Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: A review

Cong Wang^{1,*}, Barbara Amon^{2.3}, Karsten Schulz¹, Bano Mehdi^{1,4}

1 Institute for Hydrology and Water Management, Department of Water, Atmosphere and Environment. University of Natural Resources & Life Science, Vienna

2 Leibniz Institute for Agricultural Engineering, Potsdam, Germany

3 University of Zielona Góra, Faculty of Civil Engineering, Architecture and Environmental Engineering, Poland

4 Institute of Agronomy, Department of Crop Science. University of Natural Resources & Life Science, Vienna

*corresponding author at: Institute for Hydrology and Water Management, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria. Email address: <u>cong.wang@boku.ac.at</u>

Review literature	Micro	SOC	N	WFPS	Texture	Т	pH & salinity	Tillage	Crops	Fertilizer	Irrigation	Harvest & residues	Length	Types
Abdalla et al. [1]			\checkmark	\checkmark		V		\checkmark	\checkmark	\checkmark		\checkmark		
Aguilera et al. [2]		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Beauchamp [3]	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	V	\checkmark		
Bremner [4]	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark							
Bouwman et al. [5]		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	
Butterbach_Bahl et al. [6]	\checkmark	V	\checkmark	V	V	V	V		\checkmark					
Cameron et al. [7]	Τ	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	[\checkmark				
Charles et al. [8]		\checkmark	\checkmark	\checkmark	\checkmark	V	\checkmark	V	\checkmark					
Dalal et al. [9]		V	\checkmark	\checkmark		\checkmark	V							
De Klein et al. [10]	V	V	\checkmark	V	\checkmark	V	V							
Eichner [11]	\checkmark	V	\checkmark	V	\checkmark	V	V	\checkmark	V	\checkmark	\checkmark	\checkmark		
Groffman [12]														\checkmark
Lesschen et al. [13]	1	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark		
Meurer et al. [14]	1				\checkmark				\checkmark					
Mosier [15]		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark			
Oertel et al. [16]		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark					
Saggar et al. [17]		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark			\checkmark		
Sanz_Cobena et al. [18]								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Signor et al. [19]		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark		\checkmark		
Smith et al. [20]			\checkmark	\checkmark						\checkmark		\checkmark		
Smith [21]			\checkmark	\checkmark	\checkmark					\checkmark				
Snyder et al. [22]	1	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	V	\checkmark	\checkmark	\checkmark	\checkmark		
Stehfest & Bouwman [23]		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		V	\checkmark			\checkmark	
Stein & Yung [24]	\checkmark		[\checkmark		\checkmark								
Trost et al. [25]	\checkmark	V		\checkmark	\checkmark			\checkmark		\checkmark	\checkmark			
Uchida et al. [26]	\checkmark			\checkmark	\checkmark			\checkmark		\checkmark				
Wang et al. [27]		V	\checkmark		\checkmark	V	V		\checkmark	\checkmark				
Xu et al. [28]		\checkmark							\checkmark	\checkmark		\checkmark		

Table S1. Factors that influence N_2O emissions from peer-reviewed literature.

*Micro: microbes; T: temperature; Length: length of measurement period; Types: types of measurements.

Model part:

1 The DAYCENT model

Nitrification process

DAYCENT calculates nitrification as a function of soil moisture, soil pH, soil temperature and soil NH_{4^+} level (Eq.S1) [29, 30]. The equation (Eq.S1) calculates the total gas flux from nitrification (N₂O and NO_x), and N₂O emissions from nitrification is partitioned from NO_x by Eq.S17.

$$N^{N_2 O} = F_{\theta} * F_{pH} * F_{Tmp} * (K_{mx} + N_{mx} * F_{NH_4})$$
(Eq. S1)

 F_{θ} , F_{pH} , F_{Tmp} , and F_{NH_4} are the effects soil moisture, soil pH, soil temperature and soil NH₄ level respectively on nitrification. K_{mx} is the N turnover coefficient, which is a function of the soil texture, soil N fertility, N fertilizer additions, and soil management practices. K_{mx} should be estimated with observed N₂O data or observed potential soil N mineralized data. N_{mx} is the maximum N₂O gas fluxes caused by nitrification with excess soil NH₄⁺. Equations that calculate the effects of soil moisture, soil pH, soil temperature and soil NH₄ on nitrification are as follows:

$$F_{\theta} = \left(\frac{WFPS-b}{a-b}\right)^{d*\left(\frac{b-a}{a-c}\right)} * \left(\frac{WFPS-c}{a-c}\right)^{d} \quad \text{(Eq. S2)}$$
$$WFPS = \frac{\left(SW_{ly}*\rho_{b}\right)}{\text{soil porosity}} \quad \text{(Eq.S3)}$$

soil porosity =
$$1 - \rho_b/2.65$$
 (Eq.S4)

$$F_{pH} = 0.56 + \frac{\arctan(\pi * 0.45 * (-5 + pH))}{\pi}$$
 (Eq. S5)

$$F_{Tmn} = -0.06 + 0.13 * e^{0.07 * soilt}$$
(Eq. S6)

$$F_{NH_4} = 1 - e^{-0.0105 * NH_4}$$
 (Eq. S7)

Where SW_{ly} is gravimetric water content. ρ_b is soil bulk density. Parameters a, b, c, and d are empirical soil texture parameters according to the following Table S2:

Soil Texture	a	b	с	d
Sandy	0.55	1.70	-0.0070	3.22
Medium	0.60	1.27	0.0012	2.84

Table S2. Soil texture parameters for nitrification rate.

Denitrification process

The DAYCENT model calculates denitrification as a function of soil NO₃⁻ level, soil C, and soil moisture (Eq.S8) [29]. The equation S8 calculates the total gas flux (N₂O+N₂+NO_x) from denitrification, and N₂O emissions is differentiated from N₂ by Eq.S12 and from NO_x by Eq.S17.

$$D_t = min(F_d(NO_3), F_d(C)) * F_d(\theta)$$
 (Eq. S8)

 $F_d(NO_3)$ is the maximum total N gas flux for a given soil NO₃ level, $F_d(C)$ is the maximum total N gas flux for a given soil respiration rate, and $F_d(\theta)$ is the effect of soil moisture on the denitrification rate. Equations for the calculation of the impacts of soil NO₃ levels, soil C and soil moisture on denitrification are as follows:

$$F_d(NO_3) = 11000 + \frac{40000 * atan(\pi * 0.002 * (NO_3 - 180)))}{\pi}$$
(Eq. S9)
$$F_d(C) = \frac{24000}{\left(1 + \frac{200}{e^{0.35 * CO_2}}\right)} - 100$$
(Eq. S10)
$$F_d(\theta) = \frac{a}{b \left(\frac{c}{b^{d+WFPS}}\right)}$$
(Eq. S11)

Where a, b, c, and d are empirical soil texture parameters according to the following Table S3.

Soil Texture	а	b	с	d
Sandy	1.56	12	16	2.01
Medium	4.82	14	16	1.39
Fine	60.00	18	22	1.06

Table S3. Soil texture parameters for denitrification rate.

Partitioning N₂ from N₂O

After the total N_2 and N_2O emissions from denitrification is calculated by the equation (Eq.S8), the equation (Eq.S12) is used for partitioning N_2 from N_2O [29]:

$$R_{N_2/N_20} = min(F_r(NO_3), F_r(C)) * F_r(\theta)$$
 (Eq. S12)

 $F_r(NO_3)$, $F_r(C)$, and $F_r(\theta)$ are the effect of soil NO³⁺, soil C and soil moisture on the ratio N₂/N₂O. Equations for calculation the effects of soil NO³⁺, soil C and soil moisture on N₂/N₂O ratio are as following:

$$F_r(NO_3) = (1 - (0.5 + \frac{1 + a \tan(\pi + 0.01 + (NO_3 - 190))}{\pi})) + 25$$
 (Eq. S13)

$$F_r(\mathcal{C}) = 13 + \frac{30.78*atan(\pi*0.07*(\mathcal{C}-13))}{\pi}$$
(Eq. S14)

$$F_r(\theta) = \frac{1.4}{13^{\left(\frac{17}{13^{(2.2*WFPS)}}\right)}}$$
(Eq. S15)

Therefore, N₂ production during denitrification is:

$$D_{N_2} = \frac{D_t * R_{N_2/N_2o}}{1 + R_{N_2/N_2O}} \qquad \text{(Eq. S16)}$$

Partitioning NO_x from N₂O

Both nitrification and denitrification processes produce NO_x . The equation (Eq.S17) is used to differentiate NO_x from N_2O [31]:

$$NO_x = RNO_x * N_2O_{den} + RNO_x * N_2O_{nit} * P \quad (Eq. S17)$$

$$RNO_x = 15.2 + (35.5 * atan(0.68\pi(10D/D_o - 1.86)))/\pi \quad (Eq. S18)$$

 RNO_x is the ratio of NO_x to N₂O fluxes, D/D_o is the soil gas diffusivity, which is calculated as a function of WFPS and soil physical properties, N_2O_{den} is the simulated N₂O flux from denitrification, N_2O_{nit} is the simulated N₂O flux from nitrification, and P is a pulse multiplier.

In the DAYCENT model, N₂O production from nitrification and denitrification is given by:

$$N_2 O = N^{N_2 O} + D_t - D_{N_2} - NO_x$$
 (Eq. S19)

2 The DNDC model

Nitrification process

As a microbe-mediated process, the rate of nitrification in the DNDC model is regulated by soil temperature, soil moisture, soil pH and nitrifier's activity, which relies on two substrates, DOC and NH₄⁺. The growth and death rates of nitrifiers are set as functions of DOC and soil moisture. The reaction rate of nitrification is subject to nitrifier's activity as well as other environmental factors such as NH₄⁺ availability and soil pH. The nitrification-derived N₂O emissions is a fraction of the nitrification rate [32].

Relative growth (*R*_G) and death rates (*R*_D) of nitrifers:

$$R_{G} = 0.0166 * ([DOC]/(1.0 + [DOC]) + F_{\theta}/(1.0 + F_{\theta}))$$
(Eq. S20)
$$R_{D} = 0.008 * Nitrifier * 1.0/(1.0 + [DOC])/(1.0 + F_{\theta})$$
(Eq. S21)

Where [DOC] is dissolved organic carbon content (kg C/ha), F_{θ} is a soil moisture factor, and *Nitrifier* is biomass of nitrifier.

Net increase in nitrifier biomass:

$$dNitrifier/dt = (R_G - R_D) * Nitrifier * F_{Tmp} * F_{\theta}$$
 (Eq. S22)

Nitrification rate:

$$N^{N_2 O} = 0.005 * [NH_4^+] * Nitrifier * pH$$
(Eq. S23)

Where $[NH_4^+]$ is concentration of ammonium (kg N/ha) and *pH* is the soil pH.

Soil moisture factor in nitrification

$$F_{\theta} = 0.8 + 0.21 * (1.0 - WFPS)$$
 WFPS > 0.05 (Eq. S24)

$$F_{\theta} = 0.0 \qquad WFPS \le 0.05 \tag{Eq. S25}$$

Where WFPS is the soil water content in water filled porosity.

Soil temperature factor in nitrification.

$$F_{Tmp} = 3.503^{((60-T)/25.78)} * e^{(3.503*(T-34.22)/25.78)}$$
(Eq. S26)

Where *T* is the soil temperature.

N₂O production through nitrification:

$$N_2 O_N = 0.0024 * N^{N_2 O}$$
 (Eq. S27)

Denitrification process

In the DNDC model, denitrification process is a series of microbe-mediated reactions that sequentially reduce NO₃⁻ to NO₂⁻, NO, N₂O, and finally to N₂. Denitrification rate is a function of denitrifiers, DOC, CO₂, N concentration, temperature, and pH in soils [32].

Relative growth rates of NOx denitrifiers is simulated using:

$$R_{NO_x} = R_{NO_x,max} * ([DOC]/(K_c + [DOC])) * ([NO_x]/(K_N + [NO_x]))$$
(Eq. S28)
$$R_{DN} = F_{Tmp} * (R_{NO_3} * F_{pH-NO_3} + R_{NO_2} * F_{pH-NO_2} + R_{NO} * F_{pH-NO} + R_{N_2O} * F_{pH-N_2O})$$
(Eq. S29)

$$(dDenitrifier/dt)_g = R_{DN} * Denitrifier$$
 (Eq. S30)

Where $R_{NO_x,max}$ is the maximum growth rate of NO₃⁻, NO₂⁻, NO, or N₂O denitrifiers. [DOC] is dissolved organic carbon content (kg C/ha). [NO_x] is concentration of NO₃⁻, NO₂⁻, NO, or N₂O in soil water (kg N/ha). *K*_c is half-saturation value of soluble C in the Monod model (kg C/m³ soil water). *K*_N is half-saturation value of NO₃⁻, NO₂⁻, NO or N₂O in the Monod model (kg N/m³ soil water). *F*_{Tmp} is a temperature factor. *F*_{pH-NO₃}, *F*_{pH-NO₂}, *F*_{pH-NO} and *F*_{pH-N₂O} is soil pH factors, and *Denitrifier* is biomass of denitrifier.

Relative death rates of denitrifiers:

$$(dDenitrifier/dt)_d = M_C * Y_C * Denitrifier$$
 (Eq. S31)

Where M_c is maintenance coefficient of C (kg C/kg C/ha) and Y_c is maximum growth yield on soluble carbon (kg C/kg C).

Consumption of DOC and CO₂ production through denitrification:

$$dC_{con}/dt = (R_{DN}/Y_C + M_C) * Denitrifier$$
 (Eq. S32)

$$d_{CO_2}/dt = dC_{con}/dt - dDenitrifier/dt$$
 (Eq. S33)

Consumption of NO_x through denitrification:

$$\begin{aligned} d(NO_3)/dt &= (R_{NO_3}/Y_{NO_3} + M_{NO_3} * [NO_3]/[N]) * Denitrifier * F_{pH-NO_3} * F_{Tmp} & (\text{Eq. S34}) \\ d(NO_2)/dt &= (R_{NO_2}/Y_{NO_2} + M_{NO_2} * [NO_2]/[N]) * Denitrifier * F_{pH-NO_2} * F_{Tmp} & (\text{Eq. S35}) \\ d(NO)/dt &= (R_{NO}/Y_{NO} + M_{NO} * [NO]/[N]) * Denitrifier * F_{pH-NO} * F_{Tmp} & (\text{Eq. S36}) \\ d(N_2O)/dt &= (R_{N_2O}/Y_{N_2O} + M_{N_2O} * [N_2O]/[N]) * Denitrifier * F_{pH-N_2O} * F_{Tmp} & (\text{Eq. S37}) \end{aligned}$$

Where Y_{NO3}, Y_{NO2}, Y_{NO}, and Y_{N2O} is the maximum growth yield on NO₃⁻, NO₂⁻, NO, or N₂O (kg C/kg N). *M*_{NO3}, *M*_{NO2}, *M*_{NO}, and *M*_{N2O} is the maintenance coefficient of NO₃⁻, NO₂⁻, NO, or N₂O (kg N/kg/ha), and [*N*] is the total nitrogen as the sum of NO₃⁻, NO₂⁻, NO, and N₂O (kg N/ha).

Assimilation of N during denitrification:

$$dN/dt = (dDenitrifier/dt)_q/(C/N)_{Denitrifier}$$
 (Eq. S38)

Where (C/N)_{Denitrifier} is C/N ratio in denitrifiers.

Soil temperature factor in denitrification:

$$F_{Tmp} = 2.0^{(T-22.5)/10.0}$$
 $T \le 60.0$ (Eq. S39)

$$F_{Tmp} = 0.0$$
 $T > 60.0$ (Eq. S40)

Where *T* is the soil temperature.

Soil pH factor in denitrification:

$$F_{pH-NO_2} = 1 - 1/(1 + e^{((pH-4.25)/0.5)})$$
 (Eq. S41)

$$F_{pH-NO_2} = F_{pH-NO} = 1 - 1/(1 + e^{((pH-5.25)/1)})$$
 (Eq. S42)

$$F_{pH-N_20} = 1 - 1/(1 + e^{((pH-6.25)/1.5)})$$
 (Eq. S43)

Where pH is the soil pH.

3 The SWAT model

Nitrification process

The SWAT model treats nitrification as a function of soil NO³⁷, soil moisture and soil temperature [33]. We also list the equation here for considering the impact of soil pH on nitrification, which is used by Shrestha et al. [34] and Wagena et al. [35]. Therefore, the equation for nitrification is as following (Eq.S44):

$$N^{N_2 O} = F_{NH_4} * K_2 * F_{\theta} * F_{Tmp} * F_{pH}$$
 (Eq. S44)

Where N^{N_2O} is N₂O flux from nitrification (g N ha⁻¹ d⁻¹), K_2 is the fraction of nitrified N lost as N₂O. F_{NH_4} is the rate of nitrification. F_{θ} , F_{Tmp} , and F_{pH} is the effect of soil moisture, temperature, and soil pH on nitrification, respectively.

The rate of nitrification:

$$F_{NH_4} = \frac{f_{nit}}{f_{nit} + f_{vol}} * N_{nitvol}$$
(Eq. S45)

Where f_{nit} and f_{vol} are the fractions of N lost to nitrification and volatilization. N_{nitvol} (g Nha⁻¹ d⁻¹) is the amount of ammonium converted via nitrification and volatilization.

The effect of soil moisture (F_{θ}) on nitrification:

$$F_{\theta} = \frac{SW_{ly} - WP_{ly}}{0.25*(FC_{ly} - WP_{ly})} \quad if \quad SW_{ly} < 0.25*FC_{ly} - 0.75*WP_{ly} \quad (Eq. S46)$$

$$F_{\theta} = 1.0 \quad if \quad SW_{ly} \ge 0.25*FC_{ly} - 0.75*WP_{ly} \quad (Eq. S47)$$

Where SW_{ly} is soil water content (mm), WP_{ly} is the amount of water held in the soil at the wilting point water content (mm), and FC_{ly} is amount of water held in the soil layer at field capacity water content (mm).

The effect of soil temperature (F_{Tmp}) on nitrification is provided by the following factor:

$$F_{Tmp} = 0.41 * \frac{SoilTem - 5}{10}$$
 if $SoilTem > 5$ (Eq. S48)

The effect of soil pH (F_{pH}) on nitrification is provided by the following factor:

$$F_{pH} = 0.56 + \frac{\arctan(\pi * 0.45 * (-5 + soilpH))}{\pi}$$
(Eq. S49)

Denitrification process

The SWAT model determines the amount of nitrate lost to denitrification with the equation (Eq. S50 and Eq. S51) [33]:

$$\begin{split} D_t &= NO3_{ly} * (1 - exp(-\beta_{denit} * \gamma_{tmp,ly} * org\mathcal{C}_{ly})) \qquad if\gamma_{sw,ly} \geq \gamma_{sw,thr} \; (\text{Eq. S50}) \\ N_{denit,ly} &= 0.0 \qquad if\gamma_{sw,ly} < \gamma_{sw,thr} \; \; (\text{Eq. S51}) \end{split}$$

where D_t is the amount of nitrogen lost to denitrification (kg N/ha). $NO3_{ly}$ is the amount of nitrate in layer ly (kg N/ha). β_{denit} is the rate coefficient for denitrification. $\gamma_{tmp,ly}$ is the nutrient cycling temperature factor for layer ly. $\gamma_{sw,ly}$ is the nutrient cycling water factor for layer ly. $orgC_{ly}$ is the amount of organic carbon in the layer (%), and $\gamma_{sw,thr}$ is the threshold value of nutrient cycling water factor for denitrification to occur.

The effect of nutrient cycling temperature factor on denitrification:

$$\gamma_{tmp,ly} = Max \left[\left(0.9 * \frac{SoilTemp}{SoilTemp + e^{(9.93 - 0.312 * SoilTemp)}} + 0.1 \right), 0.1 \right]$$
(Eq. S52)

The effect of nutrient cycling water factor on denitrification:

$$\gamma_{sw,ly} = \frac{sW_{ly}}{FC_{ly}} \qquad (Eq. S53)$$

Where SW_{ly} is soil water content (mm) and FC_{ly} is amount of water held in the soil layer at field capacity water content (mm).

Wagena et al. [35] developed equations for the impact of soil pH on denitrification:

$$Fd(pH) = \begin{cases} 0.001 & for \quad pH \le 3.5\\ \frac{pH-3.5}{3} & for \quad 3.5 < pH < 6.5\\ 1 & for \quad pH \ge 6.5 \end{cases}$$
(Eq. S54)

Partitioning N₂O from N₂

For partitioning N₂O from gases of denitrification, Wagena et al. [35] used the same equations as Parton et al. [29] developed for the DAYCENT model (Eq.S12), and further included the effect of soil pH (Fr(pH)) for the ratio N₂O/N₂:

$$Fr(pH) = \frac{1}{1470*e^{-1.1*pH}}$$
 (Eq. S55)

R codes used to plot and visualize the differences of the representation of each environmental factors on N₂O can be found in the following link: *https://github.com/snailslowrun/N2O/blob/main/comparison.R*

References

- 1. Abdalla, M., Smith, P., & Williams, M. Emissions of nitrous oxide from agriculture: Responses to management and climate change. In Understanding Greenhouse Gas Emissions from Agricultural Management (pp. 343-370). American Chemical Society 2011. *https://doi.org/10.1021/bk-2011-1072.ch018*
- 2. Aguilera, E., Lassaletta, L., Sanz-Cobena, A., Garnier, J., & Vallejo, A. The potential of organic fertilizers and water management to reduce N₂O emissions in Mediterranean climate cropping systems. A review. *Agriculture, ecosystems & environment* **2013**, *164*, 32-52. *https://doi.org/10.1016/j.agee.2012.09.006*
- 3. Beauchamp, E. G. Nitrous oxide emission from agricultural soils. *Canadian Journal of Soil Science* **1997**, 77, 113-123. *https://doi.org/10.4141/S96-101*
- 4. Bremner, J. M. Sources of nitrous oxide in soils. Nutrient cycling in Agroecosystems 1997, 49, 7-16. https://doi.org/10.1023/A:1009798022569
- 5. Bouwman, A. F., Boumans, L. J. M., & Batjes, N. H. Modeling global annual N₂O and NO emissions from fertilized fields. *Global Biogeochemical Cycles* **2002**, *16*, 28-1. *https://doi.org/10.1029/2001GB001812*
- Butterbach-Bahl, K., & Dannenmann, M. Denitrification and associated soil N₂O emissions due to agricultural activities in a changing climate. *Current Opinion in Environmental Sustainability* 2011, 3, 389-395. https://doi.org/10.1016/j.cosust.2011.08.004
- Cameron, K. C., Di, H. J., & Moir, J. L. Nitrogen losses from the soil/plant system: a review. Annals of Applied Biology 2013, 162, 145-173. https://doi.org/10.1111/aab.12014
- Charles, A., Rochette, P., Whalen, J. K., Angers, D. A., Chantigny, M. H., & Bertrand, N. Global nitrous oxide emission factors from agricultural soils after addition of organic amendments: A meta-analysis. *Agriculture,* ecosystems & environment 2017, 236, 88-98. https://doi.org/10.1016/j.agee.2016.11.021
- 9. Dalal, R. C., Wang, W., Robertson, G. P., & Parton, W. J. Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. *Soil Research* **2003**, *41*, 165-195.*https://doi.org/10.1071/SR02064*
- 10. De Klein, C. A., Sherlock, R. R., Cameron, K. C., & van der Weerden, T. J. Nitrous oxide emissions from agricultural soils in New Zealand a review of current knowledge and directions for future research. *Journal of the Royal Society of New Zealand* **2001**, *31*, 543-574. *https://doi.org/10.1080/03014223.2001.9517667*
- 11. Eichner, M. J. Nitrous oxide emissions from fertilized soils: summary of available data. Journal of environmental quality **1990**, 19, 272-280. https://doi.org/10.2134/jeq1990.00472425001900020013x
- Groffman, P. M., Altabet, M. A., Böhlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K., ... & Voytek, M. A. Methods for measuring denitrification: diverse approaches to a difficult problem. *Ecological Applications* 2006, 16, 2091-2122. https://doi.org/10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2

- 13. Lesschen, J. P., Velthof, G. L., de Vries, W., & Kros, J. Differentiation of nitrous oxide emission factors for agricultural soils. *Environmental pollution* **2011**, *159*, 3215-3222. *https://doi.org/10.1016/j.envpol.2011.04.001*
- Meurer, K. H., Franko, U., Stange, C. F., Dalla Rosa, J., Madari, B. E., & Jungkunst, H. F. Direct nitrous oxide (N₂O) fluxes from soils under different land use in Brazil—a critical review. *Environmental Research Letters* 2016, 11, 023001. https://doi.org/10.1088/1748-9326/11/2/023001
- 15. Mosier, A. R. Nitrous oxide emissions from agricultural soils. *Fertilizer Research* **1994**, 37, 191-200. https://doi.org/10.1007/BF00748937
- 16. Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. Greenhouse gas emissions from soils A review. *Geochemistry* **2016**, *76*, 327-352. *https://doi.org/10.1016/j.chemer.2016.04.002*
- 17. Saggar, S., Jha, N., Deslippe, J., Bolan, N. S., Luo, J., Giltrap, D. L., ... & Tillman, R. W. Denitrification and N₂O: N₂ production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. *Science of the Total Environment* **2013**, *465*, 173-195. *https://doi.org/10.1016/j.scitotenv.2012.11.050*
- Sanz-Cobena, A., Lassaletta, L., Aguilera, E., Del Prado, A., Garnier, J., Billen, G., ... & Plaza-Bonilla, D. Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture, ecosystems & environment 2017, 238, 5-24. https://doi.org/10.1016/j.agee.2016.09.038
- 19. Signor, D., & Cerri, C. E. P. Nitrous oxide emissions in agricultural soils: a review. *Pesquisa Agropecuária Tropical* **2013**, 43, 322-338. *https://doi.org/10.1590/S1983-40632013000300014*
- 20. Smith, K. A., McTaggart, I. P., & Tsuruta, H. Emissions of N₂O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. *Soil use and management* **1997**, *13*, 296-304. *https://doi.org/10.1111/j.1475-2743.1997.tb00601.x*
- 21. Smith, K. A. Changing views of nitrous oxide emissions from agricultural soil: key controlling processes and assessment at different spatial scales. *European Journal of Soil Science* **2017**, *68*, 137-155. *https://doi.org/10.1111/ejss.12409*
- Snyder, C. S., Bruulsema, T. W., Jensen, T. L., & Fixen, P. E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. *Agriculture, Ecosystems & Environment* 2009, 133, 247-266. https://doi.org/10.1016/j.agee.2009.04.021
- 23. Stehfest, E., & Bouwman, L. N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. *Nutrient Cycling in Agroecosystems* **2006**, *74*, 207-228. *https://doi.org/10.1007/s10705-006-9000-7*
- 24. Stein, L. Y., & Yung, Y. L. Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide. *Annual Review of Earth and Planetary Sciences* **2003**, *31*, 329-356. *https://doi.org/10.1146/annurev.earth.31.110502.080901*
- 25. Trost, B., Prochnow, A., Drastig, K., Meyer-Aurich, A., Ellmer, F., & Baumecker, M. Irrigation, soil organic carbon and N₂O emissions. A review. *Agronomy for sustainable development* **2013**, *33*, 733-749. *https://doi.org/10.1007/s13593-013-0134-0*
- 26. Uchida, Y., & Akiyama, H. Mitigation of postharvest nitrous oxide emissions from soybean ecosystems: a review. 2013. *https://doi.org/10.1080/00380768.2013.805433*
- 27. Wang, J., Chadwick, D. R., Cheng, Y., & Yan, X. Global analysis of agricultural soil denitrification in response to fertilizer nitrogen. *Science of the Total Environment* **2018**, *616*, 908-917. *https://doi.org/10.1016/j.scitotenv.2017.10.229*
- 28. Xu, Y., Xu, Z., Cai, Z., & Reverchon, F. Review of denitrification in tropical and subtropical soils of terrestrial ecosystems. *Journal of Soils and Sediments* **2013**, *13*, 699-710. *https://doi.org/10.1007/s11368-013-0650-1*
- 29. Parton, W. J., Mosier, A. R., Ojima, D. S., Valentine, D. W., Schimel, D. S., Weier, K., & Kulmala, A. E. Generalized model for N₂ and N₂O production from nitrification and denitrification. *Global biogeochemical cycles* **1996**, *10*, 401-412. *https://doi.org/10.1029/96GB01455*
- 30. Weier, K. L., Doran, J. W., Power, J. F., & Walters, D. T. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. *Soil Science Society of America Journal* **1993**, *57*, 66-72. *https://doi.org/10.2136/sssaj1993.03615995005700010013x*
- Parton, W. J., Holland, E. A., Del Grosso, S. J., Hartman, M. D., Martin, R. E., Mosier, A. R., ... & Schimel, D. S. Generalized model for NO_x and N₂O emissions from soils. *Journal of Geophysical Research: Atmospheres* 2001, 106, 17403-17419. https://doi.org/10.1029/2001JD900101
- 32. Li, C. User's Guide for the DNDC Model (version 9.5). 201. University of New Hampshire. http://www.dndc.sr.unh.edu/model/GuideDNDC95.pdf
- Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute. https://swat.tamu.edu/media/99192/swat2009theory.pdf
- Shrestha, N. K., Thomas, B. W., Du, X., Hao, X., & Wang, J. Modeling nitrous oxide emissions from rough fescue grassland soils subjected to long-term grazing of different intensities using the Soil and Water Assessment Tool (SWAT). *Environmental Science and Pollution Research* 2018, 25, 27362-27377.https://doi.org/10.1007/s11356-018-2719-2
- 35. Wagena, M. B., Bock, E. M., Sommerlot, A. R., Fuka, D. R., & Easton, Z. M. Development of a nitrous oxide

routine for the SWAT model to assess greenhouse gas emissions from agroecosystems. *Environmental modelling & software* **2017**, *89*, 131-143. *https://doi.org/10.1016/j.envsoft.2016.11.013*