
agronomy

Article

Early Detection of Broad-Leaved and Grass Weeds in Wide Row
Crops Using Artificial Neural Networks and UAV Imagery

Jorge Torres-Sánchez 1,* , Francisco Javier Mesas-Carrascosa 2 , Francisco M. Jiménez-Brenes 1 ,
Ana I. de Castro 1,† and Francisca López-Granados 1

����������
�������

Citation: Torres-Sánchez, J.;

Mesas-Carrascosa, F.J.;

Jiménez-Brenes, F.M.; de Castro, A.I.;

López-Granados, F. Early Detection

of Broad-Leaved and Grass Weeds in

Wide Row Crops Using Artificial

Neural Networks and UAV Imagery.

Agronomy 2021, 11, 749. https://

doi.org/10.3390/agronomy11040749

Academic Editor: Craig Morley

Received: 3 March 2021

Accepted: 10 April 2021

Published: 12 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Grupo Imaping, Instituto de Agricultura Sostenible-CSIC, Avda. Menéndez Pidal s/n, 14004 Cordoba, Spain;
fmjimenez@ias.csic.es (F.M.J.-B.); ana.decastro@inia.es (A.I.d.C.); flgranados@ias.csic.es (F.L.-G.)

2 Department of Graphic Engineering and Geomatics, Campus de Rabanales, University of Cordoba,
14071 Cordoba, Spain; ig2mecaf@uco.es

* Correspondence: jtorres@ias.csic.es; Tel.: +34-957-499-218
† Current address: Weed Control Group, Plant Protection Department, National Agricultural and Food

Research and Technology Institute-INIA, Crta. de la Coruña, km 7,5, 28040 Madrid, Spain.

Abstract: Significant advances in weed mapping from unmanned aerial platforms have been achieved
in recent years. The detection of weed location has made possible the generation of site specific
weed treatments to reduce the use of herbicides according to weed cover maps. However, the
characterization of weed infestations should not be limited to the location of weed stands, but
should also be able to distinguish the types of weeds to allow the best possible choice of herbicide
treatment to be applied. A first step in this direction should be the discrimination between broad-
leaved (dicotyledonous) and grass (monocotyledonous) weeds. Considering the advances in weed
detection based on images acquired by unmanned aerial vehicles, and the ability of neural networks
to solve hard classification problems in remote sensing, these technologies have been merged in this
study with the aim of exploring their potential for broadleaf and grass weed detection in wide-row
herbaceous crops such as sunflower and cotton. Overall accuracies of around 80% were obtained in
both crops, with user accuracy for broad-leaved and grass weeds around 75% and 65%, respectively.
These results confirm the potential of the presented combination of technologies for improving the
characterization of different weed infestations, which would allow the generation of timely and
adequate herbicide treatment maps according to groups of weeds.

Keywords: ANN; RPAS; site-specific weed management; precision agriculture; dicotyledonous
(broad-leaved) and monocotyledonous (grass) weeds

1. Introduction

Weeds are one of the main causes of crop losses in arable crops worldwide [1]. Tradi-
tionally, their control has been addressed through the application of herbicides to the entire
crop field without taking into account that weeds usually have a patchy distribution and
there are weed-free areas [2–5]. This has led to excessive consumption of herbicides which
causes economic consequences and environmental concerns. To decrease both problems,
there is a set of guidelines reported in European legislation addressing the Sustainable Use
of Pesticides [6,7] which are compatible with the use of site-specific weed management
(SSWM) techniques that allow the design and application of herbicide treatments that
target only the areas where weeds proliferate. One of the key components of SSWM is the
aim of providing accurate and timely early weed control based on weed infestation maps
obtained by proximal (ground) or remote sensing [8].

In recent years there have been major advances in weed detection and different
novel technologies have been developed that make it possible to detect weeds in the
early post-emergence stage from both ground and aerial platforms by means of comput-
erized processing of data [9]. One of the most widely used platforms with the greatest
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potential for installing sensors for early weed detection has been unmanned aerial vehi-
cles (UAVs) [9–12]. This is because UAVs have significant advantages over other remote
platforms, such as the possibility of flying at low altitudes, providing very high spatial
resolution imagery (less than 1 cm per pixel [13]), flying under clouds, using a wide spectral
and size range of embedded sensors, and providing the option of obtaining images on
demand at almost any time. In comparison with on-ground platforms, the main advantages
are that the use of UAVs is less expensive and does not cause soil compaction, and they
can fly to muddy or difficult to access areas [14]. Therefore, the analysis of UAV imagery
has allowed the generation of localised treatment maps through which it is possible to
greatly reduce the area treated in the fields and, consequently, the consumption of her-
bicides [15]. López-Granados et al. [16] studied different weed management scenarios
based on weed threshold, which is the weed infestation level above which a treatment is
required, as the baseline to generate herbicide treatment maps, achieving herbicide savings
higher than 70%.

An ideal characterization of weed infestations should not be limited to the spatial
identification of weed stands. It must also be able to perform an early discrimination
between the types of weeds growing in the crop field in order to allow the best possible
choice in the type of herbicide treatment to be applied and to avoid the use of a wide
spectrum herbicide. A first step in this direction should be the separation between weeds
into the two main groups: broad-leaved and grass weeds. This is a major challenge because
crop plants, grass and broad-leaved weeds show a parallel phenological stage at early
growth phases, as well as similar spectra and appearances. The detection of weeds using
images taken by UAVs has been approached in different ways.

One of the most common methodologies for UAV-based weed detection is built on the
assumption that plants growing outside the crop line are weeds, so algorithms have been
developed that first detect the vegetation, and then delineate the crop lines and classify
the plants growing outside the lines as weeds [15,17,18]. Other works have focused on
detecting weeds by analyzing their spectral properties [19,20]. There has also been work to
make it possible to detect weeds not only between (outside) but also within the crop lines,
by combining the detection of crop lines with the use of automatic learning methods [21–23].
In a large number of these studies there has been a trend towards segmenting the image
into objects. These objects are groups of homogeneous pixels which, in the analysis of
very high-resolution spatial images, allow a reduction in the heterogeneity of the classes
to be detected, and allow contextual and spatial information to be added to the spectral
information contained in the raw UAV images. Therefore, it can be said that these works
are framed in the analysis paradigm known as object-oriented image analysis (OBIA), in
such way that the basic information unit for image classification is based on objects, not on
pixels [24].

Artificial neural networks (ANNs) are widely used methodologies in remote sensing
for the resolution of complicated classification problems [25,26]. One of the main character-
istics of this type of model is its learning capacity. A standard neural network consists of
many processors called neurons that are connected to each other [27]. The input neurons
are activated by the information provided by the user, and when activated, they process
this information and communicate it to the following neurons, thus reaching the desired
result, which, in the case of remote sensing, is the classification of an image. The assignment
of weights and relationships between the neurons is produced by means of automatic
learning, carried out on a set of samples that are introduced as training in the design of
the model. One of the most widely used types of neural networks in remote sensing is
the multilayer perceptron (MLP) neural network [28] which has been successfully used in
high-resolution satellite imagery for weed detection [29]. In MLP, neurons are organised
into three or more layers. First, there is an input layer containing the information from the
samples to be analyzed, followed by one or more hidden layers, and finally there is the
output layer that produces the desired result.
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Discrimination between broad-leaved and grass weeds has been addressed previously
by using images taken on the ground or by ultrasonic sensors mounted in front of a
tractor [30,31]. However, to our knowledge, this is the first time that the early detection of
different groups of weeds in crop fields has been attempted using UAV imagery. Therefore,
the aim of this paper is to explore the potential of combining images from UAV, and OBIA
and MLP ANN techniques for discriminating between broad-leaved and grass weeds in
broad-leaved wide-row crops.

2. Materials and Methods
2.1. Description of Study Fields and UAV Flights

This study was performed on two different wide-row crops, sunflower and cotton,
selecting one field for each crop. Table 1 shows the information related to inter-row spacing
in meters, as well as the location and area in hectares for both fields, being sunflower
and cotton crops under rainfed and irrigation conditions, respectively. The fieldwork
phase was carried out approximately 3 weeks after sowing. At this stage, both crops had
an average height of 15–20 cm approximately (Figure 1) and were naturally infested by
different broad-leaved and grass weed species, with the cotton field showing a higher
level of weed infestation. A wider variety of broad-leaved than grass weed species was
identified in both crops (Table 2).

Table 1. Characteristics of each studied field.

Crop Inter-Row Spacing (m) Location Area (ha)

Sunflower 0.75 Córdoba 1.14
Cotton 1.00 Santaella (Córdoba) 1.90
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Figure 1. Partial field view of (a) sunflower and (b) cotton fields with the presence of both broad-leaved and grass weeds in
blue and red circles, respectively.

A UAV quadcopter model MD4-1000 (microdrones GmbH, Siegen, Germany) was
used as an aerial platform to acquire images. This UAV, with vertical take-off and landing,
is battery powered and can be manually operated by radio control or autonomously by
means of its global positioning system (GPS) receiver and its waypoint navigation system.
A visible-light (RGB: red (R), green (G) and blue (B)) low-cost camera model from Sony
ILCE-6000 (Sony Corporation, Tokyo, Japan) was attached to the UAV in order to capture
the images. This camera was composed of a 23.5 × 15.6 mm APS-C CMOS sensor capable
of acquiring 24 megapixels (6000 × 4000 pixels).

A UAV flight for each crop was carried out at the beginning and at the end of May for
the sunflower and cotton fields, respectively. The UAV route was adjusted to fly at a 20 m
altitude with a forward and side overlaps of 74% and 70%, respectively (Figure 2). The
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flights were carried out at noon to take advantage of the sun’s position and thus minimize
shadows on images. The UAV flight and sensor configuration led to a spatial resolution
of around 4 mm, which met the requirement of being lower than 10 mm for RGB sensors,
established previously in a review about weed detection using UAV imagery [9].

Table 2. Broad-leaved and grass weed species present in each field sorted in alphabetical order.

Crop Broad-Leaved Weeds Grass Weeds

Sunflower

Amaranthus blitoides

Cyperus rotundus
Lolium rigidum

Chrozophora tinctoria
Convolvulus arvensis
Polygonum aviculare

Xanthium strumarium

Cotton

Amaranthus blitoides

Cyperus rotundus
Phalaris spp.

Amaranthus retroflexus
Convolvulus arvensis

Cuscuta spp.
Datura stramonium
Ecbalium elaterium

Mollucella laevis
Portulaca oleracea

Xanthium strumarium
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2.2. Digital Surface Model (DSM) and Orthomosaic Generation

Once the UAV images were acquired for both crops, Agisoft PhotoScan Professional
Edition software, version 1.2.4 build 2399 (Agisoft LLC, St. Petersburg, Russia), was used
for generating the geomatic products. First, a three-dimensional (3D) point cloud was
created by applying the structure-from-motion (SfM) technique. Then, a digital surface
model (DSM) was generated from the previous 3D point cloud, which provided height
information. The final product was an orthomosaic of the whole fields, in which every
pixel contained RGB information as well as spatial information (Figure 3).

All geomatic products were created automatically. However, the manual localization
of six ground control points (GCPs) [32,33] was necessary, with four placed in the corners
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and two in the center of each field, in order to georeference the geomatic products. The
GCP coordinates were measured using two GNSS receivers: one was a reference station
from the GNSS RAP network from the Institute for Statistics and Cartography of Andalusia
(Spain), and the other one was a GPS with one centimeter accuracy, used as a rover receiver
(model Trimble R4, Trimble company, Sunnyvale, CA, USA). At the beginning of the image
processing, the software matched the camera position and common points for every image,
which allowed the refinement of the camera calibration parameters. More information
about the PhotoScan functions can be found in [34].
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2.3. Ground Truth Data

A total of 30 georeferenced sampling 1 × 1 m white frames were placed in both
crops. These frames contained either broad-leaved, grass weeds, or both of them. Their
placing ensured that sunflower and cotton fields had an equal chance of being sampled
without operator bias [35]. After each frame was placed in every field, it was manually
photographed by a conventional camera perpendicular to the ground. These photos
were later used for ground truth data when carrying out the manual classification on
orthomosaics in the image analysis phase, detailed in the following section.

2.4. Image Analysis

The workflow developed in the image analysis procedure is summarized in Figure 4.
The following sections explain the details of each of the steps of this workflow.
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2.4.1. Labeling of the Image Objects

The first step in the development of the image analysis procedure was the segmenta-
tion of the image in objects formed by adjacent and spectrally homogenous pixels according
to a procedure known as segmentation. In this work, the multiresolution segmentation
algorithm (MRSA) [36] was carried out using eCognition Developer 9 software (Trim-
ble GeoSpatial, Munich, Germany). This algorithm is controlled by a set of parameters
that must be fixed by the user: scale parameter, colour/shape weights, and smooth-
ness/compactness weights. The first parameter controls the homogeneity of the pixels
included in the objects and is related to their final size (more homogeneous objects lead
to smaller sizes). The colour/shape weighting determines if the segmentation pays more
attention to the spectral information or to the shape of the objects. The last parameter
controls if the creation of the object is spatially compact or if it is dominated by the spectral
homogeneity (smoothness). Based on previous experience in the optimization of UAV
imagery segmentation for vegetation detection [17,22,37] and on some internal tests, the
values of the parameters were: 15 for the scale parameter, 0.6/0.4 for colour/shape, and
0.5/0.5 for smoothness/compactness.

After the image segmentation, the results of which can be viewed in Figure 5b, the
next step was the manual labeling of the objects inside the reference white frames that were
laid on the fields as explained in Section 2.3. In this part of the workflow, objects were
divided into the following classes: bare soil, shadow, broad-leaved weeds, and grass weeds.
The high resolution of the UAV imagery (4 mm as stated before) allowed discernment
between the classes and, in the case of doubt, the field photographs of the reference frames
were used to help in the disambiguation process. This step was carried out by only one
expert in order to avoid discrepancies in the manual labeling of the samples that were used
in the generation of the neural network. Figure 5c shows one of the reference frames after
the labeling of the image objects.
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The total number of labeled objects is shown in Table 3. Due to the early stage of the
crop development, the class with the highest representation in the datasets was bare soil
in both studied crops. The amount of objects labeled as weeds depended on the natural
weed infestation level of the crops. The cotton field suffered a more intense infestation
and, consequently, it presented a higher number of objects labeled as weeds. In order to
feed the neural network with a balanced dataset, the number of labelled objects for each
class was reduced to match the number of objects of the class with lower representation.
Consequently, as the class with the fewest objects in the sunflower field was broad-leaved
weeds with 635 objects, 635 samples from each class were randomly selected to match
the number of broad-leaved weed objects. In the cotton field, the final number of objects
in each class was 421, to match the number of grass weed objects, which was the least
represented class in the training dataset.

Table 3. Number of manually labeled objects in the cotton and sunflower fields.

Crop Frames
Class

Broad-Leaved Weeds Grass Bare Soil Shadow

Sunflower 30 635 979 6665 1670
Cotton 30 2023 421 6437 1051

A set of 49 features (Table 4) was extracted from the labeled objects to feed the
neural network. The extracted features were divided into three main categories: spectral,
geometric, and textural. The first one was related with the spectral values extracted from
the three channels of the RGB sensor and included normalized band values, some of their
statistics, and a set of vegetation indices. The geometric features were related with the
shape of the objects created by the MRSA, and also included the height of the objects above
the soil. The textural features explained the variation of the spectral values inside the
objects, and included variables related to the gray level co-occurrence matrix (GLCM),
which is a tabulation of how often different combinations of pixel gray levels occur inside
an object [38]. Among the textural features, there were also variables related to the gray
level difference vector (GLDV) [39], i.e., the sum of the diagonals of the GLCM.

Table 4. Features extracted from the segmented objects in the classification process. Abbreviations. HSI: hue, saturation,
intensity; CHM: crop height model; DSM: digital surface model; DTM: digital terrain model; NRGDI: normalized red
green difference index; NPCI: normalized pigment chlorophyll index; VARI: visible atmospherically resistant index; WI:
Woebbecke index; ExB: excess blue; ExG: excess green; ExR: excess red; ExGR: excess green red; CIVE: color index of
vegetation; VEG: vegetative; COMB1: indices combination 1; COMB2: indices combination 2; GLCM: gray level co-
occurrence matrix; GLDV: gray level difference vector.

Spectral
RGB values

Red normalized (r): R/(R+G+B)

Green normalized (g): G/(R+G+B)

Blue normalized (b): B/(R+G+B)

Brightness

Skewness

HSI values Hue
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Table 4. Cont.

Vegetation indices

R/B [40]

R/G [41]

Normalized red green difference index
NRGDI: (g−r)/(g+r) [42]

Normalized pigment chlorophyll ratio index
NPCI: (r−b)/(r+b) [43]

Visible atmospherically resistant index
VARI: (g−r)/(g+r-b) [44]

Woebbecke Index
WI: (g−b)/(r−g) [45]

Excess blue
ExB: (1.4*b)−g [46]

Excess green
ExG: (2*g)−r−b [45]

Excess red
ExR: (1.4*r)−g [47]

ExGR: ExG-ExR [48]

Color index of vegetation
CIVE: (0.441*r)−(0.811*g)+(0.385*b)+18.78745 [49]

Vegetative
VEG: g/((rˆ0.667)*(bˆ(1−0.667))) [50]

Combination 1
COMB1: (0.25*ExG)+(0.3*ExGR)+(0.33*CIVE)+(0.12*VEG) [46]

Combination 2
COMB2: (0.36*ExG)+(0.47*CIVE)+(0.17*VEG) [51]

Geometric

Shape

Asymmetry

Compactness

Density

Radius of largest enclosed ellipse

Radius of smallest enclosing ellipse

Rectangular fit

Roundness

Shape index

Based on polygons

Compactness (Polygon)

Number of edges (Polygon)

Perimeter (Polygon) (Pixel)

Standard deviation of length of edges (Polygon) (Pixel)

Average area represented by segments (Pixel)

Number of segments

Extent Length/Width

Height derived CHM: DSM-DTM
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Table 4. Cont.

Textural Texture after Haralick

GLCM homogeneity (all directions)

GLCM contrast (all directions)

GLCM dissimilarity (all directions)

GLCM entropy (all directions)

GLCM angular second moment (all directions)

GLCM mean (all directions)

GLCM standard deviation (all directions)

GLCM correlation (all directions)

GLDV angular second moment (all directions)

GLDV entropy (all directions)

GLDV mean (all directions)

GLDV contrast (all directions)

2.4.2. Crop Detection

The first step after the manual labeling of the input for the neural network was the
automatic detection of the objects belonging to the crop rows. In this step, an automatic
OBIA algorithm previously developed and fully validated [15,17,22] was used. This
algorithm detects the vegetation (crop and weeds) by applying a thresholding methodology
to the ExG values of the segmented objects. Then, the algorithm splits the image into strips
and, through an iterative process, searches for the orientation of the strips that best fits
the distribution of the vegetation objects in the image. When this orientation is calculated
and, taking into account the distance between the crop rows, the algorithm splits the
image into strips representing the crop rows, and all the vegetation objects below these
strips are classified as crop. More details about the algorithm can be found in the above
referenced works.

2.4.3. Artificial Neural Network Creation

Once the crop objects were classified using the automatic OBIA algorithm, the remain-
ing objects were classified as “soil”, “shadow”, “broad-leaved weed”, or “grass weed”,
using a neural network. The feature values from the manually labeled objects were used
for training and validating an MLP neural network in IBM SPSS Statistics software (IBM
Corp. Released Version 26.0. Armonk, NY, USA). Of the total manually labeled objects,
60% were used to train the neural network, 20% were used as a test set to track errors
during the training and to avoid overfitting [52], and the remaining 20% were reserved to
validate the accuracy of the neural network. The size of the MLP neural network is defined
as the size of the input layer × the size of the hidden layer × the size of the output layer.
In the parameterization of the neural network generation, the input layer was formed by
the 49 extracted object features, the output layer contained 4 neurons, corresponding to
the 4 classes sought, and SPSS was configured to optimize the number of neurons in the
hidden layer in a range between 1 and 50. Batch training was used in the generation of the
neural network. This method updates the synaptic weights of the neurons when all the
training data have been passed. The optimization algorithm applied in the batch training
was the scaled conjugate gradient, a fully automatic algorithm that does not require the
input of parameters by the user [53].

2.5. Validation

The performance of the MLP neural network was assessed using the confusion ma-
trix [54], created from the validation datasets in both crops. Based on the confusion matrix,
the overall accuracy (percentage of pixels correctly classified) was calculated, as well as
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the user’s (or commission error indicating the percentage of pixels classified as a class that
should have been classified as a different class) and the producer’s accuracy (or omission
error indicating the proportion of pixels from a class that were misclassified as a different
class) for the four classes assigned by the neural network: soil, shadow, broad-leaved weed,
and grass weed.

3. Results and Discussion

The optimization process of the hidden layer carried out by the software in the
development of the neural network led to this layer having eight neurons for cotton and
sunflower crops. Tables 5 and 6 show the classification results in each of the sample subsets
for sunflower and cotton, respectively. The overall accuracy for the sunflower field was
83.64%, whereas for cotton it was slightly lower, at 78.16%. In both cases the accuracy
was around 80%, so it can be said that satisfactory accuracies were obtained. The final
accuracies achieved in the validation data set were similar to those obtained in the training
and test subsets, where values in the range of 80% were also obtained.

Table 5. Confusion matrices for the training, testing and validation subsets in the sunflower field.

Predicted

Observed Bare Soil Broad-Leaved Weeds Grass Weeds Shadow Producer
Accuracy (%)

Training

Bare soil 355 6 19 13 90.33

Broad-leaved
weeds 5 293 71 4 78.55

Grass weeds 23 110 261 4 65.58

Shadow 13 2 4 365 95.05

User accuracy (%) 89.65 71.29 73.52 94.56 OA: 82.30%

Testing

Bare soil 93 1 12 7 82.30

Broad-leaved
weeds 0 102 35 0 74.45

Grass weeds 10 30 78 5 63.41

Shadow 5 0 3 126 94.03

User accuracy (%) 86.11 76.69 60.94 91.30 OA: 78.70%

Validation

Bare soil 117 2 6 4 90.70

Broad-leaved
weeds 0 93 32 0 74.40

Grass weeds 5 23 85 1 74.56

Shadow 3 0 3 109 94.78

User accuracy (%) 93.60 78.81 67.46 95.61 OA: 83.64%

Analyzing Tables 5 and 6 in detail, it can be seen that the highest accuracies were
obtained in the detection of soil and shadow, whereas the classes among which there
was most confusion were the different types of weeds. However, taking into account
the difficulty of the task and the similarity of broad-leaved and grass weed classes, the
classification of both groups of weeds was good. Observing the producer’s accuracy, it can
be seen that around 75% of the broad-leaved and grass weeds in the sunflower field were
correctly classified; meaning that some pixels of the broad-leaved and grass weeds were not
identified and thus the procedure underestimated the total area of every weed patch. From
the point of view of the user of the classification, 78.81% of the objects classified as broad-
leaved weeds actually belonged to this class. According to these results, a treatment map
based on the neural network would therefore allow broad-leaved weeds to be specifically
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treated with a high level of precision. This precision would be less for grass weeds, since,
analyzing the user’s accuracy, it could be seen that 67.46% of the objects classified as this
type of weed actually corresponded to this type of vegetation. From an agronomic point of
view, it would be desirable to consider that the producer’s accuracy would be lower and
the user’s would tend to be higher, thus weed patches would be less likely to be missed,
taking into account the likelihood that farmers would choose to treat weed-free zones
rather than assume the risk of allowing weeds to go untreated [55].

Table 6. Confusion matrices for the training, testing and validation subsets in the cotton field.

Predicted

Observed Bare Soil Broad-Leaved Weeds Grass Weeds Shadow Producer
Accuracy (%)

Training

Bare soil 235 5 20 1 90.04

Broad-leaved weeds 9 171 70 10 65.77

Grass weeds 32 47 177 10 66.54

Shadow 3 8 7 231 92.77

User accuracy (%) 84.23 74.03 64.60 91.67 OA: 78.57%

Testing

Bare soil 70 1 8 3 85.37

Broad-leaved weeds 4 49 21 2 64.47

Grass weeds 13 14 37 4 54.41

Shadow 1 1 3 69 93.24

User accuracy (%) 79.55 75.38 53.62 88.46 OA: 75.00%

Validation

Bare soil 69 1 7 1 88.46

Broad-leaved weeds 6 49 23 7 57.65

Grass weeds 9 13 63 2 72.41

Shadow 1 1 5 91 92.86

User accuracy (%) 81.18 76.56 64.29 90.10 OA: 78.16%

In the cotton field the results of the user’s accuracy for weeds were very similar to those
obtained for the sunflower field. Consequently, the accuracy of a possible treatment map in
the cotton field would also be higher for broad-leaved weeds. The fact that the accuracies
obtained for the sunflower crop were slightly higher could be linked to the fact that in this
crop the variability of weed species was lower (Table 2). Therefore, in the creation of the
neural network the group of weed training samples had a higher homogeneity and it was
easier for the software to calculate a group of parameters that distinguished broad-leaved
from grass weeds. This is in agreement with Lottes et al. [56] who created a classification
scheme to discriminate saltbush and chamomile from “other weeds” in a sugar beet field
using UAV imagery, and they also reported the heterogeneity of the class “other weeds” as
one of the plausible reasons for this class having lower accuracy in their classification.

Tables 7 and 8 show the 10 most important variables in the creation of the neural
network for sunflower and cotton, respectively. Complete tables including the importance
of all variables can be consulted in Appendix A. In both crops, brightness was the most
important variable, which is probably related to the excellent discrimination of shadows
from the rest of the classes in the classification. In the sunflower field, and without
counting brightness, seven of the most important variables were spectral, including HUE,
the normalized red band and several vegetation indices. Among these most important
variables, there was only one of a textural type, the GLDV entropy. For cotton the situation
was different, as of the 10 most important variables five were of a textural type, most of
them related to GLCM. This importance of using textural features for weed classification
using UAV imagery has been previously reported in the scientific literature [9,23,57].
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Table 7. Ten variables with the highest normalized importance in the neural network created in the
sunflower crop.

Variable Importance Normalized Importance (%)

Brightness 0.040 100.0

COMB1 0.040 100.0

GLDV Entropy (all dir.) 0.033 82.9

VEG 0.033 81.5

NRGDI 0.033 81.1

Hue 0.031 77.1

r 0.030 75.1

CHM 0.029 73.4

ExGR 0.029 71.7

g 0.029 71.5

Table 8. Ten variables with highest normalized importance in the neural network created in the
cotton crop.

Variable Importance Normalized Importance (%)

Brightness 0.058 100.0

GLCM Homogeneity (all dir.) 0.038 65.8

GLCM Ang. 2nd moment (all dir.) 0.036 61.6

ExGR 0.034 58.3

g 0.033 56.9

COMB2 0.032 55.0

GLCM Entropy (all dir.) 0.032 54.7

GLDV Contrast (all dir.) 0.030 50.9

GLCM SD (all dir.) 0.030 50.6

NRGDI 0.029 49.1

It is also noteworthy that in the sunflower crop the height of the objects above the
ground was chosen among the most important variables, which could indicate that the
weeds in this field showed a more erect bearing than in cotton, and therefore that the
height was a determining factor in the classification. The importance of height in weed
discrimination was also reported by Zisi et al. [57], whose results improved when including
this feature in their analysis. In the neuronal network for the sunflower crop, the 10 most
important variables had values of standardized importance higher than 70%, whereas in the
case of cotton, only the brightness presented an importance higher than 70% whereas the
others had much lower importance, that being between 66% and 49%. This could indicate
that in the case of sunflowers, more variables were important for the correct classification
of objects, whereas in the case of cotton fewer variables were relevant. A feature selection
procedure was not carried out in our study since some authors [21] reported that feature
selection was not a robust methodology when the model is intended to be applied to other
crop types or fields.

Comparing Tables 7 and 8 it can be seen that the only variables that coincided within
the first 10 were brightness, ExGr, NRGDI, and g. All of these are spectral variables, and
two of them are spectral indices. The importance of these variables in the generalization
of machine learning models for weed detection in different crops and fields has been
previously reported by Veeranampalayam Sivakumar et al. [58]. These authors stated
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that the addition of vegetation indices in the creation of convolutional neural networks
increased the ability of these models to generalize their results to different crops and fields.

In the scientific literature there are previous works that, similarly to ours, combine
spatial information (detection of crop lines) with advanced classification methods such as
random forest [22,23], convolutional neural networks [21], or a support vector machine [59]
for weed detection in UAV imagery. Some of these works achieved slightly better accuracy
metrics, but this is probably due to the fact that they detected weed patches and they
did not distinguish between different types of weeds. If the distinction between broad-
leaved and grass weeds had not been addressed in this work, the overall accuracies
obtained would have been 95.03% for sunflower and 88.51% for cotton, values that are
close to the 94.5% of overall accuracy achieved by Gao et al. [23] in their approach with no
discrimination between different types of weeds. Another important difference between
the above-mentioned works and the methodology presented herein is that in those works
the machine learning methods used could be trained without user intervention. This is
because the crop rows were detected in a first step, and then the vegetation objects located
outside the crop row were used as training for the “weed” class. In the present work,
manual classification of the samples had to be done, as it was necessary to differentiate
between broad-leaved and grass weeds.

It is relevant to highlight that our research used a low-cost RGB camera, which
demonstrates that standard RGB imagery can effectively distinguish different groups of
weeds. This is important because, as highlighted by Hassler and Baysal-Gurel [60], when
using a higher spectral resolution sensor (e.g., in multispectral or hyperspectral ranges)
the image processing is more complex and usually involves previous calibration and data
correction steps. Furthermore, using a multispectral sensor implies the need to choose the
optimal number of bands and their wavelengths.

Our results not only demonstrate the potential of using specific herbicides but also
of identifying areas that would not require treatment. Both achievements would certainly
offer the possibility of using specific herbicides against broad-leaved or grass weeds and
relevant savings in applications, which could highly improve the SSWM strategy with
further economic, agronomic and environmental repercussions. To the best of the authors’
knowledge, this is the first time that the discrimination of broad-leaved and grass weeds
has been achieved using UAV imagery. Furthermore, this objective has been carried out
in commercial fields of two important herbaceous crops: sunflower and cotton. As the
presented methodology has been developed in certain specific conditions, i.e., in early
season with crops having an average height of 15–20 cm, and with image acquisition
on sunny days with low wind, future research will try to confirm the potential of the
current workflow in other phenological stages, crops, and with different meteorological
and lighting conditions.

4. Conclusions

This study shows that the application of ANN in an OBIA environment to images
taken with a low-cost-RGB sensor embedded in a UAV in wide-row herbaceous crops has
the potential for discriminating between broad-leaved and grass weeds. To the best of
the authors’ knowledge, this is the first time that this objective has been addressed. It is
also remarkable that the work was carried out in commercial fields with natural weed
infestations, which made the achievement of this objective more difficult than if it had been
performed under controlled conditions in experimental fields. Future research will address
the analysis of more wide-row crop species, such as sugar beet and potato, and the use of
more advanced classification methods such as convolutional neural networks to explore
the discrimination between broad-leaved and grass weed species. Another future objective
will be the generation of site-specific treatment maps oriented to differential treatment of
broad-leaved and grass weeds.
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Appendix A

Table A1. Importance of all the variables included in the artificial neural network for sunflower.

Variable Importance Normalized Importance (%)

Brightness 0.040 100.0

COMB1 0.040 100.0

GLDV Entropy (all dir.) 0.033 82.9

VEG 0.033 81.5

NRGDI 0.033 81.1

Hue 0.031 77.1

r 0.030 75.1

CHM 0.029 73.4

ExGR 0.029 71.7

g 0.029 71.5

R/B 0.029 71.4

CIVE 0.028 71.0

ExR 0.028 70.5

GLCM Ang. 2nd moment (all dir.) 0.028 68.8

VARI 0.028 68.7

GLDV Ang. 2nd moment (all dir.) 0.026 64.9

ExG 0.025 62.2

GLCM Mean (all dir.) 0.025 61.7

GLCM Dissimilarity (all dir.) 0.024 60.4

R/G 0.024 58.7

NPCI 0.023 57.7

WI 0.022 56.0

Skewness 0.022 54.3

Compactness 0.022 53.7

COMB2 0.022 53.7
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Table A1. Cont.

Variable Importance Normalized Importance (%)

GLCM Entropy (all dir.) 0.021 52.4

b 0.020 50.8

GLDV Mean (all dir.) 0.020 50.5

GLCM SD (all dir.) 0.019 48.3

Perimeter (polygon) (Pxl) 0.019 47.7

CLGM Contrast (all dir.) 0.017 42.5

Rectangular fit 0.017 42.2

Density 0.016 38.8

GLCM Homogeneity (all dir.) 0.015 38.4

GLCM Correlation (all dir.) 0.014 34.6

Compactness (polygon) 0.013 33.3

GLDV Contrast (all dir.) 0.013 31.9

SD of length of edges (polygon) (Pxl) 0.012 30.6

ExB 0.012 29.5

Shape index 0.012 29.2

Length/Width 0.011 26.9

Roundness 0.010 25.8

Number of segments 0.008 20.1

Average area represented
by segments (Pxl) 0.007 17.6

Number of edges (polygon) 0.006 15.9

Radius of smallest enclosing ellipse 0.006 15.2

Radius of largest enclosed ellipse 0.006 14.8

Asymmetry 0.004 10.7

Table A2. Importance of all the variables included in the artificial neural network for cotton.

Variable Importance Normalized Importance (%)

Brightness 0.058 100.0

GLCM Homogeneity (all dir.) 0.038 65.8

GLCM ang. 2nd moment (all dir.) 0.036 61.6

ExGR 0.034 58.3

g 0.033 56.9

COMB2 0.032 55.0

GLCM Entropy (all dir.) 0.032 54.7

GLDV Contrast (all dir.) 0.030 50.9

GLCM SD (all dir.) 0.030 50.6

NRGDI 0.029 49.1

R/G 0.028 48.6

VEG 0.028 47.3

GLDV Entropy (all dir.) 0.028 47.2

GLCM Mean (all dir.) 0.025 43.5



Agronomy 2021, 11, 749 16 of 19

Table A2. Cont.

Variable Importance Normalized Importance (%)

ExR 0.025 42.0

CIVE 0.025 42.0

GLCM Dissimilarity (all dir.) 0.024 41.5

GLDV ang. 2nd moment (all dir.) 0.023 39.4

WI 0.021 36.5

CLGM Contrast (all dir.) 0.021 35.6

GLDV Mean (all dir.) 0.020 35.0

Compactness 0.020 34.6

R/B 0.020 33.6

r 0.020 33.5

VARI 0.019 32.7

NPCI 0.019 32.4

ExG 0.019 31.6

GLCM Correlation (all dir.) 0.018 31.2

Rectangular fit 0.017 29.2

ExB 0.016 27.4

COMB1 0.015 25.6

Shape index 0.015 25.3

Skewness 0.014 24.1

SD of length of edges (polygon) (Pxl) 0.014 23.7

Hue 0.014 23.5

b 0.014 23.4

Density 0.013 22.6

Average Area represented
by segments (Pxl) 0.013 21.9

Length/Width 0.013 21.7

Radius of smallest enclosing ellipse 0.013 21.6

CHM 0.011 19.6

Roundness 0.010 16.6

Asymmetry 0.010 16.3

Compactness (polygon) 0.009 16.0

Radius of largest enclosed ellipse 0.009 15.5

Number of edges (polygon) 0.009 15.3

Number of segments 0.009 14.7

Perimeter (polygon) (Pxl) 0.008 13.7
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