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Abstract: To examine physiological responses of garlic to salinity, 17-day-old seedlings of eight
soft-neck accessions were treated with 200 mM NaCl for seven days in a hydroponic system. Sev-
eral morphological and physiological traits were measured at the end of the treatment, including
shoot height, shoot fresh weight, shoot dry weight, root length, root fresh weight, root dry weight,
photosynthesis rate, and concentrations of Na+ and K+ in leaves. The principal component analysis
showed that shoot dry weight and K+/Na+ ratio contribute the most to salt tolerance among the
garlic accessions. As a result, salt-tolerant and sensitive accessions were grouped based on these two
parameters. Furthermore, to investigate the molecular mechanisms in garlic in response to salinity,
the transcriptomes of leaves and roots between salt-tolerant and salt-sensitive garlic accessions were
compared. Approximately 1.5 billion read pairs were obtained from 24 libraries generated from the
leaves and roots of the salt-tolerant and salt-sensitive garlic accessions. A total of 47,509 genes were
identified by mapping the cleaned reads to the garlic reference genome. Statistical analysis indicated
that 1282 and 1068 genes were upregulated solely in the tolerant leaves and roots, whereas 1505 and
1203 genes were downregulated exclusively in the tolerant leaves and roots after NaCl treatment,
respectively. Functional categorization of these genes revealed their involvement in a variety of
biological processes. Several genes important for carotenoid biosynthesis, auxin signaling, and K+

transport were strongly altered in roots by NaCl treatment and could be candidate genes for garlic
salt tolerance improvement.

Keywords: garlic; salt stress; principal component analysis; RNA-seq; transcriptome

1. Introduction

With soil salinization threatening more than one-third of cultivated lands, salinity
stress becomes one of the most adverse environmental factors that significantly affect
plants’ growth and development [1]. Over-accumulation of sodium (Na+) and chloride
(Cl−) in plant cells has detrimental effects on physiological traits and metabolic processes,
such as ion imbalance, water stress, oxidative damage, abnormal membrane stability, and
reduced photosynthesis, resulting in plant wilting and death [2–8]. On the other hand,
plants have evolved complicated mechanisms to cope with salt stress.
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The exclusion of Na+ from the shoot is an essential mechanism for plants to maintain
regular photosynthesis rate and growth [3]. High-affinity K+ transporter 1 (HKT1) is a
plasma membrane importer responsible for sodium exclusion [9]. Ca2+ in plant tissues was
also found to increase Na+ exclusion in order to improve salinity tolerance [10]. In addition,
root system architecture (RSA) significantly changes to avoid salt stress, which is mediated
by plant hormones auxin and abscisic acid (ABA) [11–13]. ABA plays a crucial role in salt
tolerance in many plant species by regulating stomatal closure, root growth, and stress-
responsive gene expression. Genes involved in ABA biosynthesis, phytoene synthase
(PSY), nine-cis-epoxy-carotenoid dioxygenase (NCEDs), ABA DEFEICIENTS (ABAs), and
aldehyde oxidase 3 (AAO3) are induced by salinity in various tissues [14–16]. Sucrose
non-fermenting-1-related protein kinases (SnRK2.2, SnRK2.3, and SnRK2.6), the central
components in the ABA signaling pathway, are activated following the perception of
ABA and regulate ion transport, reactive oxygen species (ROS) production, and gene
expression by phosphorylating different targets [17,18]. Another well-studied signaling
cascade involved in salt stress responses is the salt overly sensitive (SOS) pathway. Its main
components, SOS1, SOS2, and SOS3, maintain ion homeostasis in plant cells under salt
stress [19–21]. Several SOS orthologs have been identified in rice and Brassica species,
indicating that the pathway is conserved in plants [22,23]. Despite common characteristics
in adaptation and tolerance of plants to salinity, the dominant mechanism by which plants
survive salinity stress could be different from species to species.

Garlic (Allium sativum L.) is one of the important seasonings and horticulture plants.
A previous study showed that soil salinity drastically reduced garlic yield and quality [24].
Unlike other plant species such as Arabidopsis, rice, wheat, barley, and tomato, limited
information is available about garlic’s physiological responses under salt stress. Under-
standing physiological responses of garlic to salt stress and the molecular basis of salt
tolerance will help improve the vegetables’ abiotic tolerance.

As a member of the Allium family, most garlic varieties are diploids (2 n = 2× = 16).
The genome size of the haploid garlic is estimated to be 15.9 giga-base pairs (Gb), 118,
32, and 6 times bigger than the genomes of Arabidopsis, rice, and maize, respectively,
indicating a complex genome structure and making garlic genome sequencing challeng-
ing [25,26]. Recently, approximately 16.24 Gb of garlic (cultivar Ershuizao) genome were
sequenced and assembled into eight chromosomes with 57,561 predicted protein-coding
genes [27]. Many garlic genes involved in the biosynthesis of sulfur compounds, salt
stress tolerance, development of the flower, pollen and clove, and green discoloration by
low-temperature were identified by RNA-sequencing (RNA-seq) technology followed by
de novo assembly [28–33].

In this study, eight garlic accessions were hydroponically grown and treated with
200 mM NaCl. Several morphological and physiological traits were measured at the end of
treatment. Salt tolerance was evaluated, and salt-tolerant and salt-sensitive accessions were
grouped using a principal component analysis (PCA). Subsequently, the transcriptomes
of salt-treated leaf and root tissues from the salt-tolerant and sensitive garlic accessions
were examined by RNA-seq, identifying a total of 5386 differentially expressed genes in the
salt-tolerant leaves and roots. These genes were involved in diverse biological processes
that mediate salt tolerance in garlic.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Garlic (A. sativum L.) accessions were obtained from the U.S. Department of Agricul-
ture National Plant Germplasm (USDA-NAGS). Their accession numbers, origins, and
improvement status were listed in Figure 1A. Healthy garlic cloves were grown in Metro
Mix soil in a growth chamber under a 14 h light period with light intensity of 800 µmol/m2

at 23 ◦C. Twelve-day-old garlic seedlings were unearthed, washed, and then transferred to
Hoagland solution and grown for another five days. The hydroponic solution was changed
every three days.
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Figure 1. Garlic plants under NaCl stress. (A). Experimental IDs, names, accession numbers, origins, and improvement
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2.2. Salt Stress Treatment and Physiological Measurements

For salt treatment, NaCl was added into Hoagland solution to a final concentration
of 200 mM while the seedlings grown in Hoagland solution were used as the control.
The seedlings were collected seven days later, and shoot height, shoot fresh weight, root
length, and root fresh weight were determined. Shoot and root dry weight were measured
after the shoot and root were dried at 80 ◦C for three days. At the end of salt treatment,
three control and three salt-treated plants were chosen to measure the photosynthesis rate
by using LI-COR 6400XT following the manufacturer’s instructions (LI-COR, Lincoln, NE).
Some of the seedlings were collected in liquid nitrogen and stored at −80 ◦C for RNA ex-
traction. For Na+ and K+ measurement, 50 mg of dry powder of garlic leaves were digested
in H2SO4 and diluted to 50 mL by adding ultrapure water. Na+ and K+ concentrations
were measured in a plasma atomic emission spectrometer (ICP9820, Shimadzu, Columbia,
MD, USA).

2.3. Principal Component Analysis (PCA)

The data from the salt treatment were used in the PCA by following the protocol online
(https://www.programmersought.com/article/31583857013/, accessed on 7 October 2020).
The principal components (PCs) and contributions of each trait to PCs were determined.
Based on the two traits that made the biggest contributions to the combined PC1/PC2,
eight garlic accessions were grouped.

2.4. RNA Extraction, Library Construction and Quantitative Reverse Transcription PCR (qRT-PCR)

RNA was extracted from garlic shoot and root tissues using an E.Z.N.A.® Plant
RNA Kit (Omega Bio-Tek Company, Norcross, GA, USA) according to the manufacturer’s
instructions. RNA samples’ integrity was checked in an Agilent 2100 Bioanalyzer System
(Santa Clara, CA) to ensure RNA integrity number (RIN) above 8.0. Four mg of total
RNA were used to construct RNA-seq libraries with the TruSeq RNA Library Prep Kit
(Illumina Company, San Diego, CA, USA). The libraries were sequenced on an Illumina
NovaSeq 6000 sequencing platform with the 2 × 150 bp paired-end mode. Approximately
1 µg of RNA samples was converted into cDNAs using the iScriptTM cDNA synthesis kit
(Bio-Rad, Hercules, CA, USA). Expression of the selected genes was examined by qRT-PCR
by using the gene specific primers (Supplementary Table S1). Garlic elongation factor 1
alpha (EF-1α) was used as internal control. The melt curve analysis was run afterwards to
confirm the specificity of PCR amplification. qRT-PCR data indicated the mean of three
biological replicates.

2.5. RNA-Seq Data Analysis and Functional Annotation

Raw RNA-seq reads were first processed by trimming the adaptor and low-quality
sequences using Trimmomatic [34] with default parameters and filtering reads that were
mapped to the rRNA database [35] using bowtie [36], allowing up to three mismatches.
The cleaned RNA-seq reads were mapped to the garlic reference genome [27] using
STAR [37]. Following alignments, raw counts for each gene were calculated and then nor-
malized to fragments per kilobase of exon model per million mapped fragments (FPKM).
Differentially expressed genes were identified using DESeq2 [38], with the criteria of log2
(fold change) ≥1 or ≤−1, and adjusted p-value ≤ 0.05. GO term annotation of garlic genes
and GO term enrichment analysis of differentially expressed genes (DEGs) were performed
using the Blast2GO suite [39]. Enriched GO terms were summarized and visualized using
REVIGO (http://revigo.irb.hr/, accessed on 10 December 2020) [40]. Pathway annotation
was performed using BlastKOALA [41] and significantly enriched pathways in DEGs were
identified using the hypergeometric test.

https://www.programmersought.com/article/31583857013/
http://revigo.irb.hr/
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3. Results
3.1. Physiological Response of Garlic Cultivars to Salt Stress

Seventeen-day-old garlic seedlings from eight soft-neck garlic accessions were treated
with 200 mM NaCl for seven days in a hydroponic system (Figure 1). At the end of the treat-
ment, nine traits were measured in garlic seedlings under non-salinity (Hoagland solution)
and salinity (Hoagland solution with 200 mM NaCl), including shoot height (SH), shoot
fresh weight (SFW), shoot dry weight (SDW), root length (RL), root fresh weight (RFW),
root dry weight (RDW), photosynthesis rate, as well as Na+ and K+ concentrations in leaves
(Table 1). Salt stress significantly affected garlic growth and development. An average of
around 29.7%, 46.9%, 29.8%, 42.4%, 40.7%, 36%, and 77.7% reduction was found for SH,
SFW, SDW, RL, RFW, RDW, and photosynthesis rate, respectively. Na+ concentration is rela-
tively low in plant leaves grown under normal conditions and significantly increased under
salinity stress [42,43]. The exclusion of Na+ from the shoot is a tolerance mechanism for
plants to survive [3]. Therefore, Na+ and K+ concentrations were measured in salt-treated
leaves in this study. Na+ and K+ concentrations among these garlic accessions ranged
from 14.00–28.19 mg/g DW and 29.34–46.05 mg/g DW, respectively (Table 1), indicating
differences among the garlic accessions in the uptake and exclusion of Na+ and K+.

Table 1. Mean values of shoot height (SH), shoot fresh weight (SFW), shoot dry weight (SDW), root
length (RL), root fresh weight (RFW), root dry weight (RDW), photosynthesis rate (Photo), Na+, and
K+ concentrations under normal and salinity conditions.

Traits Control NaCl 200 mM
Range Mean Range Mean

SH (cm) 16.5–41.1 28.3 13.2–29.8 19.9
SFW (g/plant) 1.88–8.59 4.07 0.61–5.4 2.16
SDW (g/plant) 0.30–0.76 0.47 0.15–0.58 0.33

RL (cm) 9.6–33.1 26.2 9.2–21.1 15.1
RFW (g/plant) 1.13–5.21 3.0 0.4–3.68 1.78
RDW (g/plant) 0.11–0.37 0.25 0.04–0.27 0.16

Photo
(µmol m−2 s−1) 4.42–18.03 11.87 1.20–4.68 2.65

Na+(mg/g) ND ND 14.0–28.2 20.2
K+(mg/g) ND ND 29.3–46.0 37.8

ND, not detected.

3.2. PCA and Separation of Garlic Accessions

PCA is a robust mathematical algorithm that reduces the measurement data’s complex-
ity. By comparing a few principal components, samples can be separated and grouped [44].
PCA of the above measurement data showed that the first (PC1), second (PC2), and third
principal components (PC3) explained 51.36%, 29.58%, and 8.29% of the variance, respec-
tively. As high as 80.93% of the traits’ variance could be explained by combining the
PC1/PC2. In the combined PC1 and PC2, shoot dry weight (SDW) and K+/Na+ ratio
displayed the highest loading values. Therefore, they were used to access the salinity
tolerance of garlic accessions (Figure 2A). Previous studies showed that salt-tolerant plants
often have the higher K+/Na+ ratio and less biomass reduction [45,46]. As a result, garlic
accessions 4 (PI 540375), 7 (PI 383819), 8 (W6 35682), 10 (W6 18727), and 11 (W6 671) were
grouped as the tolerant accessions, while 2 (PI 543048), 5 (PI 615422), and 6 (PI 540379)
were considered the salinity sensitive accessions (Figure 2B).
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Figure 2. Principal component analysis of the physiological traits. (A). Contribution (%)
of traits to the principal components. (B). Separation of garlic accessions according to the
shoot dry weight and K+/Na+.

3.3. Comparative Transcriptome in the Salinity-Tolerant and Sensitive Accessions by RNA-Seq

A salinity-tolerant accession (4) and sensitive accession (5) were chosen to study
differentially expressed genes in leaves and roots after NaCl treatment. Twenty-four
libraries were made from three replicates of the garlic accessions’ leaves and roots under
normal conditions or salt stress (Supplementary Table S2). A total of 1503,823,225 raw and
1434,595,989 cleaned read pairs were obtained from these 24 libraries. An average of 33.25
million read pairs from each sample were mapped to the garlic assembled genome [27]
(Supplemental Table S2), resulting in the identification of 47,509 genes from the RNA-seq
analysis.

Statistical analysis with an adjusted p-value below 0.05 showed that 719 and 155
genes were expressed two-fold higher, whereas 726 and 259 genes were downregulated
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(two-fold reduction) in the sensitive shoot and root tissues treated with salt, respectively
(Figure 3A,B, Supplemental Table S3). In comparison, 1571 and 1391 were upregulated
in salt-treated leaves and roots of the salt-tolerant accession, whereas 2045 and 1660
genes were downregulated (Figure 3C,D, Supplemental Table S3). A larger number of
differentially expressed genes (DEGs) in the salt-tolerant line than in the sensitive line
implied that a broader range of responses occurred in the salt-tolerant garlic accession,
especially in roots.
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Figure 3. Volcano plots showing differentially expressed genes (DEGs) in leaf and root tissues in the salt-sensitive garlic
accession (A,B) and salt-tolerant accession (C,D).The x-axis indicates log2 of fold change and the y-axis shows negative log10
of adjust p value. The plots were generated using an online platform (http://www.ehbio.com/Cloud_Platform/front/#/,
accessed on 15 October 2020).

3.4. Functional Categorization of DEGs Identified in the Tolerant Leaves and Roots

A total of 5386 DEGs were then discovered in leaf and root tissues of the salt-tolerant
accession by filtering the DEGs from the salt-sensitive accession, including 1282 genes
upregulated only in leaves, 1068 upregulated only in roots, 113 upregulated in both leaves
and roots, 1505 genes downregulated only in leaves, 1203 downregulated only in roots,
and 215 downregulated in both leaves and roots (Figure 4).

http://www.ehbio.com/Cloud_Platform/front/#/
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Figure 4. Common and different DEGs in the tolerant and sensitive leaves and roots. DEGs identified
from the tolerant (T), and sensitive (S) leaves and roots were analyzed using online software (http:
//bioinformatics.psb.ugent.be/webtools/Venn/, accessed on 10 September 2020). Upregulated and
downregulated genes by NaCl treatment were compared in (A,B), respectively.

Next, the DEGs were functionally categorized by GO (Gene Ontology) annotations.
Fourteen biological processes were significantly upregulated in leaves. These processes
included those associated with cellulose metabolism and microtubule dynamics, such as
“cellulose metabolic process”, “cellulose biosynthetic process”, “beta-glucan metabolic pro-
cess”, “beta-glucan biosynthetic process”, and “microtubule-based movement”. In addition,
the pathways involved in DNA metabolism and replication were enriched (Figure 5A and
Supplementary Table S4). These upregulated pathways could enhance garlic salt tolerance
since maintaining microtubules organization, cellulose synthesis, and DNA replication
promoted biomass production or salt tolerance [47,48]. Sixty-one biological processes were
upregulated in roots, such as “metabolic process”, “oxidation-reduction process”, and
“transport” (Figure 5B and Supplementary Table S4). Meanwhile, 74 biological processes
were downregulated in leaves, including “photosynthesis”, “photosynthesis, light har-
vesting”, “photosynthetic electron transport chain”, “photosynthetic electron transport in
photosystem I”, “photosynthetic electron transport in photosystem II”, and “photosystem
II assembly” (Figure 5C and Supplementary Table S4), which was consistent with the
observation that the photosynthesis rate was reduced in leaves under salinity. Only four
biological processes were downregulated in roots, including “response to oxidative stress”,
“oxidation-reduction process”, “response to stress”, and “response to stimulus” (Figure 5D
and Supplementary Table S4).

These genes were further analyzed using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment to identify candidate genes controlling salt toler-
ance in garlic. The “ribosome biogenesis in eukaryotes”, “DNA replication”, “cell cycle”,
“phenylpropanoid biosynthesis”, and “RNA transport” were major pathways upregulated
solely in leaves. The “alpha-linolenic acid metabolism”, “carotenoid biosynthesis”, and
“photosynthesis-antenna proteins” were significantly upregulated in roots (Figure 6A).
The “galactose metabolism”, “glutathione metabolism”, “starch and sucrose metabolism”,
and “purine metabolism” were upregulated simultaneously in leaves and roots, although
different genes in the same pathways were upregulated in these tissues (Supplementary
Table S5).

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Figure 5. Functional categories of the DEGs identified in the salt−tolerant garlic accession. The upregulated biological
processes in leaves (A) and roots (B), and downregulated biological processes in leaves (C) and roots (D) were visualized
and clustered based on the semantic similarity using REVIGO. The circle color indicates the log10 of the adjusted p-value.

On the other hand, the “photosynthesis”, “photosynthesis-antenna proteins”, “car-
bon fixation in photosynthetic organisms”, “porphyrin and chlorophyll metabolism”, and
“carbon metabolism” were downregulated solely in leaves, in line with the reduced photo-
synthesis rate in leaves under salinity (Figure 6B and Supplementary Table S5). The other
downregulated pathways included “brassino-steroid biosynthesis”, “glycine, serine and
threonine metabolism”, “isoquinoline alkaloid biosynthesis”, and others. In comparison,
the “plant hormone signal transduction”, “plant MAPK signaling pathway”, “nitrogen
metabolism”, “two-component system”, and “betalain biosynthesis” were downregulated
solely in roots. In addition, the “metabolic pathways” and “biosynthesis of secondary
metabolites” were downregulated simultaneously in leaves and roots although different
genes in the same pathways were regulated by NaCl treatment. Interestingly, several
pathways were conversely regulated in leaves and roots, such as “photosynthesis-antenna
proteins”, “glutathione pathway”, “phenylpropanoid biosynthesis”, and “xenobiotics
metabolism by cytochrome P450” (Supplemental Table S5).
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3.5. Potassium Transporters were Significantly Upregulated in the Tolerant Roots

Reducing Na+ concentration and increasing K+ concentration in cells are essential
mechanisms for plants to cope with salt stress. Plants have different K+ transport systems
that are responsive to K+ uptake under various K+ conditions [49]. Four genes (Asa2G07164,
Asa7G06244, Asa7G02557, and Asa8G02052) encoding potassium transporters or potassium
channel-like proteins were upregulated exclusively in the roots of the salt-tolerant cultivar.
The similar expression patterns of these genes were confirmed by qRT-PCR though there
were discrepancies between the fold changes, probably due to the limitations of the two
methods (Table 2). In this case, the high K+/Na+ ratio in the salt-tolerant cultivar could be
attributable to the elevated expression of potassium transporters in roots.

Table 2. Expression of possible potassium was upregulated in the tolerant roots.

Gene ID Annotation Fold
Change

Adjusted
p Value qRT-PCR

Asa2G07164 Potassium channel like 4.91 0.038099708 6.1
Asa7G06244 Potassium transporter 2.72 0.008903446 3.7
Asa7G02557 Two-pore potassium channel like 2.69 0.028014856 7.7
Asa8G02052 Potassium transporter 2.36 0.039404635 4.4

3.6. Carotenoid Biosynthesis Pathway and Auxin Signaling Pathway Are Substantially Altered in
the Tolerant Roots

Carotenoids are a large group of C40 pigments, some of which serve as precursors of
phytohormones such as ABA and strigolactones [50]. Phytoene synthase (PSY), catalyzing
the condensation of two geranylgeranyl diphosphate molecules to produce phytoene, is
the key enzyme in carotenoid biosynthesis [51]. Lycopene beta-cyclase (LCYB) and beta-
carotene hydroxylase (BCH) are essential enzymes in carotenoid synthesis [52–54]. In the
tolerant roots, transcription of PSY (Asa0G00778 & Asa5G05878), LCYB (Asa5G05619), and
BCH (Asa2G05330) was significantly increased, indicating that the synthesis of carotenoids
and ABA was enhanced in the tolerant roots after salt treatment (Figure 7A). However,
ABA 8’-hydroxylase (Asa1G00338), which encodes an enzyme mediating ABA oxidation,
was also upregulated. The increase of both ABA synthesis and oxidation suggests a high
level of ABA metabolism in roots upon salt stress.

Auxin/Indole-3-Acetic Acid (Aux/IAA) proteins act as negative regulators of the early
auxin response [55]. Small auxin-upregulated RNA (SAUR) proteins are a class of auxin-
induced proteins [56], each of which could regulate different aspects of auxin-mediated
growth and development [57]. In the tolerant roots, expression of IAA3 (Asa7G03113) and
SAUR32 (Asa7G00211 and Asa8G05132), SAUR36 (Asa0G03456), and SAUR71 (Asa8G04231)
was reduced by salt treatment, increasing early auxin response and decreasing a subset of
downstream auxin responses (Figure 7B).
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4. Discussion

This study assessed salt tolerance among a small group of soft-neck garlic accessions
by morphological and physiological measurement and principal component analysis.
The outcome demonstrated that PCA could be of great use in evaluating abiotic stress
tolerance in a large population of garlic or other species. Furthermore, transcriptomic
changes were examined in leaves and roots between a typical salt-tolerant and salt-sensitive
accessions. This strategy remarkably reduced the number of DEGs reported from a previous
study [32] and identified 5386 DEGs in salt-tolerant leaves and roots after NaCl treatment.
Similar salt-regulated processes mediated by these DEGs were also found in earlier studies
on garlic and other plant species, such as metabolic process, biosynthesis of secondary
metabolites, starch and sucrose metabolism, purine metabolism, plant hormone signal
transduction, plant MAPK signaling pathway, and others [32,58,59]. Meanwhile, this study
revealed for the first time that root-specific carotenoid biosynthesis, auxin signaling, and
K+ transport were likely to be responsive to garlic salt tolerance.

K+ and Na+ transporters play an important role in salt tolerance by regulating the
K+/Na+ ratio. Different K+ transport systems are responsive to K+ uptake under various
environments [49]. For example, rice high-affinity K+ transporter OsHAK5, is mainly
expressed in root epidermis and stele, the vascular tissues, and mesophyll cell. Knockout
of this gene reduced the K+/Na+ ratio in the leaves, resulting in hypersensitivity to salt
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stress [60]. Four garlic genes (Asa2G07164, Asa7G06244, Asa7G02557, and Asa8G02052)
encoding K+ transporters or K+ channel-like proteins were upregulated solely in the roots
of the salt-tolerant cultivar, suggesting enhanced K+ uptake in roots (Table 2). Thus, the
upregulation of K+ transporters expression in roots, consistent with the higher K+/Na+

ratio in the salt-tolerant garlic line, could be one of the mechanisms underlying garlic salt
tolerance.

Salt stress caused upregulation of PSY, BCH2, and zeaxanthin epoxidase (ZEP) in Ara-
bidopsis roots but not in shoots. As a result, ABA levels in stressed Arabidopsis roots and
plant salt tolerance were enhanced, demonstrating that elevated expression of carotenoid
biosynthetic genes is crucial to ABA biosynthesis in roots and salt tolerance [16]. Garlic
PSY, LCYB, and BCH were upregulated exclusively in roots by salt exposure, indicating
a similar mechanism used by this plant to cope with salinity stress. The basic expression
level of PSY and BCH was much higher in garlic leaves than in roots (Supplementary
Table S3); it is hard to detect alterations in their expression by salt treatment in the entire
plant. Separation of root- and shoot-specific DEGs resulted in identifying root-specific salt
tolerance mechanisms in garlic.

AUX/IAA proteins serve as negative regulators of early auxin response by binding
auxin response factors (ARF) to prevent the expression of auxin-responsive genes in the
absence of auxin [61]. A high level of auxin causes degradation of AUX/IAA proteins via
the 26S proteasome and releases ARFs to activate auxin-responsive genes [62]. In garlic
tolerant roots, IAA3 (Asa7G03113) was downregulated by salt, suggesting enhanced early
auxin response.

More than 70 SAUR proteins were identified from the Arabidopsis genome. Several
SAUR proteins were involved in development and growth, such as apical hook devel-
opment, hypocotyl elongation, and later root development [57,63–65]. In wheat, the
TaSAUR75 gene was downregulated by salt in roots, and overexpression of TaSAUR75 led
to higher root length and survival rate under salt and drought stress, suggesting involve-
ment of SAUR proteins in response to abiotic stresses [66]. Garlic SAUR genes (Asa7G00211,
Asa8G05132, Asa0G03456, and Asa8G04231) were downregulated by salt treatment in roots.
Although little information is available on these genes’ physiological function, the con-
verse regulation of transcription of the auxin signaling components and the enhanced
ABA biosynthesis could finely tune the appropriate development and physiology of garlic
roots under salt stress. Further analysis of their functions and involvement in diverse
metabolic pathways would deepen our understanding of garlic-specific and tissue-specific
mechanisms underlying salt tolerance.

5. Conclusions

Examination of garlic responses and gene expression in leaves and roots under salt
stress by combining principal component analysis and RNA-seq revealed an essential role
of root-specific carotenoid biosynthesis, auxin signaling, and K+ transport in garlic salt
tolerance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11040691/s1, Table S1: Primers used in the study, Table S2: Summary statistics
of the RNA-seq results, Table S3: DEGs identified in the salt-tolerant accession, Table S4: GO terms
analysis of the DEGs from the salt-tolerant accession, Table S5: KEGG enrichment analysis of the
DEGs from the salt-tolerant accession.
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