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Abstract: The increasing alarming impacts of climate change are already apparent in viticulture,
with unexpected pest outbreaks as one of the most concerning consequences. The monitoring of
pests is currently done by deploying chromotropic and delta traps, which attracts insects present
in the production environment, and then allows human operators to identify and count them. While
the monitoring of these traps is still mostly done through visual inspection by the winegrowers,
smartphone image acquisition of those traps is starting to play a key role in assessing the pests’ evolu-
tion, as well as enabling the remote monitoring by taxonomy specialists in better assessing the onset
outbreaks. This paper presents a new methodology that embeds artificial intelligence into mobile
devices to establish the use of hand-held image capture of insect traps for pest detection deployed
in vineyards. Our methodology combines different computer vision approaches that improve several
aspects of image capture quality and adequacy, namely: (i) image focus validation; (ii) shadows and
reflections validation; (iii) trap type detection; (iv) trap segmentation; and (v) perspective correction.
A total of 516 images were collected, divided into three different datasets and manually annotated,
in order to support the development and validation of the different functionalities. By following
this approach, we achieved an accuracy of 84% for focus detection, an accuracy of 80% and 96%
for shadows/reflections detection (for delta and chromotropic traps, respectively), as well as mean
Jaccard index of 97% for the trap’s segmentation.

Keywords: viticulture; pests monitoring; insect traps; mobile image acquisition; image quality
assessment; image adequacy assessment; machine learning; artificial intelligence

1. Introduction

In 2019, the estimated world area planted with vines for all purposes (wine, table
grapes, and raisins) was 7.4 millions of hectares, and the world production of wine, ex-
cluding juices and musts, was estimated at 260 millions of hectoliters [1,2]. The Food
and Agriculture Organization of the United Nations points to climate change as one of
the factors that have further increased crop damage [3], making pest monitoring procedures
even more relevant.

Accurate pest identification and seasonal monitoring of vector insects population
dynamics in vineyards are essential for developing cost-effective pest management pro-
grams. Conventional pest monitoring programs have consisted of deploying a variety
of pest trap setups, each carefully designed to attract target pests of interest, which have
to be periodically inspected by human operators to accurately identify and quantify pest
counts [4].
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While the monitoring of these traps is currently mostly done on-site by winegrowers
through visual inspection, smartphone image acquisition of those traps is starting to play
a key role in assessing pest outbreaks, as well as enabling the remote monitoring by
taxonomy specialists. However, the hand-held image acquisition process in the open field
is quite challenging, not only due to the heterogeneity and variability of light exposure,
but also because the trap images need to be adequate for further analysis (e.g., trap clearly
visible, properly focused and in an acceptable perspective).

This paper presents a new Artificial Intelligence (AI) based methodology to improve
hand-held image acquisition of insect traps placed in vineyards, by merging automated
quality and adequacy image control. Particularly, we start by proposing an image focus
and shadows/reflections detection approaches for real-time image quality assessment.
Regarding automated adequacy control, it was assumed that only images with a detected
trap would be suitable for pest monitoring, so a real-time trap segmentation technique for
mobile-acquired images is also presented. Finally, we also developed a new approach to
automatically distinguish between two common trap types, i.e., delta and chromotropic,
and an image processing routine to correct the trap’s perspective.

This paper is structured as follows: Section 1 summarizes the motivation and objec-
tives of the work; Section 2 presents the related work found on the literature; in Section 3,
the system architecture and proposed approaches are described; Section 4 details the re-
sults and the respective discussion; and finally the conclusions and future work are drawn
in Section 5.

2. Related Work

The use of automated image capture technology to monitor insect pest populations
in applied research experiments [5–7] and commercial settings [8–12] has proven effective
for timely pest management in various cultivated crop systems, including vineyards. Many
of these image capture technologies facilitate automated image acquisition of traps that
are set at a fixed distance and within optimal focus. Some of these automated insect
trap setups ensure that the acquired images are free from shadows or specular reflections
to enable remote insect identification and automate pest enumeration [7,13]. However,
some automated trap setups still rely on static systems that require proprietary traps or
enclosures, where the sticky trap must be assembled [5,6].

While a high degree of pest monitoring automation allows for continuous and remote
data collection and processing, these benefits can be overshadowed by the need to establish
a costly hardware infrastructure on the field. Specifically, every physical pest monitoring
point will need to be equipped with trap hardware components designed for proper
image acquisition, processing power, data communication (e.g., GSM), and power supply
(e.g., through batteries or solar panels). If the agricultural producer decides to increase
the granularity of the monitoring by deploying more traps, i.e., creating more individual
pest monitoring points, then associated high equipment and routine maintenance costs
alone could be financially prohibitive for some field operations. Additionally, the use of
these technologies does not replace the need for trained personnel to visit each monitoring
point to collect and replace traps, clean the trap from debris, change the pest attractant
(e.g., pheromone), or record the phenological state of the surrounding crop.

Given this context, smartphones appear as an interesting alternative to avoid the re-
ferred infrastructure restrictions, since it’s a widely disseminated and easy-to-use tech-
nological tool, simultaneously allowing portability, communication, and local processing
power to execute AI algorithms (i.e., also suitable for scenarios without GSM coverage).
In terms of existing mobile-based solutions, a Trapview solution [9] provides a smartphone
application that allows the end-user to perform image acquisition of traps. However, this
process is fully manual and consequently prone to human error, since it does not includes
any software layer for automated quality and adequacy control.

It is noteworthy that, despite the continuous improvements on image acquisition
process on most recent smartphones, just using the autofocus methods provided by the An-
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droid/iOS APIs is clearly insufficient, given that it is a fallible process and only allows
developers to force the focus, not guaranteeing that the acquired image has the desired
quality. In fact, very few studies researched the assessment of available auto-focus sys-
tems [14], the work in [15] being one of the first to propose an objective measurement
protocol to evaluate autofocus performance of digital cameras.

Regarding the automatic assessment of illumination artifacts on images, a recent litera-
ture review [16] highlighted the crucial impact of shadows on the performance of computer
vision applications, which may decrease its performance due to loss or distortion of objects
in the acquired image. Additionally, in [17,18], the importance of detecting reflections on
image-based solutions is emphasized, since, despite the valuable information that specular
reflections may add, their presence is usually a drawback for image segmentation tasks.

In terms of automated adequacy control, methodologies for trap segmentation can be
considered a crucial step, since they allow the system to assess the presence and location
of the trap in a image, and consequently remove unnecessary background information.
Taking into account the rectangular shape of traps, multiple methods have been explored
in the literature for similar tasks. In [19,20], the authors explored edge detection approaches
to segment objects with rectangular shape, while, in [21], the authors presented a method-
ology with additional steps to validate the similarity of the object with a rectangle.

In summary, the detailed control of image quality and adequacy should be considered
an extremely important factor during the design of a mobile application intended for trap-
based insect monitoring. In fact, promising results have been recently reported for different
healthcare solutions [22–24], by embedding AI to effectively support the user in the hand-
held image acquisition process. However, the use of similar approaches in viticulture
is non-existent.

3. System Architecture

A mobile application module was designed in order to allow a hand-held acquisition
of insect trap images and therefore the pest monitoring in vineyards. Requirements like
the detailed control of image quality and adequacy were taken into account, in order to
develop a solution that guides the user through the image acquisition process, by auto-
matically assessing if requirements like image focus, absence of illumination artifacts, or
the presence of the whole trap on the image are met.

The application relies on a set of computer vision algorithms that guides the user
through the image acquisition process, and automatically acquires the image without
the need of the user’s interaction when the quality and adequacy conditions of the image
are automatically validated. The proposed methodology can be divided into two main
steps: the Preview Analysis and the Acquisition Analysis, responsible for the processing of
each camera preview frame and the acquired trap image, respectively (see Figure 1).

Figure 1. Application flow for image quality and adequacy validation.

In order to automatically acquire a trap image, each preview frame must meet the re-
quirements of four different modules: (i) focus validation; (ii) trap type classification;
(iii) shadows and reflection validation; and (iv) trap segmentation. When a set of con-
secutive frames pass those conditions, an image is automatically acquired, a perspective
correction step that relies on the corners of the detect trap segmentation mask being applied.
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It should be noted that the system is able to acquire images of both delta traps (DT) and
chromotropic traps (CT), using almost the same processing flow, with just minor changes
on individual steps that will be detailed in the following subsections.

The application validation flow is represented in Figure 1, and is processed sequen-
tially. If any validation step fails, it will not continue to the next step and the process
returns to the starting point. Despite being a procedure that is mostly processed sequen-
tially, the focus and shadows/reflections’ validation steps are computed in parallel, in order
to take advantage of the smartphones’ multi-thread capabilities and reduce the overall
computational time.

3.1. EyesOnTraps Dataset

In order to develop the automatic approaches for image quality and adequacy as-
sessment, a dataset of 516 images was collected with trap images captured with dif-
ferent smartphones, in controlled and non-controlled environments, as well as simulat-
ing scenarios where the acquired images are out of focus, or with shadows and reflec-
tions present. In particular, the authors started by collecting a subset in a laboratory
setting under well-controlled conditions (see Figure 2) using 28 traps previously collected
on the field. This dataset was then complemented by a subset of trap images collected
in a non-controlled environment, i.e., in three different vineyards by the target end-users of
the system (winegrowers), during their weekly procedure to monitor the deployed traps
(see Figure 3). It should be noted that both controlled and non-controlled subsets include
DT and CT, with resolutions from 1224 × 1632 px to 2988 × 5312 px. The distribution of
the images regarding the acquisition environment and trap type is shown in Table 1.

Table 1. Dataset image distribution regarding acquisition environment and trap type.

Trap Type #Images Controlled
Environment

#Images Non-Controlled
Environment Total

DT 141 90 231

CT 253 32 285

All 394 122 516

In order to support the development of the different system functionalities, three
different subsets were created and manually labeled. The following sub-sections provides
the details about these subsets, namely: (i) Image Focus Subset; (ii) Reflections and Shadows
Subset; and (iii) Trap Segmentation Subset.

3.1.1. Image Focus Subset

The image focus subset aims to support the development of the automatic focus
assessment step, and consists of a total of 205 images labelled as focused or unfocused (see
Table 2). It was achieved by acquiring images of 20 DT and 18 CT, on which each CT results
in two images, one for each side of the trap. Figure 2 shows images of DT focused, DT
unfocused, CT focused, and CT unfocused, respectively, where the concern of acquiring
images with the traps in different perspectives is also illustrated.

Table 2. Dataset image distribution regarding labelled data for the image focus assessment step.

Trap Type #Images Focused #Images Unfocused Total

DT 33 27 60

CT 76 69 145

All 102 103 205
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Figure 2. Illustrative images labeled as: (A) focused; and (B) unfocused.

3.1.2. Reflections and Shadows Subset

The subset created to develop the the reflections and shadows assessment step consists
of a total of 216 images manually labeled in three classes, as depicted in Table 3. In order
to build this subset, some previously acquired images captured in an indoor setting were
used, and additional images were acquired in a simulated non-controlled environment
(outdoors with direct sun light), in order to produce a reasonable amount of images with
significant reflections and shadows present.

Table 3. Dataset image distribution regarding labelled data for the reflections and shadows valida-
tion step.

Trap Type #Control
Images

#Images with
Reflections

#Images with
Shadows Total

DT 51 5 22 78

CT 53 37 48 138

All 104 42 70 216

Figure 3. Illustrative images labeled as: (A) good illumination; (B) with shadows; (C) with reflections.
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3.1.3. Trap Segmentation Subset

The trap segmentation dataset includes a portion of the images used for previously
described subsets and are representative of controlled and non-controlled environments.
After an initial dataset analysis to assess the suitability of each image to be manually
annotated in terms of trap location, some images had to be excluded. The exclusion criteria
include images on which the borders or corners of the trap were not visible in the image,
as well as repeated images of the same trap in similar conditions (perspective and illumi-
nation). After applying the referred exclusion criteria to the entire dataset of 516 images,
70 images do not have corners or borders of the trap, and 106 images of the same trap
in similar perspectives and illumination conditions were discarded, resulting in the trap
segmentation subset that includes a total of 340 images. For each image in the subset,
a segmentation mask representing the trap location was manually annotated (see Figure 4).

Figure 4. Illustrative images of: CT (A) and DT (B) images with respective ground truth trap location;
(C) excluded image (trap border not visible); and (D) excluded image (not all trap corners appear
within the field of view).

It should be noted that all images contained in this subset have the four corners of
the trap annotated, and will later be used as ground truth when assessing the performance
of the proposed trap segmentation approach.

3.2. Image Focus Assessment Pipeline

Determining image focus is a crucial step to ensure that mobile-acquired trap images
present the required quality to be further used for pest monitoring purposes. We developed
a functional machine learning (ML) pipeline to assess image focus on CT and DT images,
the respective development steps being described in the following sub-sections. As part of
developing a suitable ML approach for real-life scenarios, we aimed to develop a model
suitable for both high-end and low-end mobile devices. Thus, the selected ML model
should be lightweight, for instance using the smallest combination of focus metrics while
ensuring an acceptable performance, to operate smoothly under the most demanding
computational constraints imposed by lower-end smartphones.

3.2.1. Feature Extraction

Prior to the feature extraction step, the images were cropped into a central square
with a side equal to 50% of the smaller dimension (width or height) of the mobile-acquired
trap image, depending on the image’s orientation. The resulting cropped square is then
resized to 360 × 360 px. This pre-processing step aims to remove unnecessary information
from the image (e.g., background) and make it more likely to only represent the trap, while
the selected resized resolution is similar to the preview frame resolution that will be used
on the mobile application. In order to compute the focus metrics that will be used as
features by the ML model, the cropped image is converted to grayscale. Following previous
works in the area of dermatology [23,24] and microscopy [25], where the use of artificially
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blurred images greatly enhanced the discriminative power of the focus metrics, in this work,
we used a similar approach by applying a median blur filter with a kernel size of 5.

Regarding the feature extraction procedure, the set of focus metrics listed in Table 4
were independently computed for each grayscale and blurred image. It should be noted that
many of these absolute focus metrics were previously proposed for focus assessment [26,27].
Additionally, we also followed more recent studies [23,24] by adding a new set of relative
features that consists of the difference and the quotient between the obtained focus metrics
for the grayscale and artificially blurred image. By merging all these absolute and relative
focus metrics, a feature vector with a total of 788 features was obtained, with each metric
properly being normalized through scaling (between 0 and 1).

Table 4. Summary of the features extracted for focus assessment.

Group Feature Name Extracted Metrics

Gradient

Gaussian Derivative max, std, min, max, sum, L2norm, skew, kurt

Squared Gradient max, std, min, max, sum, L2norm, skew, kurt

Thresholded Abs. Grad. max, std, min, max, sum, L2norm, skew, kurt

Gradient Energy max, std, min, max, sum, L2norm, skew, kurt

Tenengrad max, std, min, max, sum, L2norm, skew, kurt

Tenengrad Variance max, std, min, max, sum, L2norm, skew, kurt

Statistic

Gray Level Variance max, std, min, max, sum, L2norm, skew, kurt

Norm. Gray L. Variance max, std, min, max, sum, L2norm, skew, kurt

Histogram Range Range (grey, blue, green, red)

Histogram Entropy Entropy (blue, green, red)

Laplacian

Modified Laplacian max, std, min, max, sum, L2norm, skew, kurt

Energy of Laplacian max, std, min, max, sum, L2norm, skew, kurt

Diagonal of Laplacian max, std, min, max, sum, L2norm, skew, kurt

Variance of Laplacian max, std, min, max, sum, L2norm, skew, kurt

Laplacian Filter max, std, min, max, sum, L2norm, skew, kurt

DCT

DCT Energy Ratio max, std, min, max, sum, L2norm, skew, kurt

DCT Reduced Energy Ratio max, std, min, max, sum, L2norm, skew, kurt

Modified DCT max, std, min, max, sum, L2norm, skew, kurt

Other

Brenner’s Measure max, std, min, max, sum, L2norm, skew, kurt

Image Curvature max, std, min, max, sum, L2norm, skew, kurt

Image Contrast max, std, min, max, sum, L2norm, skew, kurt

Spatial Frequency max, std, min, max, sum, L2norm, skew, kurt

Vollath’s Autocorrelation max, std, min, max, sum, L1norm, L2norm, skew, kurt

Vollath’s Standard Deviation max, std, min, max, sum, L1norm, L2norm, skew, kurt

Helmli and Scheres Mean Method max, std, min, max, sum, L2norm, skew, kurt

Marziliano Metric sumX, meanX, sumY, meanY

3.2.2. Models Training and Optimization

The focus features detailed in the previous subsection were extracted for each image of
the Image Focus Subset. The training, optimization, and selection of the best ML approach
was performed using WEKA data mining software [28]. The model was trained using
a 10-fold cross-validation strategy designed to optimize its accuracy. Experiments were
performed with different classifiers: Linear SVM, Decision Trees, and Random Forests.
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3.3. Shadows & Reflections Assessment Pipeline

An ML pipeline was developed to ensure that the acquired images did not present any
illumination artifacts such as shadows or reflections, a key factor to ensure the quality and
adequacy of the acquired trap images [16–18]. The main goal of this module is to avoid
the use of trap images without suitable and homogeneous illumination, which might com-
promise not only posterior automated steps like trap segmentation or perspective correction,
but also key tasks like the correct identification of insects for pest monitoring purposes.

In terms of feature extraction, the image is cropped into a central square with side
equals to 50% of its smaller dimension (width or height) and resized to a 360 × 360 pixels
resolution, as described in Section 3.2.1. Despite the considered metrics being mostly used
for focus assessment purposes, many of them actually quantify image characteristics that
are also relevant to detect shadows and reflections, such as the presence or relative changes
in terms of texture and edges in the image [29,30]. Thus, we considered those same metrics,
in order to explore if they also might be suitable for detecting the presence of uneven
illumination conditions.

Regarding ML training and optimization, the same procedure detailed in Section 3.2.2
was applied. However, in this case, we have the particularity of having three different
classes (as detailed in Section 3.1.2), also being observed through an exploratory analysis
of the dataset collected that the presence of shadows and reflections on CT and DT may
manifest quite distinctly in the images.

Due to the low number of DT images with reflections, and the specular reflections
the different trap types present, an additional combination of experiments was considered,
namely: (i) detect good and uneven illumination in both trap types using a single ML model,
i.e., consider a 2-class problem by merging shadows and illumination labels in a single
class; (ii) detect good and uneven illumination (2-class problem) in CT and DT separately,
i.e., having two independent ML models for each trap type; (iii) detect good illumination,
shadows and reflection (3-class problem) in both trap types using a single ML model;
and (iv) detect good illumination, shadows and reflection (3-class problem) in both trap
types separately through two independent ML models.

3.4. Trap Type Detection and Segmentation Pipeline

A robust trap segmentation is crucial to ensure that the trap is present and determine
its specific location in the image. However, before determining the trap segmentation
mask, the proposed approach starts by detecting the trap type on the image, i.e., classifying
the image between DT and CT. The simplest and fastest approach found to achieve this was
through the use of the L*C*h◦ (Lightness, Chroma, Hue) color space, due to its particular
characteristics of being device independent and designed to match human perception. Thus,
the image was converted from RGB to L*C*h◦ color space and an image crop procedure
similar to the one detailed in Section 3.2.1 was applied, resulting in a squared image
that only includes trap area. The mean value of Hue and Chroma channels were then
extracted for each image, as shown in Figure 5. The data distribution already depicts a clear
separation for DT and CT, which highlights the discriminative power of the used values to
distinguish between trap type. Nevertheless, a decision tree was created using 10 fold-cross
validation, in order to find the optimal threshold.

Depending on the trap type detected, a grayscaled image is generated from the ac-
quired image. This pre-processing step differs based on the trap type, in order to increase
the contrast between the trap and the background. In particular, for DT, this is achieved by
considering the minimum RGB intensity for each pixel, while, for CT, the trap contrast is
increased by subtracting the G channel from the B channel. For both cases, a normalization
was applied (see Figure 6B).

To further facilitate the segmentation task, the trap sharpness was also increased via
unsharp masking, a procedure that subtracts a smoothed version of the original image
in a weighted way, so the intensity values of constant areas remain constant (see Figure 6C).
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Figure 5. Data distribution of mean Hue and Chroma values for DT (grey) and CT (yellow).

Particularly, the smoothed image was obtained by blurring the original grayscale
image IGray using a Gaussian filter with a fixed window radius of 50, a blurred image IBlur
being obtained which is then combined with the IGray, according to the weights detailed in
Equation (1):

ISharp = 1.5 × IGray − 0.5 × IBlur (1)

Finally, the algorithm used for trap segmentation was based on Otsu’s Method [31],
a well-known histogram shape-based image thresholding routine, very computationally
efficient, and thus suitable to run in real time on mobile devices (see Figure 6D). This
method assumes that the input image has two classes of pixels and calculates the threshold
that minimizes the intra-class variance. In order to smooth the trap border by connecting
unconnected blobs on the limits of the trap, a closing morphological operation with an el-
liptical structuring element of size 9 is applied. The segmentation task terminates with
an area filtering step, being only selected the biggest blob as the representative for the trap
segmentation mask, and the remaining inner structures inside this mask were removed
using a flood fill algorithm (see Figure 6E).

Figure 6. Trap segmentation: (A) original RGB image; (B) grayscale image; (C) sharpening; (D)
Otsu’s segmentation; (E) post-processing (morphological operations, area filtering, and hole-filling).
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3.5. Trap Perspective Correction Pipeline

Both DT and CT have usually square or rectangular shapes, but, when viewed from dif-
ferent perspectives, they can assume distinct quadrilateral shapes in the image (e.g., trapez-
iums). In order to standardize the image capture of traps and turn it independent of
the perspective selected by the user during the image acquisition process, a perspective
correction methodology was used to ensure that the trap in the corrected image will always
have a square or rectangular shape. This approach receives as input the segmentation
mask previously obtained (see Figure 7B), and, in order to find the four corners of the trap,
a polygonal approximation method was applied based on the Douglas–Peucker algo-
rithm [32]. The method recursively approximates the polygon obtained from the convex
hull of the trap contours to another polygon with just four vertices, so that the distance
between them is less or equal to the specified precision (see Figure 7C). The resulting
corners are sorted (see Figure 7D), and used to compute the 3 × 3 perspective transform
matrix [33], leading to the desired perspective transformation (see Figure 7E).

Figure 7. Perspective correction methodology: (A) original image; (B) trap segmentation mask; (C)
segmentation mask from polygonal approximation; (D) corner points from polygonal approximation;
(E) transformed image with corrected perspective.

Due to the variable dimensions of traps, an additional step is required to ensure
the image presents the correct aspect ratio. In order to achieve this, we used a previously
proposed technique [34] which assumes that the rectangular trap is projected in a plane
perpendicular to the camera’s pinhole. By relating the two concurrent vectors of the plane,
we are able to compute the correct aspect ratio of the trap, and consequently apply an image
resize step to ensure it (see Figure 7E).

4. Results and Discussion
4.1. Image Focus Assessment Results

Following the methodology described in Section 3.2.2, the weighted classification
results for the different ML classifiers, in terms of different performance metrics, are
presented in Table 5.
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Table 5. Classification results image focus assessment.

Model Accuracy Recall Precision F1 #Features

Linear SVM 0.884 0.884 0.887 0.882 788

Random Forest 0.895 0.895 0.899 0.894 495

Decision Tree 0.855 0.855 0.855 0.853 4

Decision Tree 0.843 0.843 0.843 0.843 1

The real-time execution in mobile devices being one major requirement, the trade-off
between performance and computational complexity was crucial to select the most suitable
model. The Decision Tree model highlighted in Table 5, which achieves a result close to
the best classification model, while being the lightest model, since it uses a single focus
metric (mean Thresholded Absolute Gradient of the quotient between the blurred and
original image), was included in the pipeline.

4.2. Shadows & Reflections Assessment Results

The following tables present the results for the validation of the present of illumi-
nation artifacts as detailed in Section 3.3. As previously detailed, we designed a series
of experimental combinations to select the most suitable approach, namely: (i) if the ML
model should tackle a two-class problem (good and uneven illumination, by merging
shadows and illumination labels in a single class) or a 3-class problem (good illumination,
shadows and reflection); and (ii) if we should consider a single ML model (i.e., suitable
for both trap types) or two independent ML models for each trap type. Table 6 shows
the weighted classification results for the single ML model approach, considering both
2-class and 3-class scenarios.

Table 6. Classification results for shadows and reflections using a single ML model for DT and CT.

#Classes Model Accuracy Recall Precision F1 #Features

3-class problem Decision Tree 0.857 0.857 0.868 0.857 2

3-class problem Random Forest 0.929 0.929 0.928 0.928 185

2-class problem Random Forest 0.894 0.894 0.894 0.894 587

2-class problem Decision Tree 0.822 0.822 0.823 0.822 1

Regarding the experiments with independent ML models for each trap type (consider-
ing both 2-class and 3-class scenarios), Table 7 shows the weighted classification results
for the independent ML model approach just for CT, while Table 8 shows the weighted
classification results for the independent ML model approach just for DT. Considering
the trade-off between performance and complexity of the different models, we considered
that the best option for our solution would be to use independent ML models for each trap
type (highlighted in Table 7 and 8). Each of these models will tackle a 2-class classification
problem, based on a Decision Tree that remarkably only needs a small number of features
to achieve interesting results. In particular, the mean value of Variance for the blurred
image is the feature selected for the CT model, while the DT model uses the the difference
between the skew values of the Normalized Variance of the original and the blurred image;
and the minimum value of normalized variance of the blurred image.
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Table 7. Classification results for shadows and reflections using an independent ML model for CT.

Train Conditions Model Accuracy Recall Precision F1 #Features

3-class problem Random Forest 0.946 0.946 0.951 0.946 403

3-class problem Decision Tree 0.957 0.957 0.957 0.957 3

2-class problem Decision Tree 0.962 0.962 0.963 0.962 1

Table 8. Classification results for shadows and reflections using an independent ML model for DT.

Train Conditions Model Accuracy Recall Precision F1 #Features

3-class problem Random Forest 0.846 0.846 0.804 0.823 210

3-class problem Decision Tree 0.795 0.795 0.795 0.770 2

2-class problem Random Forest 0.833 0.833 0.845 0.832 237

2-class problem Decision Tree 0.796 0.796 0.793 0.796 2

4.3. Trap Type Detection & Segmentation Results

In terms of the proposed approach to detect the trap type present on the image,
we achieved a 100% accuracy score using the mean Chroma value channel from the L*C*h◦

color space. Given the data distribution depicted in Figure 5, this perfect performance
was already expected. In particular, an optimal threshold of 37.53 for mean Chroma
value was obtained, which was achieved through the train of a Decision Tree model using
10 fold-cross validation.

Regarding the evaluation of the proposed methodology for trap segmentation, we used
as a performance metric the Jaccard index (JA) between the obtained segmentation mask
(after polygonal approximation) and the respective ground truth annotation. These re-
sults are shown in Table 9, where we can see that an overall JA of 96.7% was achieved,
a performance that fits the requirements needed to include this approach in our solution.
Nevertheless, we noticed that the segmentation performance significantly varies with
the conditions in which the images were acquired. Thus, in Table 9, we also detail the seg-
mentation performance for the following subsets: (i) CT image acquired in controlled
environment (CT-CtE); (ii) CT image acquired in non-controlled environment (CT-NCtE);
(iii) DT image acquired in controlled environment (DT-CtE); and (iv) DT image acquired
in a non-controlled environment (DT-NCtE).

Table 9. Trap segmentation performance results: Mean and STD Jaccard index values between
the obtained segmentation mask (after polygonal approximation) and the respective ground truth
annotation. CtE—controlled environment, NCtE—non-controlled environment, CT—chromotropic
trap; DT—delta trap.

Entire
Dataset

CT-CtE
Subset

CT-NCtE
Subset

DT-CtE
Subset

DT-NCtE
Subset

JA Mean 0.967 0.989 0.936 0.990 0.936

JA STD 0.076 0.029 0.108 0.012 0.109

Figure 8 presents some examples of segmentation results with high (I–IV) and low
(V–VIII) mean JA. It is clear that the proposed approach is capable of properly handling
artifacts like reflections (see Figure 8(II)) and structures overlapped to the trap with similar
color (see Figure 8(III–IV)). However, the presence of extreme shadows and reflections
might greatly compromise the segmentation performance (see Figure 8(V–VI)), as well as
overlapped structures with almost identical colors (see Figure 8(VII–VIII)).
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Figure 8. Illustrative images of high JA (I to IV) and low JA (V to VIII) for trap segmentation results: (A) original image;
(B) Otsu’s segmentation; (C) post-processing (morphological operations, area filtering and hole-filling); (D) segmentation
with polygonal approximation; (E) comparison image between segmentation and ground truth; (F) corner points from
polygonal approximation; (G). Transformed image with corrected perspective. (In comparison images: yellow—true
positives; red—false negatives; green—false positives; black—true negatives.)
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4.4. Trap Perspective Correction Results

Regarding the analysis of the the perspective correction results, it should be noted that
the performance of this approach is directly related with the successful segmentation of
the trap, i.e., the perspective will only be successfully corrected when a good segmentation
is achieved through the 4-point polygonal approximation. This is clearly seen in Figure 8:
the images I to IV, which present a suitable perspective transformation, have a JA between
0.976 and 0.935, while the images V to VIII, which present an unsuitable perspective trans-
formation, have a JA index value ranging from 0.383 to 0.872. Considering that the mean
JA for the entire dataset is 0.967, we can then assume that a perspective transformation
was successfully achieved in the vast majority of the dataset, a fact that was confirmed by
the authors through the visual analysis of the perspective transform output for each image.

In order to illustrate the suitability of the perspective transform procedure when
a good trap segmentation is achieved, in Figure 9, we show three photos acquired with
abrupt perspective changes for the same trap. As we can see in the perspective transform
result, regardless of the perspective in which the images were acquired, the corrected image
is always remarkably similar, which highlights the potential of this approach to standardize
the image acquisition process of insect traps. However, it should be noted that images
which need demarked perspective corrections (e.g., bottom CT image (A) in Figure 9 will
be impacted in terms of image quality, regardless of the successful transformation to
the rectangular shape. Image pixelization on the corrected image might be one of the side
effects, since the objects in the demarked perspective have less pixels to represent them.

Figure 9. Examples of perspective correction results: CT (A) and DT (C) images from the same
trap, with overlapped corners from the polygonal approximation process; Respective perspective
correction results for CT (B) and DT (D) images.
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4.5. Mobile Application

Based on the results reported in previous sections, the proposed pipeline was de-
ployed as an Android application, in order to ensure that the mobile-acquired trap images
present the required level of adequacy and quality. In particular, the developed applica-
tion integrated all the previously referred modules in the sequence depicted in Figure 1,
providing real-time feedback to the user during preview analysis in terms of: (i) focus
assessment; (ii) shadow and reflections assessment; (iii) trap type detection; and (iv) trap
segmentation. When a set of consecutive frames passes those conditions (in order to ensure
stability), an image is automatically acquired (see Figure 10A–D), the perspective correction
procedure being further applied (see Figure 10E).

In addition, if the system is not able to acquire the image automatically, the user may
perform the acquisition using the manual mode of the application. However, in the manual
acquisition mode, the results of the methods previously described can still be visualized,
and the user is responsible to press the camera button for triggering the capture of an image
(see Figure 10F).

Figure 10. Android application screenshots: (A) unfocused image; (B) focused and good illumination; (C) trap detected; (D)
automatic image capture; (E) perspective correction; and (F) manual mode.

In order to access the feasibility to execute the propose pipeline in devices with differ-
ent computational capabilities, acquisitions were performed using a high-end smartphone
(Samsung S10) and a low-end smartphone (Samsung S6). The mean and standard devia-
tion times for the preview analysis and the perspective correction procedure applied to
the acquired image measured for both devices are detailed in Table 10. The reported values
were computed based on 10 runs of each process, for each device and acquiring images of
both trap types.

Table 10. Processing times for high-end and low-end mobile devices.

CT DT

High-End Low-End High-End Low-End

Preview Analysis Time (ms)
mean 556 1508 802 1784

std 36 183 135 195

Perspective Correction Time (ms)
mean 5091 14,922 21,409 44,581

std 592 1574 12,055 7665
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By analyzing these results, it is clear that the processing times for the Preview Analysis
are significantly slower for the low-end device. However, the reported processing times
can still be considered suitable for the purpose of the designed application. Regarding
the perspective correction procedure, which also includes the trap’s segmentation of
the acquired image, the demarcated increase in processing time when compared with
the Preview Analysis can be explained by the higher resolution of the acquired image
used in this step, when compared with the preview image used in the Preview Analysis.
Nevertheless, and despite the considerable amount of time required, we consider this
process also suitable for both high-end and low-end devices, since it can be performed
in a background task, resulting in a lower impact on the usability of the application.

5. Conclusions and Future Work

The work presented here combines the use of a custom AI image acquisition system
with Android mobile devices to create further insect pest monitoring technology options
for field applications. Our image acquisition system validates the quality and adequacy
of the mobile-acquired trap images in real-time, by automatically assessing the focus and
illumination of the image, while ensuring that an insect trap is present via a trap type
detection procedure coupled to a segmentation step. In order to train and validate these
different validation steps, a dataset with a total of 516 images including images of both DT
and CT was collected. The dataset was divided into three subsets, such as the image focus
subset, the reflections and shadows subset, and the trap segmentation subset, to support
the development and validation of the different considered functionalities, being manually
annotated for each particular purpose.

The proposed approaches achieved an accuracy of 84% regarding focus assessment,
an accuracy of 96% and 80% regarding the shadows and/or reflections on CT and DT traps,
respectively, and a Jaccard index value of 97% for the segmentation approach. Furthermore,
the proposed pipeline was embedded in an Android application, in order to ensure that
the mobile-acquire trap images present the required level of adequacy and quality.

In terms of future work, we plan to perform further tests to validate the solution
in a real life scenario, as well as assessing the impact that the perspective correction ap-
proach has on an image’s quality, when applied to abrupt trap perspectives. Additionally,
we aim to explore effective ways to segment traps with higher levels of deformation (e.g.,
the existence of bends or folds), without compromising the results attained in the more
frequent and simpler scenarios. In order to address this issue, besides the additional adjust-
ments that would be required on the segmentation and following perspective correction
steps, the ground truth annotation masks will probably need to be re-annotated with
a higher detail and granularity (e.g., increase the number of annotation points in the trap
border). The performance of the segmentation process and the trap’s perspective correction
should also be further studied in future work, mainly on low-end devices when applied
to DT.

As a final note, this work represents only a component of a mobile-based solution for
pest prevention in vineyards that is currently being developed. Thus, we aim to integrate
this methodology into a decision support tool for winegrowers and taxonomy specialists
that allows for: (i) ensuring the adequacy and quality of mobile-acquired images of DT and
CT; (i) providing an automated detection and counting of key vector insects, like Lobesia
botrana (european grapevine moth), Empoasca vitis (smaller green leafhopper) or Scaphoideus
titanus (American grapevine leafhopper); and (iii) improving and anticipating treatment
recommendations for the detected pests.
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