted on three populations with a total of
90 genotypes in controlled environments and under variable climate conditions in a screen-
house. The yield and tolerance results were compared to those from field trials conducted
on three different sites between 2011 and 2018. The analysis revealed that a minimum of
three field trials is required to obtain a stable drought tolerance ranking of the genotypes.
Among the factors analyzed, pot size and planting material (in vitro cuttings or seed tubers)
had but a weak effect on the tolerance assessment. In contrast, the substrate type affected
the reproducibility of observations from field trials in container experiments considerably.

2. Materials and Methods

In this study, we performed a meta-analysis on data from 32 drought stress trials
(Table 1) performed between 2011 and 2020 on three different populations of potato
(Solanum tuberosum ssp. tuberosum L.). Population 1 contained 34 German potato cul-
tivars, predominantly optimized for starch production, from nine different breeders. The
data on this population have been analyzed and published with respect to the variability of
drought tolerance and the relationship between yield potential and drought tolerance [14].
The data were reanalyzed in the context of this manuscript to illustrate the problem linked
to container trials. Population 2 contained four cultivars (A, D, E, R) from population 1
and 60 offsprings of crosses between A × E (31 genotypes) and E × R (29 genotypes) [21].
Ten of these offsprings (five of each cross), the four cultivars A, D, E, and R and seven
additional cultivars from population 1 were studied in population 3. Further details on the
genotypes are given in Supplementary File S1, Figure S1.

2.1. Experiments on Population 1

The drought stress trials on population 1 were performed in parallel either in pots
or in managed field environments (details see Table 1 and [14]). In the pot trials, plants
were grown from in vitro cuttings and cultivated in 4L-pots on horticultural substrate in
a screenhouse (2 experiments) or in a climate-controlled glasshouse (CE, 4 experiments).
Temperature in the CE was set to 21 ◦C (16 h day) and 18 ◦C (8 h night) and artificial light
was provided by 62,400-W-AgrosonT lamps/100 m2. Natural light penetration through
the roof was approximately 50% of the outside light intensity. The drought treatment
was imposed by reducing the volume of the irrigation water to a fixed percentage (30%
or 70%) of the volume required for optimal water supply. The optimal water supply
was determined by weighing representative pots to estimate when the soil water content
has decreased below 40% of full capacity. Drought-stress (treatment = s) was applied
by reducing the water supply to 30% (6 experiments) or 70% (Experiment PCH11) of
the irrigation volume received by the control plants that were cultivated under optimal
water supply (treatment = c). The reduction was done by increasing the intervals between
irrigations rather than by decreasing the amount of water given during the irrigation event.
Water stress was applied from two weeks after planting until tuber harvest. The spatial
design was a randomized split-plot design.
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Table 1. Metadata on potato drought stress trials. Trial-Code First letter: F = field trial, P = pot trial, B = bigbag trial, second
letter: T = starting material tuber, C = starting material cutting, third letter: S = sandy soil based substrate, H = horticultural
substrate, final letters: counter. P = population, Culture = culture id in the plant database [44], n = number of replicates,
Pl = number of plants per replicate, G = number of genotypes, start date = planting date, end date = date of haulm
destruction, SI = stress index [14].

Trial-Code P Culture Location n Pl G Start Date End Date SI

FTS01 1 46150 Dethlingen 2 31 34 11.04.2011 02.09.2011 0.11
FTS02 1 44443 Golm Field 4 8 34 21.04.2011 01.09.2011 0.23
FTS05 1 56726 Golm Field 4 8 34 15.04.2012 18.08.2012 0.13
FTS06 1 56877 Dethlingen 2 31 34 16.04.2012 14.09.2012 0.09
FTS07 1 56875 Groß Lüsewitz 2 6 34 19.04.2012 28.08.2012 0.44
FTS12 1 62326 Golm Field 4 8 34 20.04.2013 09.08.2013 0.33
FTS13 1 62328 Dethlingen 2 31 34 20.04.2013 19.09.2013 0.56
FTS14 1 62327 Groß Lüsewitz 2 6 34 25.04.2013 19.09.2013 0.58
PCH03 1 45990 Shelter JKI 8 1 34 27.04.2011 15.08.2011 0.55
PCH04 1 56575 CE MPIMP 3 1 34 29.02.2012 01.06.2012 0.78
PCH08 1 57803 Shelter JKI 8 1 34 26.04.2012 09.08.2012 0.52
PCH09 1 58243 CE MPIMP 3 1 34 27.06.2012 02.10.2012 0.65
PCH10 1 60319 CE MPIMP 3 1 34 17.10.2012 24.01.2013 0.69
PCH11 1 62030 CE MPIMP 3 1 34 13.02.2013 16.05.2013 0.42
BCH15 2 72247 Golm FGH 6 1 64 09.04.2015 19.07.2015 0.60
FTS16 2 72482 Dethlingen 2 16 63 20.04.2015 31.08.2015 0.21
FTS17 2 72275 Golm Field 3 5 64 22.04.2015 17.08.2015 0.73
FTS18 2 72396 Groß Lüsewitz 2 6 60 28.04.2015 04.09.2015 0.53
PCH19 2 72292 JKI Shelter 4 1 63 12.05.2015 10.08.2015 0.48
BCH20 2 76240 Golm FGH 5 1 64 14.04.2016 17.07.2016 0.54
FTS21 2 76528 Dethlingen 2 16 63 19.04.2016 01.09.2016 0.18
FTS22 2 76219 Golm Field 3 8 64 21.04.2016 09.08.2016 0.65
FTS23 2 76529 Groß Lüsewitz 2 6 63 02.05.2016 10.08.2016 0.70
PCH24 2 76354 JKI Shelter 4 1 63 09.05.2016 11.08.2016 0.68
BTH25 3 81251 Golm FGH 8 1 20 11.04.2017 21.07.2017 0.58
FTS26 3 81256 Golm Field 2 5 21 25.04.2017 07.09.2017 0.44
BTH27 3 85178 Golm FGH 8 1 20 17.04.2018 09.07.2018 0.74
FTS28 3 85442 Golm Field 4 5 21 02.05.2018 22.08.2018 0.48
BTH29 3 88022 Golm FGH 6 1 20 02.05.2019 30.07.2019 0.88
BTS30 3 88022 Golm FGH 3 1 4 02.05.2019 30.07.2019 0.66
BTH31 3 93383 Golm FGH 3 1 4 23.04.2020 20.07.2020 0.74
BTS32 3 93383 Golm FGH 6 1 20 23.04.2020 20.07.2020 0.35

In the field trials, plants were grown from tubers on sand in Potsdam-Golm (Golm,
52◦23′55” N 13◦3′56” E) or sandy loam in Dethlingen (51◦57′17” N 10◦07′33” E) and Groß-
Lüsewitz (54◦04′12” N 12◦20′19” E) between 2011 and 2013 (8 experiments, see Table 1). In
Groß-Lüsewitz, drought-stressed plants were grown under rainout shelters and received
no irrigation after emergence. On the two other sites, drought treatment relied on the
low natural precipitation and low soil water capacity on the sites. Drought treatment by
differential irrigation was started after plant emergence. On the site Potsdam-Golm, control
plants received 10 L/m2 when wilting occurred at midday. Drought-stress plants were
irrigated with 10 L/m2 when wilting was observed at 7:00. On the site Dethlingen, control
plants were irrigated with an overhead irrigation system once the soil water capacity had
been predicted to decrease below 50% of the field capacity by the soil moisture prediction
model of the Deutsche Wetterdienst. Stressed plants received no irrigation but precipitation.
The stress index SI (1 minus relative starch yield [14]) is given in Table 1. The drought
score before and after flowering can be found in supplemental material Table S3 at [14].
The spatial design was randomized block design, details on the number of replicates and
plants per replicate are given in Table 1.

In all experiments, drought tolerance was assessed based on the tuber starch yield.
Tubers with a diameter >10 mm were harvested, weighted, and the starch content was
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determined gravimetrically or by dry weight determination (CE experiments). The starch
yield was calculated as the product of starch content and tuber fresh weight. For further
experimental details, see [14]. Yield and climate data are available at E!DAL [45,46].

2.2. Experiments on Population 2

All drought stress trials on population 2 were performed under naturally variable
climate conditions. Plants grown from cuttings were cultivated in pots on horticultural
substrate under a shelter (PCH19, PCH24) or in 30L-bigbags with horticultural substrate in
a polytunnel screenhouse (BCH15, BCH20). Drought stress was applied as described before,
with drought-stressed plant receiving 50% of the water-volume supplied to control plants.
In parallel, genotypes of population 2 were grown from tubers on the three field sites as
described above in 2015 and 2016. The onset of drought stress can be retrieved from the
irrigation data shown in Figure 3 of [21] and in file ‘climate_VALDIS_vpd_water_supply.csv’
available at E!DAL [47]. Drought stress and yield phenotyping were done as described
before. Plants in the stress-treatment were grown under rainout shelters at the sites Groß
Lüsewitz and Golm. The experimental design was a randomized block design, details on
replicates, start and end date are available in Table 1. Planting density was 44,000 plants/ha.
Further experimental details are given in [21]. Original climate and phenotyping data can
be retrieved from E!DAL [47].

2.3. Experiments on Population 3

Field experiments on population 3 (21 genotypes) were performed in 2017 and 2018 in
the field site Potsdam-Golm as described in [21]. Four bigbag experiments were performed
between 2017 and 2020 in the polytunnel screenhouse at the MPI-MP Golm. As in the field
trials, plants were grown from tubers that were chitted for at least eight weeks at 6–8 ◦C
in dim light before planting (planting dates see Table 1). In 2017 to 2019, all 20 genotypes
were grown on 30 L peat-based horticultural substrate, a mixture of 1 part sand and 2 parts
substrate type T (Kausek, Mittenwalde, Germany) mixed with 30 g Novatec classic per
30L-bigbag (Experiments BTH25, BTH27 and BTH29). Additionally, the cultivars A, D,
E, and R were grown on sand (A horizon of a Podsol from Potsdam-Golm, Germany)
fertilized with the same amount and type of fertilizer (experiment BTS30). In 2020, all
20 cultivars were grown on the soil-based system (BTS32) and the cultivars A, D, E and
R were grown additionally in an horticultural substrate- based system (BTH31). The
experimental design was a randomized-block design with treatment as block and genotype
as subplots (replicates and plants per replicate see Table 1).

Stress treatment was started at BBCH15 and applied as described before: during the
stress treatment, plants received the same amount of water per irrigation like the control
plants but the interval between the irrigation was increased to achieve a final irrigation
volume in the stress treatment equivalent to 50% of the optimal water supply in the controls.
In addition to the control treatment (cc) and the stress treatment (ss), an early (sc) and late
(cs) stress treatment was applied. The treatment switch was performed at flowering stage
and all plant were watered to 60% of the soil water capacity at the switch date. Plants on
early stress received reduced irrigation before the switch date, plants on late stress after
the switch date. Details of the times and volumes of irrigation and precipitation can be
found in Supplemental File S1, Figure S2, and in file ‘Water_2017_2020.csv’ at E!DAL [48].
Humidity and temperature of the soil was measured every hour at a depth of 15–20 cm
below the surface in randomly chosen replicates of the cultivars A, D, E, and R in all
treatments by Plantcare sensors (Plantcare, Ruchikon, Switzerland). In the field treatment,
treatment ss and cs (2017) or sc (2018) grew under a rainout shelter, the other treatments
were grown without a shelter. The water volume received in each treatment by irrigation
and precipitation is depicted in Supplementary File S1, Figure S2. The air temperature was
measured every 15 min (polytunnel) or every 1 min (field) by an HC2-S3 sensor, shielded
with a SS3 radiation shield (UP Umweltanalytische Produkte, Cottbus) approximately 1.5 m
above ground at a weather station adjacent to the experimental sites in the polytunnel and
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the field. Air temperatures and substrate/soil temperatures are shown in Supplemental
File S1, Figures S3 and S4, respectively.

The experiments were terminated by the removal of the shoots when a thermal sum
of 1400 day × C◦ (d◦C) was reached. The thermal sum was calculated as the sum of
the average between minimum and maximum air temperature starting from the day of
tuber planting with a base temperature of 6 ◦C and a maximum temperature of 30 ◦C [21].
Within two weeks after termination of the experiments, tubers with a diameter >10 mm
were harvested manually. Tuber fresh weight, starch content and tuber number in the size
classes below 35 mm, 35 mm to 60 mm, and above 60 mm were determined as described
before [14]. All data are available at E!DAL [48].

2.4. Statistical Evaluation

All statistical evaluations were performed in SAS (version 9.4, SAS Institute, Cary);
scripts are available on request from the corresponding author.

Starch yield (SY) was calculated per replicate as a product of tuber fresh weight and
starch content. Relative starch yield (RelSY) was calculated per replicate of each Genotype
Ga by dividing the starch yield of the replicates with stress treatments (Ts = s, ss, sc or cs)
by the mean starch yield of all replicates of the same genotype Ga from treatment c or cc of
the same experiment Eb.

RelSyTsGaEb = starchyield(Ts)GaEb/(starchyield(control)GaEb) (1)

The deviation of the starch yield from the experimental median (DRYM) [21] was
calculated as the difference between RelSY of a genotype Ga from treatment Ts and the
median of the relative starch yield of the all cultivars from the same experiment Eb and
treatment Ts.

DRYMTsGaEb = RelSYTsGaEb −median (relSYTsGaEb) (2)

The deviation of the starch yield from the parental median (DRYMp) [21] was calculated
as the difference between RelSY of a genotype from treatment Ts and the median of the
relative starch yield of the parent cultivars (Gp = A, R, and E) from the same experiment
Eb and treatment Ts.

DRYMpTsGaEb = RelSYTsGaEb −median
(
relSYTsGpEi

)
(3)

Spearman correlation analysis was performed with proc CORR on the mean DRYMp
values for each genotype for the experiments performed on population 1. We performed
a leaf one out analysis (LOOA) to estimate the power of a subset of field trials to assess
drought tolerance. For LOOA, m (m = 2–7) experiments were selected randomly 21 times
from the subset of eight field experiments on population 1 using proc SURVEYSELECT.
The mean DRYMp was calculated for the selected experiments (DRYMp(m)) and for all
eight experiments (DRYMp(8)). The Spearman correlation coefficient was calculated for
the correlation between DRYMp(m) and DRYMp(8).

All analysis of variance and analysis of covariance on the effects of cultivar and
treatment on tuber number, tuber fresh weight and starch yield were performed with proc
GLM (method SS3), which adjusts the analysis for unbalanced designs. The Ryan-Einot-
Gabriel-Welsh (REGW) test, which adjusts the test statistic for multiple testing, was used
for means comparisons.

For population 1 and population 2, we tested the effects of type (pot, field for popu-
lation 1; pot, bigbag and field for population 2), treatment (control, stress) and genotype
(34 cultivars for population 1, 63 genotypes for populations 2) on starch yield per plant.
The analysis was performed separately on each population. Correlation analysis on the
relationship between DRYMp values calculated from starch yields in different test systems
was calculated on mean DRYMp values for each cultivar calculated separately for the test
systems pot, bigbag, and field (proc CORR, method Pearson correlation).
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For population 3, data analysis was performed on the data for the four cultivars A, D,
E, and R that had also been part of population 1 and 2. For a direct comparison of field
and bigbag trials grown from seed tubers, the effect of genotype, trial type, treatment, year,
and their interaction on tuber fresh weight FW and starch yield SY was analyzed for the
experiments conducted in 2017 and 2018. To assess the substrate effect, an ANOVA on
the effects of substrate, treatment, genotype and their interaction on FW and SY data was
performed separately for the years 2019 and 2020, as a joint analysis revealed a highly
significant interaction between substrate, treatment, and year.

The effect of genotype (A, D, E, R) and planting material (cuttings, tubers) on tuber
numbers in the three size classes S, M, and L was analyzed in the datasets from bigbag
trials with horticultural substrate performed in 2017 to 2020. Data from control and stress
(ss) treatments were analyzed separately.

3. Results
3.1. Comparison of Potato Cultivars in Field and Pot Experiments

In the first years of the study (2011 to 2013), 34 potato cultivars (population 1) were
characterized for starch yield and drought tolerance in eight field trials (F) and six pot
(P) experiments. Plants were grown under optimal (control) and reduced water supply
(drought) until tuber maturity. Field trials and pot experiments differed in several parame-
ters, namely starting material (tubers (T) in field trials, cuttings (C) in pot experiments),
substrate volume (field versus 4 liter-pots) and substrate type (soil (S) in field trials, peat-
based horticultural (H) substrate in pot trials). Furthermore, all field trials and two of the
pot experiments were conducted under naturally variable climate conditions, whereas four
pot trials (marked with an asterisk in Figures 1 and 2) were grown in a climate-controlled
glasshouse with minimal (<4 K/24 h) temperature fluctuations.
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Figure 1. Starch yield in field and pot test systems. Distribution of tuber starch yield of 34 potato
cultivars (population 1) grown in the field (F) or pots (P) under optimal (control) or reduced (drought)
water supply. Plants in pots were grown from cuttings (C) on horticultural substrate (H), field plants
were grown from tubers (T) on natural soil (S). Experiments under controlled climate conditions are
marked with an asterisk.

As a readout parameter, starch yield (SY) was determined as the product of harvested
tuber mass and tuber starch content (Figure 1). The analysis of variance (ANOVA) indicated
that SY was significantly higher in the field trials than in the pot trials (Table 2). Furthermore,
the ANOVA revealed a significant interaction between trial type (F versus P) and treatment
(control versus drought) and a significant interaction between trial type, treatment, and
cultivar. This suggests that the drought stress response of cultivars may depend on the
trials system.
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Figure 2. (a) Correlation between drought tolerance indices within and between test systems. Heat
map of the Spearman correlation coefficients DRYMp for correlations between potato cultivars
of population 1. Numbers indicate type I error probability, colors indicate Pearson correlation
coefficients. n = 26 to 34. Asterisk (*) indicates experiment under controlled climate conditions.
(b) Distribution of the Spearman correlation between the mean DRYMp(m) of 21 random subset of m
(m = 1 to 7) field experiments and the mean DRYMp(8) of all field experiments. Dashed lines indicate
critical values of Spearman correlation coefficient for n = 34 and significance level α = 0.05 and 0.01.
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Table 2. Result of an ANOVA on the effects of trial type, treatment, and genotype on potato starch
yield (SY) of potato cultivars. Trial type: pots with peat, field with sandy soil; treatment: optimal
irrigation, drought; genotype: 34 potato cultivars. DF = degrees of freedom, F = F statistic, Prob = type
I error probability. Bold print indicates Prob < 0.05.

Source DF F Prob(SY)

ERROR 4096 - -
Type 1 18,902.96 <0.0001

Treatment 1 1813.26 <0.0001
Type × Treatment 1 197.46 <0.0001

Genotype 33 16.25 <0.0001
Type × Genotype 33 19.11 <0.0001

Genotype × Treatment 33 1.69 0.008275
Type × Genotype × Treatment 33 1.43 0.054271

To establish how well drought tolerance under field conditions were predictable from
pot-based drought tolerance trials, we calculated the correlation between the mean drought
tolerance indices estimated for each cultivar for each of the twelve different experiments.
The drought tolerance index was the deviation of the relative starch yield from the exper-
imental median of all cultivars (DRYM) or of the check cultivars (DRYMp) [14,21]. The
normalization to a set of cultivars that were used in all experiments allows comparisons
over many years and all populations. The heat map (Figure 2a) shows the Spearman
correlation coefficient (by color-code) and the type I error probability (Prob) values. The
predominantly blue color indicates that most of the correlations coefficients were around
zero or even negative, indicating a lack of reproducibility between the experiments. The
exception are pot trials conducted at the same site, most of which show a highly significant
(Prob < 0.001) correlation between the DRYMp values of the cultivars. The close correlation
was observed in both test systems, the climate-controlled greenhouse and in the experi-
ments conducted under variable climate conditions. However, neither test system showed
a close correlation with any of the field trials nor did the field trials correlate well with
each other.

To estimate the power of a single field trial to assess drought tolerance, we compared
the mean DRYMp(m) calculated from a randomly selected number of m experiments to
the mean DRYMp(8) calculated from all eight experiments by calculating the Spearman
correlation coefficient. The distribution of the Spearman correlation coefficient is shown in
Figure 2b. The median of the distribution increases from 0.50 for n = 1 to 0.80 for n = 4. When
less than three experiments are performed, non-significant correlations between DRYMp(n)
and DRYMp(8) are likely, as indicated by Spearman correlation coefficients below the
significance threshold in Figure 2b. Thus, we concluded that single field experiments do
not allow a stable assessment of a cultivars drought tolerance. Therefore, we switched
to assess the drought tolerance of cultivars as mean tolerance estimated in a specified
system. Indeed, the Pearson correlation between the DRYM calculated from all six pot
and all field trials was positive (0.42) and significant (α = 0.05) [14]. The tolerance ranking
of the cultivars in pot trials still differed from the ranking in the field trials as indicated
by the significant interaction between genotype, treatment, and trial type (Prob = 0.054,
Table 2). The main hypothesis was that the different response of the genotypes may have
been caused by the much larger soil volume available to field grown plants compared to
pot grown plants. The larger rooting volume supports a larger plant and thus a higher
tuber yield, which may have resulted in the differences in tuber starch yield discernible in
Figure 1. It also means that the drought tolerance of genotypes, in which drought tolerance
resulted from the ability to forage additional water with longer roots, could have been
underestimated in small pots. In the next step, we thus tested the effect of larger substrate
volumes on drought tolerance assessments.
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3.2. Effect of Pot Size on Drought Tolerance Assessment

In the second series of experiments, starch yield and drought tolerance were deter-
mined for population 2 that contained 3 or 4 potato cultivars and 60 genotypes obtained
from crosses between three cultivars (details see [21]). The genotypes of population 2 were
grown under optimal and reduced water supply in six field trials, two pot experiments
and two bigbag experiments (Figure 3a). The bigbag contained 30 L of a horticultural
substrate and thus provided a rooting volume comparable to the upper 30 cm of soil in a
field trial system, which is the main rooting zone of potato. The plant density in the bigbag
setup was similar to those on the field sites. In all trial systems, plant grew under naturally
variable light and temperature conditions. The distribution of the starch yield data for the
10 experiments is shown in Figure 3b. Tuber starch yield of bigbag grown plants and pot
grown plants was significantly lower than starch yield obtained from field grown plants
(REGWQ-Test alpha = 0.05). However, the bigbag-grown plants achieved on average 85%
of the field SY, whereas the SY of pot-grown plants was on average 24% of the field SY. The
ANOVA (see Table 3) again revealed a significant effect of the test system on SY as well as
a significant interaction between test system and genotype.
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Figure 3. Starch yield in bigbag system compared to other test systems (a) Bigbag system in polytunnel of MPI-MP.
(b) Distribution of starch yield of 63 potato genotypes (population 2) grown in pots (P), bigbags (B), and on field sites (F).
Plants in pots or bigbags were grown from cuttings (C) on horticultural substrate (H), field grown plants were grown from
tubers (T) on sandy soil (S).

Table 3. Result of an ANOVA on the effect of trial type, treatment, and genotype on tuber starch yield
SY of potato cultivars. Trial type: pots with peat, bigbag with peat, field with sandy soil; treatment:
optimal irrigation, drought; genotype: 63 potato genotypes. DF = degrees of freedom, F = F-value,
Prob = type I error probability. Bold print indicates Prob < 0.05.

Source DF F(SY) Prob(SY)

ERROR 4250 - -
Type 2 3994.22 <0.0001

Treatment 1 5439.05 <0.0001
Type×Treatment 2 554.55 <0.0001

Genotype 62 7.38 <0.0001
Type × Genotype 124 6.92 <0.0001

Genotype × Treatment 62 2.24 <0.0001
Type × Genotype × Treatment 124 0.97 0.57963

The power to predict drought tolerance in the field from container experiments was
tested by correlation analysis on the mean drought tolerance indices DRYMp. The mean
was calculated for each cultivar from several experiments, as the predictive power of single
field experiments was insufficiently low (see above). The Pearson correlation coefficient
between DRYMp from pot experiments and DRYMp from bigbag experiments was positive
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and highly significant (p = 0.0003), suggesting that the substrate volume is less relevant
for the assessment of the drought tolerance as previously assumed. However, the Pearson
correlation between the mean DRYMp in the field and the DRYMp obtain in pot or bigbag
experiments was not significant (Prob = 0.31 (pot) or Prob = 0.69 (bigbag)). Figure 4 indicates
that many genotypes that responded tolerantly under field conditions and thus had a
DRYMp of > 0 showed a negative DRYMp (sensitive) in pot and bigbag experiments. Thus,
increasing the substrate volume and moving from controlled environments to variable
climate conditions has not solved the problem of insufficient tolerance prediction from
container experiments. The other two variables differing between field and container
experiments are the starting material—tubers versus cuttings—and the substrate, which is
sandy soil in the field and peat-based horticultural substrate in the container.
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Figure 4. Mean drought tolerance index of 63 potato genotypes calculated from tuber starch yield in field experiments
(DRYMp(field)) plotted against DRYMp calculated from three bigbag experiments (a) or three pot experiments (b). Green
symbol tolerant cultivar A, red symbol sensitive cultivars E and R, blue symbols genotypes obtained from crosses (see [21]).

3.3. Effect of Starting Material and Substrate

The effect of starting material and substrate was tested in 2017 to 2020 in a third popu-
lation, which contained cultivars from population 1 and crossing lines from population 2
(details see Supplemental File, Supplemental Figure S1). Drought stress was applied in
three different forms, as early-stress before flowering, late stress after flowering, and as
long-term stress. Early-stress resulted in an almost twice as high starch yield compared
to late- and long-term stress (see Supplemental File S1, Figure S5). However, correlation
analysis revealed significant correlations (Pearson coefficient > 0.88, Prob < 0.0001) between
the starch yields measured under all three stress conditions. Thus, the ranking of the
cultivars with respect to the starch yield was unaffected by the timing and duration of
the stress.

The drought resistant cultivars A and D and the sensitive cultivars R and E were part
of all three populations. In the experiments on population 3, all plants were grown from
tubers. The bigbag experiments were performed in a polytunnel adjacent to the field site, in
which the field experiments were grown. Horticultural substrate was used in four bigbag
experiments, and sandy soil was used additionally in two bigbag experiments.

The average tuber yield and starch yield of all four cultivars was significantly lower
(REGW-Test α = 0.05) in plants grown in bigbags with horticultural substrate (BTH25 und
BTH27) than in plants (FTS26 and FTS28) grown in the adjacent field (Figure 5, statistics
Table 4). In addition to the significant effect of the test system on SY and FW, there was
a significant interaction between cultivar and test system. While cultivar E showed the
lowest SY and FW of all cultivars under optimal and stress conditions in the bigbag system,
it yielded highest when grown in the field. Interestingly, there was no significant interaction
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between test system, genotype and treatment, suggesting that the lower tuber and starch
yield in the bigbag system did not affect the cultivar-specific response to drought.

Agronomy 2021, 11, x FOR PEER REVIEW 12 of 24 
 

 

it yielded highest when grown in the field. Interestingly, there was no significant interac-
tion between test system, genotype and treatment, suggesting that the lower tuber and 
starch yield in the bigbag system did not affect the cultivar-specific response to drought. 

 
Figure 5. Effect of growth system on yield. Mean starch yield (a) and tuber yield (c) of four culti-
vars grown from tubers in bigbags on peat substrate under optimal (cc) and reduced (ss) water 
supply (experiments BTH25 (2017) und BTH27 (2018)). Mean starch yield (b) or tuber yield (d) of 
four cultivars grown under field conditions under optimal and reduced water supply (experi-
ments FTS26 (2017) und FTS28 (2018)). 

Table 4. Result of an ANOVA on the effect of trial type, treatment, year, and genotype on tuber starch yield (SY) and tuber 
fresh weight (FW) of potato cultivars. Trial type: bigbag with peat, field with sandy soil; treatment: optimal irrigation, 
long-term drought; genotype: potato genotypes A, D, E, and R. Year: 2017, 2018. DF = degrees of freedom, F = F-value, 
Prob = probability. Bold print indicates Prob < 0.05. 

Source DF F(SY) Prob(SY) F(FW) Prob(FW) 
ERROR 182 . . . . 

Genotype 3 20.27 0.0000 13.45 0.0000 
Treatment 1 495.80 0.0000 587.29 0.0000 

Genotype × Treatment 3 2.42 0.0673 1.28 0.2837 
Year 1 81.77 0.0000 100.43 0.0000 

Genotype × Year 3 2.03 0.1117 4.71 0.0034 
Year × Treatment 1 1.23 0.2682 0.23 0.6331 

Genotype × Year × Treatment 3 0.43 0.7325 0.56 0.6435 
Type 1 374.95 0.0000 288.96 0.0000 

Genotype × Type 3 33.20 0.0000 25.06 0.0000 
Type × Treatment 1 2.61 0.1079 0.29 0.5890 

Genotype × Type × Treatment 3 0.32 0.8079 0.53 0.6649 
Year × Type 1 14.85 0.0002 1.96 0.1627 

Genotype × Year × Type 3 5.75 0.0009 9.61 0.0000 

Figure 5. Effect of growth system on yield. Mean starch yield (a) and tuber yield (c) of four cultivars
grown from tubers in bigbags on peat substrate under optimal (cc) and reduced (ss) water supply
(experiments BTH25 (2017) und BTH27 (2018)). Mean starch yield (b) or tuber yield (d) of four
cultivars grown under field conditions under optimal and reduced water supply (experiments FTS26
(2017) und FTS28 (2018)).

Table 4. Result of an ANOVA on the effect of trial type, treatment, year, and genotype on tuber starch yield (SY) and tuber
fresh weight (FW) of potato cultivars. Trial type: bigbag with peat, field with sandy soil; treatment: optimal irrigation,
long-term drought; genotype: potato genotypes A, D, E, and R. Year: 2017, 2018. DF = degrees of freedom, F = F-value,
Prob = probability. Bold print indicates Prob < 0.05.

Source DF F(SY) Prob(SY) F(FW) Prob(FW)
ERROR 182 - - - -

Genotype 3 20.27 0.0000 13.45 0.0000
Treatment 1 495.80 0.0000 587.29 0.0000

Genotype × Treatment 3 2.42 0.0673 1.28 0.2837
Year 1 81.77 0.0000 100.43 0.0000

Genotype × Year 3 2.03 0.1117 4.71 0.0034
Year × Treatment 1 1.23 0.2682 0.23 0.6331

Genotype × Year × Treatment 3 0.43 0.7325 0.56 0.6435
Type 1 374.95 0.0000 288.96 0.0000

Genotype × Type 3 33.20 0.0000 25.06 0.0000
Type × Treatment 1 2.61 0.1079 0.29 0.5890

Genotype × Type × Treatment 3 0.32 0.8079 0.53 0.6649
Year × Type 1 14.85 0.0002 1.96 0.1627

Genotype × Year × Type 3 5.75 0.0009 9.61 0.0000
Year × Type × Treatment 1 1.82 0.1796 0.02 0.9034

Genotype × Year × Type × Treatment 3 0.14 0.9385 0.08 0.9715
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Subsequently, we compared the effect of the substrate on tuber fresh weight FW
and SY of plants grown from tubers on sand or horticultural substrate in the bigbag
system in 2019 (BTH29 und BTS30) and 2020 (BTH31 and BTS32) (Figure 6). In both years,
cultivar and substrate had a significant effect on FW and SY (see Table 5). A significant
interaction between cultivar and substrate on FW and SY indicated that the cultivars
responded differently to the different substrates. In 2019 and 2020, plants grown on sand
under optimal conditions reproduced the ranking of SY found under field conditions, with
highest yields in cultivar E and lowest yields in cultivar D. This ranking was also found
on horticultural substrate in 2020, but not in 2019. In a given treatment, e.g., drought
treatment ss, both substrate types received equal amounts of irrigation water. Nevertheless,
there was a significant substrate × treatment interaction on SY in both years and on
FW in 2020 (Table 5). In 2019, drought stressed plants on horticultural substrate yielded
significantly lower than those on sandy soil, although the shoots of the plants were larger
on horticultural substrate than on sand.
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Figure 6. Effect of substrate on yield. Mean starch yield (a,b) and tuber yield (c,d) of four cultivars
grown horticultural substrate (H, black) or sandy soil (S, blue) under optimal (cc H, cc S) and reduced
(ss H, ss S)) water supply. For result of ANOVA see Table 5.

The substrate also affected tuber form and size distribution (Figure 7). On sandy
soil, cultivars E (Figure 7b) and R (Figure 7c) produced the large, oblong tubers that are
typical for these cultivars when grown under field conditions. In contrast, plants grown
on horticultural substrate produced roundish tubers. In an overview, Figure 7a displays
the mean tuber numbers for the different size classes large (L, >60 mm), medium (M,
35–60 mm) and small (S, <35 mm) for the four cultivars that were grown in bigbags from
cuttings or tubers on horticultural substrate or from tubers on sandy soil in bigbags or in the
field. Plants grown under optimal conditions produce more tubers per plant and a higher
percentage of medium tubers compared to plants grown under drought stress conditions.
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Table 5. Result of an ANOVA on the effect of substrate, treatment, year and genotype on tuber starch yield (SY) and
tuber fresh weight (FW) of potato cultivars cultivated in bigbags. Substrate: peat-based horticultural substrate, sandy soil;
treatment: optimal irrigation, long-term drought; genotype: potato genotypes A, D, E, and R. DF = degrees of freedom,
F = F-value, Prob = probability. Bold print indicates Prob < 0.05.

Year SourGenotypee DF F(SY) Prob(SY) F(FW) Prob(FW)

2019 ERROR 48 - - - -
2019 Genotype 3 4.38 0.008 3.84 0.015
2019 Substrate 1 103.90 0.000 176.29 0.000
2019 Genotype × Substrate 3 2.99 0.040 5.71 0.002
2019 Treatment 1 208.30 0.000 143.83 0.000
2019 Genotype × Treatment 3 2.00 0.127 1.22 0.312
2019 Substrate × Treatment 1 7.70 0.008 1.37 0.248
2019 Genotype × Substrate × Treatment 3 2.01 0.126 0.75 0.529
2020 ERROR 56 - - - -
2020 Genotype 3 11.47 0.000 5.43 0.002
2020 Substrate 1 18.34 0.000 12.50 0.001
2020 Genotype × Substrate 3 0.70 0.556 2.75 0.051
2020 Treatment 1 498.39 0.000 537.25 0.000
2020 Genotype × Treatment 3 2.84 0.047 1.20 0.318
2020 Substrate × Treatment 1 142.96 0.000 41.95 0.000
2020 Genotype × Substrate × Treatment 3 1.50 0.224 0.99 0.404
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Figure 7. Effect of cultivation factors on tuber size. (a) Tuber numbers in size classes L (>65 mm),
M (35–65 mm), and S (<35) in four cultivars on horticultural substrate (H) or sandy soil (S) under
optimal (cc) and reduced (ss) water supply in bigbag experiment (B) and field experiments (F). b, c
Phenotype of potato tubers from cultivar E (b) and R (c) grown in sandy soil (left) and horticultural
substrate (right).
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In the field (FS26 and FTS28), all four cultivars produce 2 to 4 large tubers per plant
under optimal water supply. In the bigbag system, plants predominantly produced large
tubers when grown from tubers on sandy soil (BTS30 and BTS32). Cultivar D is the
exception and develops large tubers under all conditions. The number of small tubers
seemed to be higher on horticultural substrate than on sand, especially in the cultivars
A and D. However, this could have been a sampling artefact as small tubers more easily
detectable in horticultural substrate than in sand. The starting material—cuttings or
tubers—had but a marginal effect on the tuber numbers of plants that grew on horticultural
substrate (Statistics see Supplemental File, Table S1).

In summary, substrate had a higher impact on the assessment of potato performance
in container trials than planting material, container size, and climate conditions.

4. Discussion
4.1. Controlled Water Supply versus Controlled Soil Water Content

In the experiments in this study, drought stress was applied by reducing the water
supply to the plant to a fixed percentage of the optimal water supply. This approach differs
substantially from the widely used approach of constantly reduced soil humidity [37,38,41].
In the constant humidity approach, the water content is kept on a level below the optimal
soil water content by daily addition of the amount of water lost by evapotranspiration. This
amount is quantified by pot weighing, corrected by the estimates on the plant weight [37].
In this approach, plants with a high transpiration rate will receive more water than plants
with a low transpiration rate. Thus, differences between water-spending drought-sensitive
and water-saving drought tolerant genotypes [2,49] are hard to detect in this approach
unless the effect of genotype on the irrigation volumes is carefully evaluated. The approach
of constant water supply mimics the situation in the field, in which an area-dependent
volume of water is available to the plant. The constant volume approach comes to its
limits when plants of very different size are investigated. In this case, small plants will be
subjected to soil water contents that are higher than optimal while big plants experience
suboptimal soil humidity. This problem is aggravated if pot sizes are small compared
to the size of the plant. In the field, larger plant will root in a larger soil volume and
hence forage water from a larger soil area, limited by competition from neighboring plants.
Hence, planting density has a large impact on the response of maize and other cereals
to water-deficit [2]. Optimum planting density in potato depends on the cultivar, seed
tuber weight and the production goal with respect to total yield and required tuber size
distribution [50,51]. Planting density affects the vertical root distribution of potato: high
planting density results in a lower percentage of deep roots per leaf area [52]. This change
has been associated with the negative effect of high planting densities on yield stability
under water limiting conditions [50,52]. Differences in root growth have been linked to
differences in drought tolerance between two cultivars that became apparent when plants
were cultivated in deep soil layers (>40 cm) [53]. The substrate volume in our bigbag
system mimicked the planting density of 4.4 plants m−2 in our field trials, but could not
provide the deeper soil layers, thus potentially underestimating drought tolerance of deep
rooting genotypes like the late-maturing cultivar E. However, under irrigated conditions
and on sandy soil, highest root length densities were found in the top 30 to 40 cm [54,55],
making the restriction of the rooting depth in the bigbag system less influential when sandy
soil was used (see discussion below).

4.2. Controlled Condition versus Managed Field Environments

Major differences between drought stress experiments in academic settings and
drought stress in plant production are the timing of drought stress within the life cy-
cle of the plant, the degree of stress, and the micrometeorological conditions before and
during the stress [42]. The timing of the stress with regard to the crop’s lifecycle is criti-
cal [42,56]. Potato is most sensitive to insufficient water supply in the period 15 to 20 days
before flowering, during and after flowering, and during tuber filling [10,57,58]. In our
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study on population 3, we subjected potato genotypes to reduced water supply before
(early stress) or after (late stress) flowering. The tuber yield was significantly lower af-
ter late stress than after early stress (see Supplemental File S1, Supplemental Figure S5).
Likewise, cereals like rice and maize are most sensitive to drought during flowering and
grain filling [2,59]. In contrast, a substantial part of academic research on drought stress
is performed during early development. Hatzig et al. assessed the performance of rape
seed seedlings to estimate the transgenerational effect of drought stress [60]. Muscolo et al.
analyzed the response of lentil seedlings to short-term salt and PEG stress [32]. Bundig
et al. screened potato genotypes on young cuttings in tissue culture [61]. Degenkolbe et al.
studied the response of rice to drought stress during vegetative growth [41]. Resistance
to drought during early development is critical for the establishment of crops and forest
trees [42,62,63]. However, early drought tolerance is not necessarily linked to drought
tolerance in later growth stages and thus yields stability in agronomic environments [64].
In our study, however, the cultivar ranking according to their tuber starch yield under
stress was unaffected by the timing or the duration of the stress, although a much higher
yield was achieved after early stress compared to late stress. Stress intensity is another
difference between field and container trials. The much lower stress index (SI) of field
experiments compared to bigbag and pot experiments may have affected the ranking. The
role of stress intensity for the tolerance ranking of the cultivars in population 1 can be
concluded from the correlation analysis between the pot trials. The drought tolerance
indices in experiment PCH11 that had a low stress index of 0.42 was significantly correlated
(Prob < 0.05) with the drought tolerance indices in the other three experiments conducted
in controlled environments, which had high stress indices of >0.65. Thus, stress intensity
does not seem to affect the genotype ranking in potato. The high correlation between the
experiments furthermore suggest that the experimental design had sufficient power to
estimate the tolerance indices. However, these experiments required substantial resources
(100 m2 of climate-controlled glasshouse for three months for one experiment) and their
power to predict yield under field conditions was limited. Controlled environments differ
from field environments both with respect to the root environment (see below) and to
the micrometeorological conditions. Poorter et al. reviewed the multitude of differences
between controlled environments and field conditions [65]. The consequences of these
difference have been shown, especially for Arabidopsis thaliana [66]. Mishra et al. found
that phenotypes of Arabidopsis thaliana found under controlled conditions do not correlate
with those found in the field [67]. Annunziata et al. showed that diel metabolism and
expression of clock genes differs between controlled conditions with constant temperatures
and highly variable natural conditions [68].

In our setup, light intensity in the controlled environment experiments was variable
but substantially lower than in the field, as the greenhouse roof structure absorbs and
scatters light and some of the experiments were conducted off-season. The internal intensity
of natural light in the glasshouse is about 50% of the external intensity. Temperature
variability was much lower under controlled conditions, with a difference of less than 4 K
between day and night temperatures. In contrast, median temperatures on subsequent days
could differ by up to 10 K under field conditions (see Supplemental File S1, Supplemental
Figure S3). High maximum temperatures in the field were also linked to high vapor
pressure deficits (VPD), which reached more than 2 kPa during field experiments on the
site Golm [21,47]. In contrast, the set values of 21 ◦C/60% RH in the glasshouse amount to
a VPD of 0.43. Together with the lower radiation intensity and the lack of wind, this causes
a substantially lower transpiration in climate-controlled glasshouses compared to the open
field. As this difference also affects the morphology of leaves and plants, high-end climate
simulation facilities have been built to provide the option to simulate realistic atmospheric
conditions, including wind [69].

In contrast to controlled environments, atmospheric conditions in the screenhouses
and the rainout shelters are much more field-like. Light and temperatures are as variable as
in the field, while soil volume and composition as well as water supply can be controlled.
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Temperatures in polytunnel screenhouses and—to a lesser extend—rainout shelters tend
to be higher than in the open field and consequently VPDs are higher in polytunnel,
too. In contrast, light intensities are lower in polytunnel screenhouses than in the field.
Manufacturers provide transmission rate of up to 90% [70], however dust deposition can
decrease transmission rates to 67% (own measurements). The effect of the light intensity
reduction on yield will be highest, when light intensity is low during tuber filling after
canopy closure, when the leaf area index has reached its maximum. Additionally, wind
speeds enhance the transpiration rates in fields more than in polytunnels.

The major advantage of polytunnel screenhouses is the low per area cost for construc-
tion and maintenance. This make several 100 m2 area for large experiments with many
genotypes or larger containers affordable.

4.3. The Hidden Half: Planting Material, Pot Size, and Soil

The second important aspect of this study concerns the compartment, in which the
root—the hidden half [71] of the plant—is cultivated. The closer attention to the root
compartment was triggered by the insightful review of Passioura [72] and by a puzzling
observation that cultivar E, which was among the highest yielding in the field, showed low
tuber yields in pots under controlled conditions.

Our first hypothesis was that 4 liter-pots prevented the optimal development of
cultivar E, which produces large shoots [21]. Therefore, we started cultivating plants in
substantially bigger containers, namely bigbags with a volume of 30 L and a height of
30 cm. However, E again showed lower yield under optimal water supply than the three
other check cultivars A, D, and R. Solanum tuberosum ssp. tuberosum cultivars root to a
depth of 100 cm, but develop the highest root density in the upper 30 cm, especially when
irrigated [54,73,74]. Potato cultivars differ in root development both with respect to the root
density in the plow layer (upper 30 cm) and to their root length. Late-maturing genotypes
tend to produce deeper roots [73–75]. The stronger root development in late-maturing
cultivars is related to the longer root growth period, which terminates with the end of the
leaf production. Cultivar E has the latest development compared to A, D, and R based
on the BBCH assessments under field conditions and the tuber maturity score [21]. Thus,
a rooting horizon of 30 cm may have been insufficient for the cultivar E to fulfill its full
potential for water uptake and yield. In spite of the higher root density in the upper 30 cm,
deeper roots can contribute substantially to water uptake [76]. The interaction between
rooting depth and water supply on yield gets even more complicated in irrigated crops,
which take up most of the water from the upper layers. In our system, irrigation was
performed with large volumes equivalent to 10 L per m2, thus rewetting more than the
superficial layers of the soil. Thus, cultivar E could have benefited from its ability to take
up water and nutrients from higher soil depth in the field while being cultivated under
suboptimal conditions in bigbags on peat.

The second factor that differed between field and container experiments was the
starting material. In most pot experiments, the plant started from in vitro propagated
cuttings and thus relied on successful photosynthesis from the very beginning. In field
trials as in production systems, potato crops were always started from seed tubers. Seed
tubers bring a substantial amount of resources in the form of storage starch available
for the establishment of the plant. Thus, the size of the seed tuber has an impact on the
performance of the crop [50,77]. Therefore, tuber size was carefully controlled in our
experiment to make sure that all cultivars and treatments were started with the same seed
tuber weights. The comparison between the bigbag experiments from 2017 to 2020, which
started from tubers, with the bigbag experiments of 2015 and 2016 started from cuttings
revealed substantial differences in shoot development. Plants grown from cuttings logged
two to three weeks earlier than those grown from tubers did. Nevertheless, the effect of the
interaction between experiment type and genotype on tuber yield remained significant in
the experiments performed in 2017 and 2018 (Table 4). Thus, the factor planting material
did not explain the difference in cultivar ranking between field and container experiments.
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Finally, the substrate turned out to be the essential factor for the reproduction of field
results in container trials. When potato plants were grown on sandy substrate instead of
horticultural substrate, the ranking of the genotypes with respect to yield was the same as in
the field. The effect of substrate on tuber and starch yield was significant in both trial years;
however the direction of the effect was opposite. This suggest that an interaction between
substrate type and the water demand caused by the atmospheric condition throughout the
experiment. In 2019, water demand was almost twice as high as in 2020, mainly due to a
period of high temperatures and thus high VPD between 40 and 60 days from planting in
2019 (see Supplemental File S1, Supplemental Figures S2 and S3). The substrate effect was
not due to soil temperature differences, as these were surprisingly similar. The interaction
between substrate × genotype suggest that differences in water uptake, presumably due
to different root developments, may be at the bottom of the substrate effect on cultivar
ranking. The later maturing cultivar E may have been better able to respond by increased
root growth to high water use than the other cultivars, which are more early maturing and
thus terminate root growth earlier [75].

In addition to the effect on yield, substrate affected tuber quality. The typical tubers
size distribution of the cultivars (see Figure 7) and the cultivar-specific tuber forms that
are typically found in the field were reproduced after cultivation in bigbags with sandy
substrate. On peat, tubers tended to be less oblong and the percentage of large tubers was
decreased. Tuber size distribution and form are highly relevant for the market value of the
potato crops for the fresh market or the chip production [78]. Thus, realistic assessment on
tuber qualities in container trials requires the use of soil based substrates.

Interestingly, the 3-way interaction of genotype × substrate × treatment was non-
significant, indicating that in spite of the striking effect of the substrate on absolute yield,
its effect on drought tolerance index DRYMp, which is based on relative yield, was low.
Thus, it is possible to use horticultural substrate when assessing drought tolerance based
on tolerance scores DRYM, DRYMp, or the stress tolerance index STI, which are based on
relative yield and are weakly affected by the yield potential [14].

The use of soil instead of horticultural substrate provides some challenges. Horticul-
tural substrates are quality-controlled by manufactures to provide homogenous quality
within and between batches and optimal pore size distribution. In contrast, homogeneous
and quality-controlled soil supplies are more difficult to find. We tested quarz sand as
an alternative to sandy soil in controlled-environment experiments and found it impos-
sible to establish potato cultures from cuttings, even when cuttings were pre-cultivated
in peat pots. One of the problem with soil use is the loss of soil structure during pot
filling. When the dry soil is filled into pots, the porous structure that has established in the
soil during numerous freeze-thaw, drying-rewetting cycles is lost and the soil is in single
grain structure with a very adverse pore distribution [72]. We found that the structure can
be improved when the soil-filled containers are kept in the polytunnel over winter with
occasional rewetting. However, our sandy soil originated from an A-horizon and thus
contained more organic matter than pure quarz sand. Additional problems with the use of
soil instead of horticultural substrate arise from the risk of water logging when used in
small pots [72]. Furthermore, the higher specific weight of mineral soil (typically 1.4 kg/L)
compared to horticultural substrate (typically 0.7 kg/L) makes the logistics of substrate
transport, pot filling and pot movement challenging. Nevertheless, natural soils in deep
growth columns have been successfully used in drought tolerance trials on potato, maize,
and pear millet [49,74,79].

Thus, we conclude that the use of soil-based substrates instead of peat-based horti-
cultural substrate, while less critical for the assessment of the relative yield/yield stability
under drought conditions, leads to a better estimate of yield potential, yield under stress,
and tuber quality in potato.
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5. Conclusions

The analysis of nine years of drought tolerance experiments on potato indicated that
a minimum of three trials is required to obtain a stable estimate of drought tolerance
in potato genotypes. We tested the effect of climate conditions, container size, starting
material, and substrate on the correlation between the performances of potato genotypes in
container experiments compared to field experiments. Realistic estimates on relative yields
under drought can be obtained in container systems on horticultural substrate. However,
genotype assessment with respect to yield potential, absolute yield under stress, and tuber
size distribution requires the use of soil-based substrates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11050865/s1, in supplemental File S1, Figure S1: Potato genotypes in test populations
1 to 3. Figure S2 Water volumes in experiments on population 3. Figure S3: Air temperature in
experiments on population 3, Figure S4 Soil temperature in experiments on population 3. Figure S5:
Mean starch yield of cultivars in population 3 under early, late and long-term drought. Table S1:
ANOVA on the effect of planting material on tuber size distribution.
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