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Abstract: The thermal time, expressed in accumulated growing degree-days (AGDD), was used as a
predictor to describe and simulate the independent growth of two pasture crops, Lolium perenne L.
and Bromus valdivianus Phil. Two sinusoidal models (four-parameter Logistic and Gompertz) were
applied to the growth variables (total leaf blade length per tiller—LBL, and accumulated herbage
mass—AHM). The nutritive value of pastures was predicted and modeled using regression equations
(linear and quadratic), depending on each nutrient. Data for modeling were collected from a two-year
study, in which LBL, AHM, and nutritive value variables for L. perenne and B. valdivianus pastures
were measured at three-day intervals. Defoliation was determined according to the AGDD, such
that the swards were defoliated at 90, 180, 270, 360, and 450 AGDD. The Logistic and Gompertz
models presented similar values for the growth rate (GR) parameters, superior asymptote (Asup),
inferior asymptote (Ainf), and point of maximum growth (Pmax). In both species, the maximum
growth was 260 AGDD. The GR was similar for both species in different seasons of the year, but
the maximum AHM varied, with B. valdivianus presenting a higher value (+1500 kg DM ha−1) than
L. perenne during the spring. The regressions accurately described the nutritive value, demonstrating
a positive linear relationship between the AGDD and concentrations of neutral and acid detergent
fiber (NDF, ADF), an inverse linear relationship with crude protein (CP), and a quadratic relationship
with metabolizable energy (ME) and water-soluble carbohydrate (WSC) concentration.

Keywords: accumulated growing degree-days; mathematical models; accumulated herbage mass

1. Introduction

Temperature is one of the most important and influential factors for grass growth
cycles, from planting through harvest. It is usually expressed in thermal time (TT) as
accumulated growing degree-days (AGDD) [1] and is frequently used to determine the
seasonal growth of a wide variety of forage species and crops [2,3]. With a few exceptions
in some seasons, AGDD values are usually positive. However, on certain occasions, the
values are negative or zero, in which case the AGDD value is considered as zero [4].

In addition to temperature, factors such as soil moisture, solar radiation, fertilization,
and pasture management affect growth cycles. Thus, growth can be mathematically
described using different modeling tools [5]. It has been suggested that regression models
are useful tools to describe and simulate grass growth [6]. In addition, they allow for
the attainment of parameters based on different climatic conditions, providing a simple
way to obtain the information necessary to make decisions about defoliation frequency
(DF). Models that consider temperature as the predictor variable for grass growth can
be classified as those where TT is expressed either as AGDD or hydrothermal time (HT).
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Thermal time is determined by subtracting the plant’s base growth temperature from the
average air temperature, while HT is calculated by combining the ambient temperature
and thermal water time over the potential water base and integrating that value with
the additional factor of temperature to describe growth [6,7]. These models are focused
on the base and maximum temperatures for optimal growth. Thus, when the maximum
temperature for a particular species is surpassed or when its base temperature is not met,
its growth will slow or even stop [8]. The aforementioned conditions generally occur in
seasons with extreme temperatures, such as summer and winter where growth rates can
slow or stop over the course of the day.

Traditionally, TT has been integrated into nonlinear growth curves to describe and
model the growth patterns and the physiological variables of grasses [9]. For example,
linear models, such as the absolute growth rate (AGR) model, assume that grass growth is
constant and limitless, while exponential models, such as the relative growth rate (RGR)
model, assume an asymptote where the slope equals zero. The parameters for each model
are estimated for specific situations and locations. Thus, the widespread use of these
models is not always feasible. In most of the grass modeling research, the fit of the growth
curve depends on information gathered in the field. This information is usually scarce
and therefore restricts an accurate estimation of the accumulated herbage mass (AHM) or
leaf growth at a predetermined time [10,11]. The RGR is usually calculated as (ln W2−ln
W1)/(t2-t1), where W1 and W2 correspond to the AHM (expressed in kg DM ha−1) at times
t1 and t2 [12]. The variable t can be expressed as circadian TT or AGDD, depending on the
function of the data. Growth rate (GR) values are often found using the logarithm of the
slope in a linear regression between AHM and time. The two important components of
pasture growth are the AHM and change in nutritive value over time. The latter influences
the biological and economic value of pastures. Most mathematical models are oriented
toward the study of pasture development and predict the daily growth as a function of
AHM based on atmospheric factors [3] but fail to integrate the effect of growth on the
nutritive value over time.

The first models developed to estimate grass growth were empirical, examining the
genetic potential of plants and field measurements of growth [13]. The first nonlinear
equations to express general grass growth were similar to those used in animal growth
modeling. These equations considered the type of growth and its maximum growth rate
along with genetic and environmental factors of the species [14]. More recent models are
based on the efficient use of abiotic factors, such as ambient temperature, precipitation,
light, fertilization, and pasture management [15,16]. These models provide a more precise
description of grass growth dynamics over the course of a year. However, the dynamics
and spatial−temporal pasture development respond to complex processes that are also
dynamic in time. Therefore, a novel model must consider different temporal and spatial
scales and must be validated under the same conditions as its development. Therefore, the
objectives of this study were: (1) To utilize TT, expressed in AGDD, as a predictive variable
for the growth of two grasses (Lolium perenne L. and Bromus valdivianus Phil.) by using a
sinusoidal curve fit adjusted for ambient temperature, (2) to calculate and compare growth
parameters between the two species under different environmental conditions, and (3) to
use linear and nonlinear regressions to predict the nutrient composition of both pastures
over time.

2. Materials and Methods
2.1. Site Description and Experimental Design

The data for this study were obtained from a research project designed to compare
both grasses and were previously reported by Calvache et al. [17]. All the experiments
were conducted between the spring of 2015 and autumn of 2017 at the Universidad Austral
de Chile’s Agricultural Research Station (AARS) (39 460 S, 73 130 W, 12 m above sea level)
in Valdivia, southern Chile. The study site has a temperate climate with an average annual
temperature of 12.5 ◦C and a total annual rainfall of 1284 mm. A total of thirty experimental
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plots of 15 m2 each (3 × 5 m) were used in a completely randomized block design (three
blocks). Each block comprised 10 plots with three observational units corresponding to
a tiller in each plot. Therefore, each plot had one replicate (the average of the 3 tillers).
In each block, there were five plots sown with 30 kg ha−1 of L. perenne cv. Alto and five
plots with 45 kg ha−1 of the B. valdivianus Phil. native seed collected in the region. Plots
were sown in the autumn of 2015, and the first defoliation was in the spring of 2015. The
sampling interval or DF for both species in all plots was 90 AGDD, such that samples
were taken every 90 AGDD until reaching 450 AGDD (DF1 = 90, DF2 = 180, DF3 = 270,
DF4 = 360, and DF5 = 450 AGDD).

2.2. Climatic Information

Climatic data were obtained from a weather station located 5 m from the field ex-
periment site (available online at http//www.agromet.inia, accessed on 1 April 2021).
Maximum and minimum temperatures were used to estimate the AGDD. Grass growing
data were collected from the experimental plots between the spring of 2015 and autumn of
2017. This dataset was used to calculate the equation of best fit for each season during the
growth period of the pastures from 0 to 450 AGDD. The TT model was calculated based on
the concept of AGDD [18], according to the following equation:

AGDD = ∑[(Tmax + Tmin)/2] − Tbase (1)

where Tmax is the maximum daily air temperature at 1.5 m above ground level, Tmin is
the minimum daily air temperature, and Tbase is the temperature at which cellular activity
stops [19]. The base growth temperature (Tbase) for forage species in this study was 5 ◦C, as
determined by previous studies performed under similar conditions [17,20].

2.3. Yield Components

Three tillers per plot were marked at the base with different-colored clips to identify
them individually. The total leaf blade length (LBL) per tiller was recorded at three-day
intervals and the AHM was recorded at each defoliation point. The first sampling was
conducted in the spring of 2015.

2.4. Nutritive Value

Nutritive value data were obtained at each defoliation event using near-infrared
spectroscopy (NIRS) with a FOSS-NIRSystems MODEL 6500 (FOSS NIRSystem Inc. in
North America, Silver Spring, MD). The data collected included the concentration of crude
protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), metabolizable
energy (ME), water-soluble carbohydrates (WSC), and dry matter (DM) using the prediction
equations developed based on the wet chemistry results developed by the Animal Nutrition
Laboratory of the Universidad Austral de Chile. The standard errors and the R2 values
(which are listed in parentheses) of the cross-validation used were 0.78 (0.98), 1.92 (0.93),
1.19 (0.93), 0.30 (0.84), and 6.99 (0.96) for CP, NDF, ADF, ME, and WSC, respectively.

2.5. Statistical Analysis and Model Selection

The dataset was analyzed using SAS (SAS Institute, V11.0, 2014). Descriptive statistics
were used to estimate and classify the coefficient of variation (CV) as high (CV > 30%),
medium (CV = 10–30%), and low (CV < 10%) [21]. In addition, each variable in the dataset
was tested for normality (Shapiro–Wilks) and homoscedasticity (Levene). When parametric
assumptions were not met, data were transformed using either natural logarithms or square
roots. Data points outside of ±2 standard deviations of the average were considered as
outliers [22] and were removed from the analysis. The models were estimated by using the
average of defoliation by season within each species.

Four-parameter Logistic and Gompertz models were selected because they are the
most commonly used models for grass growth modeling [10,11] and they also allow for
the equalization of the error level during validation. Model selection was performed based

http//www.agromet.inia
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on the Akaike information criterion (AIC) and Bayesian information criterion (BIC). The
AIC is a technique based on the in-sample fit to estimate the likelihood of a model to
predict/estimate the future values, while BIC is another criterion for model selection that
measures the trade-off between the model fit and complexity of the model [23]. Moreover,
the coefficient of determination (R2) and correlation (r) were used to further examine the
goodness-of-fit of the model.

AIC = 2k− 2 x ln(L) (2)

where k is the total number of parameters in the model, including the intercept and σ2, and
L is the maximum likelihood or least squares.

BIC = −2 ln(L) + K log(n) (3)

where L is the maximum value of the likelihood function of the model, and n is the number
of data or observations.

RMSE =
√∑n

i=1[(yi)− yi]2
n

(4)

where E(yi) and yi are the responses between the observed and predicted values for the
value i, respectively, and n is the sample size (n = 1080 in this study).

[Equation (5)] Four-parameter Logistic regression

Y = c +
(d− c)(

1 + 10(a.(b−x))
) (5)

where Y is the random variable to evaluate, a is the GR, b is the maximum growth point, c
is the inferior asymptote, d is the superior asymptote, and x is the independent variable.

Four-parameter Gompertz

Y = a + ( b− a)Exp(−Exp(−c(x− d))) (6)

where Y is the random variable to evaluate, a is the inferior asymptote, b is the superior
asymptote, c is the GR for a given time x, d is the inflection point, and x is the independent
variable.

The nutritive value of plants is best represented by a simple linear or quadratic
regression [24]. A simple linear regression was used for CP, NDF, ADF, WSC, and DM data,
while quadratic regression was used for ME and some WSC data.

Simple linear regression model

Yt = β0 + β1 × 1 + β2 × 2 + . . . + βpXp + ε (7)

Quadratic linear regression model

Yt = β0 + β1X + β2 × 2 + β3 × 3. . . + βpXp + ε (8)

where Yt is the dependent variable, X1, X2 . . . , Xp are independent variables, and β0, β1,
β2, . . . , βp are parameters of the independent variable. βo is the “constant” intercept, βi
(i > 0) are the parameters with respect to each independent variable, and p is the number of
independent parameters in the regression.

2.6. Model Validation

Models were validated according to accuracy, measured as the average distance
between each observed data point and the equivalent predicted line.

A f = 10∑ [log (
xp
xb

)]/n (9)
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where xp is the value of the specific maximum predictive growth rate (◦C−1), xb is the value
of the maximum specific observed growth rate (◦C−1), n is the number of observations,
and Af is the accuracy value in the prediction.

The dataset used for validation of the models was obtained from samples collected in
the same experimental plots (n = 300). This dataset was not used in the model development.
Thus, models were cross-validated by evaluating the percent variation of data that could
be explained by the model [25,26]. The percent variation was considered the coefficient
of determination (R2) and was associated with the coefficient of correlation, which was
developed using minimum squares [27].

3. Results
3.1. Grass Growth

A summary of the selection criteria for both models and species for both LBL and
AHM is presented Table 1. The Gompertz model presented the highest AIC values in
the spring for both species (L. perenne and B. valdivianus) with 0.52 for LBL, whereas the
Logistic model showed the lowest AIC value in the spring for both species with 0.48. The
Gompertz model only had a lower BIC value in the spring when compared to the Logistic
model. The R2 and RMSE were similar between seasons and species (Figures 1–4).

Table 1. Selection criteria values to evaluate the Logistic and Gompertz models to predict the leaf blade length and
accumulated herbage mass production as a function of the accumulated growing degree-days.

Species Season Model
Leaf Blade Length (cm) Accumulated Herbage Mass (kg DM ha−1)

AIC BIC RMSE R2 AIC BIC RMSE R2

L. perenne

Summer
Logistic 0.55 43.19 0.76 0.93 0.54 194.23 116.65 0.97

Gompertz 0.45 43.61 0.77 0.93 0.46 194.57 117.96 0.97

Autumn
Logistic 0.51 92.75 3.96 0.92 0.56 189.51 99.65 0.92

Gompertz 0.49 92.84 3.97 0.92 0.44 189.98 101.23 0.92

Winter
Logistic 0.51 78.66 2.48 0.93 0.57 174.03 59.50 0.97

Gompertz 0.49 78.76 2.48 0.93 0.43 174.57 60.57 0.97

Spring Logistic 0.48 102.78 5.53 0.92 0.52 210.33 199.50 0.94
Gompertz 0.52 102.61 5.50 0.92 0.48 210.52 200.77 0.94

B. valdivianus

Summer
Logistic 0.53 54.56 1.11 0.96 0.49 209.90 196.68 0.94

Gompertz 0.47 54.83 1.12 0.96 0.51 209.79 195.95 0.94

Autumn
Logistic 0.57 95.51 4.34 0.95 0.42 192.09 108.63 0.95

Gompertz 0.43 96.06 4.42 0.94 0.58 191.46 106.36 0.95

Winter
Logistic 0.54 78.46 2.46 0.94 0.61 190.77 103.95 0.93

Gompertz 0.46 78.76 2.48 0.93 0.39 191.67 107.09 0.92

Spring Logistic 0.48 93.66 4.08 0.94 0.53 215.24 234.95 0.94
Gompertz 0.52 93.51 4.06 0.94 0.47 215.48 236.88 0.94

L. perenne: Lolium perenne L., B. valdivianus: Bromus valdivianus Phil., AIC: Akaike information criterion, BIC: Bayesian information criterion,
RMSE: Root-mean-square error, and R2: Determination coefficient.
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Figure 1. Observed v. predicted data for leaf blade length as calculated by the four-parameter Logistic
model for Lolium perenne L. (a) and Bromus valdivianus Phil (b). R2 = Determination coefficient.; RMSE
= Root mean square error.

Figure 2. Observed v. predicted data for leaf blade length as calculated by the four-parameter
Gompertz model for Lolium perenne L. (a) and Bromus valdivianus Phil (b). R2 = Determination
coefficient.; RMSE = Root mean square error.

Figure 3. Observed v. predicted data for accumulated herbage mass production according to the four-
parameter Logistic model for Lolium perenne L. (a) and Bromus valdivianus Phil (b). R2 = Determination
coefficient.; RMSE = Root mean square error.
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Figure 4. Observed v. predicted data for accumulated herbage mass production according to
the four-parameter Gompertz model for Lolium perenne L. (a) and Bromus valdivianus Phil (b).
R2 = Determination coefficient.; RMSE = Root mean square error.

Table 2 presents the parameterization of both models for LBL and AHM. The Gompertz
model exhibited the greatest values (between 0.008 and 0.01) for the slope of the tangent
line to the inflection point across all seasons for LBL. The lowest slope value for GR was
found with the Logistic model during the summer for L. perenne and B. valdivianus. This
indicates a low GR for grass during this season, compared to those of autumn and spring.
The slope values reported refer to the linear period of the exponential growth curve. The
AHM exhibited the same pattern as LBL did, but with different values, varying from 0.007
to 0.021 (Table 2). The highest values for LBL and AHM were observed in the Gompertz
model during the spring (99 cm and 6.025 kg DM ha−1, respectively). The lowest values
were found in the winter for both species in the Logistic model. The parameterization
produced coordinates of AGDD X between 201.8 in the autumn and 303.9 in the summer
for LBL. For AHM, the derivative varied between 188.1 and 267 AGDD, which was the
maximum growth point at which the slope began to change (Table 2).

Table 2. Model parameterization of the four-parameter Logistic and Gompertz models for Lolium perenne L. and Bromus
valdivianus Phil. during the four seasons of the year.

Species Season Model

Leaf Blade Length (cm) Accumulated Herbage Mass (kg DM ha−1)

a-GR b-Pmax c-AInf d-ASup a-GR b-Pmax c-AInf d-ASup

L. perenne

Summer
Logistic 0.006 ± 0.003 303.9 ± 28.1 4.25 ± 0.74 11.45 ± 1.25 0.015 ± 0.004 244.9 ± 9.7 764.7 ± 74.3 2106 ± 52.2

Gompertz 0.008 ± 0.004 288.1 ± 42.7 4.46 ± 0.55 12.67 ± 0.55 0.021 ± 0.004 222.3 ± 10.3 773.3 ± 67.8 2131 ± 62.7

Autumn
Logistic 0.007 ± 0.003 220.1 ± 26.2 25.56 ± 5.79 60.12 ± 2.81 0.01 ± 0.005 249.1 ± 17.1 2116.9 ± 70.9 2822 ± 51.9

Gompertz 0.01 ± 0.005 201.8 ± 19.8 28.3 ± 3.00 60.83 ± 3.33 0.02 ± 0.005 225.1 ± 18.2 2126 ± 58.3 2842 ± 66.3

Winter
Logistic 0.009 ± 0.003 250.3 ± 17.2 14.86 ± 2.00 34.79 ± 1.5 0.009 ± 0.002 265.4 ± 11.9 1002 ± 47.3 1735 ± 44.1

Gompertz 0.01 ± 0.004 227.5 ± 17.4 15.4 ± 1.45 35.53 ± 1.91 0.01 ± 0.003 242.8 ± 13.0 1023 ± 35.4 1776 ± 61.3

Spring Logistic 0.008 ± 0.003 262.5 ± 21.2 41.97 ± 4.87 84.32 ± 4.35 0.01 ± 0.008 242.9 ± 16.0 2912 ± 120.5 4415 ± 84.4
Gompertz 0.01 ± 0.004 240.6 ± 21.3 43.6 2 ± 3.26 86.44 ± 5.66 0.02 ± 0.008 220.3 ± 16.2 2916 ± 114.6 4429 ± 95.2

B. valdivianus

Summer
Logistic 0.006 ± 0.002 245.4 ± 21.1 4.84 ± 1.91 19.71 ± 1.30 0.01 ± 0.003 204.8 ± 15.4 884.03 ± 197 2736 ± 97.2

Gompertz 0.009 ± 0.003 224.6 ± 18.7 6.00 ± 1.08 20.44 ± 1.72 0.02 ± 0.005 188.1 ± 11.3 991.4 ± 117 2751 ± 107.2

Autumn
Logistic 0.009 ± 0.003 264.5 ± 15.2 45.38 ± 3.37 86.0 ± 3.10 0.009 ± 0.003 266.1 ± 13.7 2007 ± 79.7 3067 ± 75.3

Gompertz 0.01 ± 0.004 241.5 ± 16.7 46.40 ± 2.58 88.27 ± 4.34 0.01 ± 0.004 245.5 ± 14.4 2039 ± 60.4 3118 ± 97

Winter
Logistic 0.007 ± 0.003 244.67 ± 21.7 22.2 ± 2.9 44.85 ± 2.00 0.008 ± 0.003 267.0 ± 18.6 1221 ± 83 2056 ± 79.3

Gompertz 0.01 ± 0.004 221.9 ± 20 23.4 ± 1.73 45.78 ± 2.61 0.01 ± 0.004 242.3 ± 21.6 1237 ± 65 2113 ± 120

Spring Logistic 0.006 ± 0.002 256.54 ± 22.4 56.6 ± 5.15 97 ± 4.20 0.007 ± 0.003 264.2 ± 19.5 3699 ± 226.8 5891 ± 210.7
Gompertz 0.01 ± 0.003 235 ± 20.8 59.1 ± 2.86 99 ± 5.33 0.01 ± 0.004 241.4 ± 20.3 3788 ± 151 6025 ± 294.3

Average ± standard error of L. perenne: Lolium perenne L., B. valdivianus: Bromus valdivianus Phil., GR: Growth rate, Pmax: Point of maximum
growth, AInf: Inferior asymptote, ASup: Superior asymptote.

3.2. Nutritive Value

All nutritional variables were fitted to either a simple linear regression or a quadratic
regression model. These models were adjusted in the range of 90–450 AGDD. Table 3
summarizes the models that best fitted the data for L. perenne and B. valdivianus across all
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seasons. The CP concentrations during the autumn, winter, and spring were best fitted by a
linear regression, while the quadratic model was most accurate for summer data (R2 = 0.87),
autumn and spring (R2 = 0.96). However, the response was similar between species.

Table 3. Regression models for accumulated growing degree-days (X factor) versus nutritive value (Y factor) of Lolium
perenne L. and Bromus valdivianus Phil. The standard error of each coefficient is presented in parentheses.

Variable Species Season Model R2 RMSE p < |t|

CP (g 100 g−1)

L. Perenne

Summer Y = 18.55(1.34) + 0.032(0.01) ×
AGDD−9.532e − 5(2.06 × 10−5) × AGDD2 0.87 1.08 0.001

Autumn Y = 27.98(0.36) − 0.02(0.001) × AGDD 0.96 0.60 0.001
Winter Y = 20.69(0.32) − 0.01(0.001) × AGDD 0.95 0.53 0.001
Spring Y = 22.92(0.54) − 0.03(0.001) × AGDD 0.96 0.90 0.001

B. valdivianus

Summer Y = 17.83(1.12) + 0.02(0.009) × AGDD −
7.6161 × 10−5 (1.73 × 10−5) × AGDD2 0.85 0.91 0.001

Autumn Y = 30.471(0.48) − 0.01(0.001) × AGDD 0.91 0.81 0.001
Winter Y = 23.88(0.32) − 0.02(0.001) × AGDD 0.96 0.54 0.001
Spring Y = 23.29(0.60) − 0.03(0.002) × AGDD 0.95 1.00 0.001

ME (Mcal kg
DM−1)

L. perenne

Summer Y = 2.24(0.06) + 0.002(5.1 × 10−4) × AGDD
− 6.05 × 10−6 (9.2 × 10−7) × AGDD2 0.81 0.05 0.001

Autumn
Y = 2.68(0.01) + 0.0003(8.6 × 10−5) ×
AGDD − 9.70 × 10−7 (1.5 × 10−7) ×

AGDD2
0.91 0.01 0.001

Winter
Y = 2.61(3.03) + 2.6 × 10−4(3.6 × 10−4) ×

AGDD − 1.46 × 10−6 (5.5 × 10−7) ×
AGDD2

0.86 0.03 0.021

Spring
Y = 2.59(0.02) + 2.6 × 10−4(2.2 × 10−4) ×

AGDD − 9.40 × 10−7 (4.0 × 10−7) ×
AGDD2

0.75 0.02 0.001

B. valdivianus

Summer
Y = 2.29(0.02) + 7.2 × 10−4(1.7 ×

10−4)×AGDD − 1.96 × 10−6 (3.1 × 10−7)
× AGDD2

0.91 0.02 0.001

Autumn
Y = 2.57(0.01) + 3.0 × 10−4(1.13 ×

10−4)×AGDD − 7.64 × 10−7(2.1 × 10−7) ×
AGDD2

0.69 0.01 0.004

Winter
Y = 2.50(0.02) + 7.3 × 10−5(2.2 × 10−4) ×

AGDD − 9.11 × 10−7(4.1 × 10−4) ×
AGDD2

0.87 0.02 0.049

Spring
Y = 2.50(0.03) + 8.2 ×10−4 (2.5 × 10−4) ×

AGDD − 2.11 × 10−6 (4.6 × 10−7) ×
AGDD2

0.83 0.02 0.001

NDF (g 100
g−1)

L. perenne

Summer Y = 42.37(0.45) + 0.01(0.001) × AGDD 0.78 0.75 0.001
Autumn Y = 39.56(0.60) + 0.03(0.002) × AGDD 0.95 1.00 0.001
Winter Y = 43.02(0.28) + 0.01(9.6 ×1 0−4) × AGDD 0.94 0.47 0.001
Spring Y = 35.08(1.29) + 0.06(0.004) × AGDD 0.93 2.13 0.001

B. valdivianus

Summer Y = 50.85(0.42) + 0.01(0.001) × AGDD 0.90 0.71 0.001
Autumn Y = 49.36(0.49) + 0.02(0.001) × AGDD 0.92 0.82 0.001
Winter Y = 50.10(0.37) + 0.01(0.001) × AGDD 0.91 0.61 0.001
Spring Y = 51.78(0.34) + 0.02(0.001) × AGDD 0.98 0.57 0.001

ADF (g 100 g−1)

L. Perenne

Summer Y = 19.62(0.55) + 0.02(0.001) × AGDD 0.92 0.92 0.001
Autumn Y = 20.34(0.49) + 0.02(0.001) × AGDD 0.93 0.85 0.001
Winter Y = 20.90(0.70) + 0.01(0.002) × AGDD 0.93 0.59 0.001
Spring Y = 17.80(0.80) + 0.04(0.002) × AGDD 0.94 1.34 0.001

B. valdivianus

Summer Y = 28.23(0.47) + 0.01(0.001) × AGDD 0.87 0.78 0.001
Autumn Y = 23.70(0.49) + 0.02(0.001) × AGDD 0.92 0.81 0.001
Winter Y = 22.81(0.70) + 0.02(0.002) × AGDD 0.89 1.16 0.001
Spring Y = 20.51(0.80) + 0.03(0.002) × AGDD 0.94 1.33 0.001
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Table 3. Cont.

Variable Species Season Model R2 RMSE p < |t|

WSC
(g 1000 g−1)

L. Perenne

Summer Y = 72.85(3.41) + 0.17(0.02) × AGDD − 1.8
× 10−4 (5.2 × 10−5) × AGDD2 0.93 2.75 0.004

Autumn Y = 89.71(4.88) + 0.17(0.04) × AGDD − 1.8
× 10−4 (7.5 × 10−5) × AGDD2 0.87 3.94 0.030

Winter Y = 74.46(5.27) + 0.20(0.01) × AGDD 0.90 8.71 0.001

Spring Y = 60.97(8.4) + 0.41(0.07) × AGDD − 4.7 ×
10−4 (1.3e−04) × AGDD2 0.91 6.80 0.003

B. valdivianus

Summer Y = 67.71(3.43) + 0.16(0.02) × AGDD − 1.9
× 10−4 (5.2 × 10−5) × AGDD2 0.90 2.77 0.003

Autumn Y = 71.40(3.16) + 0.15(0.03) × AGDD − 1.6
× 10−4 (5.56 × 10−5) × AGDD2 0.91 2.92 0.013

Winter Y = 76.43(2.91) + 0.09(0.009) × AGDD 0.88 4.82 0.001

Spring Y = 80.56(3.87) + 0.14(0.03) × AGDD − 1.5
× 10−4 (5.9 × 10−5) × AGDD2 0.88 3.13 0.021

CP: Crude protein, ME: Metabolizable energy, NDF: Neutral detergent fiber, ADF: Acid detergent fiber, WSC: Water soluble carbohydrates,
L. perenne: Lolium perenne L., B. valdivianus: Bromus valdivianus Phil., R2: Determination coefficient, RMSE: Root-mean-square error, AGDD:
Accumulated growing degree-days, Y: Random variable to evaluate.

The energy concentration decreased appreciably with plant maturity, affecting its
nutritive value and consequently animal response. This quadratic pattern for the ME
concentration can be explained graphically using a Gaussian function. The simple linear
regression demonstrated the best fit to predict concentrations of ADF and NDF in both
species in all seasons. The R2 values varied from 0.78 for L. perenne in the summer to 0.98
for B. valdivianus in the summer and spring. The highest values of the b coefficient in the
regression were obtained for B. valdivianus, demonstrating that this species has relatively
higher ADF and NDF contents than L. perenne. The rate of change did not vary greatly
between species, and all values were nonzero. The ADF and NDF concentrations increased
proportionally with AGDD in both forage species, with 20% greater concentrations in
B. valdivianus.

Both NDF and CP contents were greater in B. valdivianus than in L. perenne (Table 3).
The AGDD was inversely proportional to the protein concentration, demonstrating that the
CP content decreased as the pasture advanced in its growth cycle toward maturity. Thus,
for every increase of 10 AGDD, the protein concentration decreased by 0.3 percent.

Both the ME and WSC had better predictions from the quadratic equations (higher
R2). However, this was not true for WSC in the winter, where the linear regression showed
a better fit for both species (Table 3). Early growth stages for these species, in which energy
is stored, occur during the first 90 to 270 AGDD.

4. Discussion
4.1. Grass Growth

A variety of models can be used to describe and estimate grass growth and nutritive
value under different environmental conditions. Complex models use exogenous and
inherent grass variables as inputs to obtain precise calculations of the parameters [28,29],
but many times, it is difficult for producers to collect all the necessary data. Therefore, a
permanent challenge is the use of the minimum number of variables that provide a good
estimation of grass growth and the model’s ease of use. In this study, TT and season were
the only prediction variables used to determine the herbage mass and nutritive value
of L. perenne and B. valdivianus, demonstrating that AGDD is a reliable tool [17]. The
R2 value greater than 0.9 and the low RMSE (Table 1) demonstrate that the Logistic and
Gompertz models with TT as the prediction variable are accurate tools in the description
and prediction of the LBL and AHM of L. perenne and B. valdivianus grass.

The differences found between seasons for the growth parameters can be primarily
explained by the differences in metabolic activity in the grass over the course of the year. In
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the winter, the metabolic activity of plants can be reduced to 0 [30], and during the summer,
the GR is reduced when optimal temperatures are exceeded [31]. During the spring and
autumn, when there is an adequate balance between temperature and precipitation, grass
metabolic activity can reach 90%, resulting in a greater GR [32]. Therefore, climate is an
important factor regulating herbage production and nutritive value [33]. The sigmoid
growth reported in this study, explained by both four-parameter models (Logistic and
Gompertz) across seasons of the year, accurately described the grass growth, and they have
been commonly used in studies that evaluate the growth dynamics of plant communities in
different environments [34]. The development of these growth models and their parameters
are important when comparing the GR of different species during the year to determine
the most adequate DF. Other researchers that have used TT and HT as prediction variables
in models to estimate grass growth have arrived at a similar conclusion; the sigmoid curve
best describes the growth of a plant community, as it considers distinct developmental
phases and is sufficiently robust [13].

The sinusoidal models to predict AHM present some limitations for L. perenne in
the autumn and for B. valdivianus in the winter, resulting in less precise predictions in
those seasons. In fact, a Pmax growth of 40 AGDD was reached earlier than in the other
seasons (Table 2). However, the maximum grass growth was estimated at 30 AGDD before
what was observed in the field. Pulina et al. [35] suggested that these differences could be
attributed to the sensitivity of the models to extreme values during data collection.

The parameters obtained and presented in this study agreed with those obtained by
other researchers at different locations using other mathematical tools that integrate distinct
climatic and soil variables [28,36]. Likewise, the effect of the AGDD on grass growth is
clear and has been widely documented, suggesting that the effect of the AGDD on AHM is
a nonlinear response [37].

4.2. Nutritive Value

Environmental conditions not only affect LBL and AHM, but also leaf appearance rate
and grass phenology [38,39]. Therefore, it plays an important role in the establishment of
grazing frequency, as nutrient concentration varies as a function of TT, season, and other
factors [40,41]. The relationships found in the present study between AGDD and nutritive
value across the different seasons of the year show a dependency in terms of quality in each
species (Table 3). Robbins [42] reported an inverse linear reduction in the CP concentration
and a direct linear relationship between the levels of NDF and ADF in grasses that had
more AGDD at the defoliation time, which agreed with the current study.

The WSC patterns were similar in L. perenne and B. valdivianus and were best described
by a quadratic model for summer, autumn, and spring. However, a linear model was
best for winter, similarly to what was reported by Archontoulis and Miguez [10], as well
as Bilge et al. [43]. This implies that in the winter, the herbage accumulated a greater
WSC concentration explained by the continuation of photosynthesis and decreased growth,
due to the lower temperatures. During the other seasons, grass growth continued at a
higher rate than in winter, resulting in the use of the stored WSC [44,45]. Based on the
quadratic model, WSC storage begins at 40 AGDD post-defoliation until approximately
270 to 360 AGDD. After that, the grass no longer accumulates WSC linearly, because of
the favorable environmental conditions that allow grass growth and tissue renewal, which
requires energy consumption. This is also shown by the fact that L. perenne and B. valdivanus
have the highest concentrations of WSC during the winter.

The differences in values for the intercepts in the linear and quadratic regressions for
seasons and species were relatively similar for most of the nutritive variables assessed.
However, there were differences between seasons for NDF and ADF, with B. valdivianus
having a greater intercept than L. perenne, and with autumn as the season that presented
the lowest fiber concentration. Some studies have reported that this occurs because, in
the spring, grass growth increases and quickly entering into the reproductive stage. This
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changes the leaf–stem ratio, and the maturation process requires the quick transport of
nutrients to the roots and for seed formation [46,47].

Most models developed to evaluate grass quality have based their results on the NDF
and ADF concentration, organic matter digestibility (OMD), CP, nitrogen indigestible in
neutral detergent (NIND), and nitrogen indigestible in acid detergent (NIAD) [48–50].
However, few studies have incorporated ME. Some models have estimated their param-
eters based on the equations for net energy for lactation or maintenance (NEL or NEM,
respectively) [51,52], and have considered the existing relationship between plant maturity
and fiber, as well as CP and OMD. This is because during the plant growth cycle, the
ME and CP decrease while the fiber concentration increases [53]. However, in this study,
ME concentration was best described by a quadratic equation, because the observed data
increased from the start until the asymptote was reached, at which point the slope was
equal to 0. After this point, the values fell even lower than those initially observed due
to increased plant maturity (Table 3). Other studies have used equations with this kind
of pattern to describe similar biological processes in grasses, which supports the results
herein presented [54,55].

Finally, the CP and fiber concentrations presented a negative linear relationship with
AGDD for all seasons. This demonstrates that at greater AGDD, the protein levels of
grasses decrease [56,57]. In general, the CP concentration was well represented by the linear
regressions, which reported a variation in the RMSE of 1.08 for L. perenne in the summer and
up to 0.53 and 0.54 for L. perenne and B. valdivianus, respectively, in the winter. These values
were similar to those reported by other authors [58,59], who developed models using
their own logarithms and adjusted these to a nitrogen consumption curve and integrated
environmental variables such as precipitation and soil fertility. Regardless of the model
used to explain the variations in CP concentration, all arrived at the same conclusion; the
protein concentration decreased as the plant’s phenological age increased [60].

5. Conclusions

The grass growth of L. perenne and B. valdivianus over the course of the year in southern
Chile can be accurately predicted by using both the four-parameter Logistic and Gompertz
models by using AGDD as a predictor variable. Likewise, its nutritive value can be precisely
predicted by using linear and quadratic regressions depending of the season of the year
evaluated. The sinusoidal models were best suited to predict LBL and AHM, in every
season and for both species.
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