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Abstract: Against the background of climate change mitigation, organic amendments (OA) may
contribute to store carbon (C) in soils, given that the OA provide a sufficient stability and resistance
to degradation. In terms of the evaluation of OA behavior in soil, total organic carbon (TOC), total
nitrogen (TN), and the ratio of TOC to TN (CN-ratio) are important basic indicators. Hot-water
extractable carbon (hwC) and nitrogen (hwN) as well as their ratios to TOC and TN are appropriate to
characterize a labile pool of organic matter. As for quickly determining these properties, mid-infrared
spectroscopy (MIRS) in combination with calibrations based on machine learning methods are
potentially capable of analyzing various OA attributes. Recently available portable devices (pMIRS)
might replace established benchtop devices (bMIRS) as they have potential for on-site measurements
that would facilitate the workflow. Here, we used non-linear support vector machines (SVM) to
calibrate prediction models for a heterogeneous dataset of greenwaste composts and biochar compost
substrates (BCS) (n = 45) using bMIRS and pMIRS instruments on ground samples. Calibrated
models for both devices were validated on separate test sets and showed similar results. Ten OA
were sieved to particle size classes (psc’s) of >4 mm, 2–4 mm, 0.5–2 mm, and <0.5 mm. A universal
SVM model was then developed for all OA and psc’s (n = 162) via pMIRS. Validation revealed that
the models provided reliable predictions for most parameters (R2 = 0.49–0.93; ratio of performance to
interquartile distance (RPIQ) = 1.19–5.70). We conclude that (i) the examined parameters are sensitive
towards chemical composition of OA as well as particle size distribution and can therefore be used
as indicators for labile carbon and nitrogen pools of OA, (ii) prediction models based on SVM and
pMIRS are a feasible approach to predict the examined C and N pools in organic amendments and
their particle size class, and (iii) pMIRS can provide valuable information for optimized application
of OA on cultivated soils at low costs and efforts.

Keywords: machine learning; SOM pools; organic fertilizer; compost; biochar; soil sensing

1. Introduction

Organic amendments such as compost and biochar products play a key role in main-
taining adequate soil organic matter (SOM) levels and thus soil fertility in agriculture and
viticulture. The incorporation of organic amendments (OA) into soils can have various pos-
itive effects on chemical and physical soil properties such as reduced soil compaction and
erosion [1], enhanced nutrient availability, or water-holding capacity [2,3]. Against the back-
ground of climate change mitigation, such amendments may also contribute to store carbon
(C) in soils as organic C can be bound to clay minerals [4] and have a high recalcitrance
against microbial degradation [5]. Yet, the composition of the OA incorporated in soils is a
fundamental key to whether the applied C can be stored or is predominantly mineralized by
microorganisms [6], which would cause higher emission of greenhouse gasses such as CO2
and N2O [7]. Rapid turnover would therefore be detrimental to the climate change goals,
e.g., of the COP21 of Paris (https://www.un.org/en/climatechange/paris-agreement

Agronomy 2021, 11, 659. https://doi.org/10.3390/agronomy11040659 https://www.mdpi.com/journal/agronomy

https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0002-8807-1588
https://orcid.org/0000-0002-6879-077X
https://orcid.org/0000-0002-9739-8734
https://doi.org/10.3390/agronomy11040659
https://doi.org/10.3390/agronomy11040659
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.un.org/en/climatechange/paris-agreement
https://doi.org/10.3390/agronomy11040659
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/2073-4395/11/4/659?type=check_update&version=2


Agronomy 2021, 11, 659 2 of 15

(accessed on 29 March 2021)), and therefore needs to be determined before OA are incorpo-
rated into soils. Two kinds of substrates are the focus of this study, namely, greenwaste
composts and biochar compost substrates (BCS). Adding biochar to composts can be of
special interest for carbon storage in soils because the pyrolysation process results in a
product with a high amount of stable C and can thus reduce the emission of greenhouse
gases [8]. Further, this mixture has been reported to benefit plant growth by enhancing
water holding capacity and nutrient cycling [9,10] and to reduce erosion by improving
soil structure [11]. Yet, the relatively high costs for such products suggest application
in orchards or viticulture rather than in arable farming (which is the background of this
study).

As a consequence of different material origin and material treatment during the
production process, organic C and N pools of compost and BCS products can vary in
their chemical composition and particle size distribution. Both can affect potential carbon
turnover in soils [12]. Chemical composition can be characterized by the determination of
total organic carbon (TOC) and total nitrogen (TN) and the respective CN ratios. Although
these factors are important for C turnover, more detailed information about C and N
composition is necessary to determine potential greenhouse gas emissions by OA. Hot
water extraction has shown to be a sensitive indicator for labile C and N pools (hot-water
extractable carbon (hwC), hot-water extractable nitrogen (hwN)) [13–15]. Other work
showed a strong correlation of hwC to CO2 development in soils [16], indicating that hwC
also is likely to be easily available for microbial processing. Further, hwC has been reported
as a parameter that decreases during the decomposition process, and has therefore been
related to the process of C-stabilization [17]. Another important pool is hwN, a parameter
for labile N, easily available for plants after transformation to mineral N [18,19]. As a
consequence, hwC and hwN are promising indicators for the determination of C stability
in different OA. Further, calculating the proportion of hwC to TOC (hwCprop) and hwN to
TN (hwNprop) can provide valuable information about C and N stability in OA. A high
proportion of the hw-pool to the total pool would therefore indicate lower C stability and
vice versa. Yet these laboratory methods are still time-, labor-, and resource-consuming.
Thus, for a rapid determination of these compounds, new methods need to be approached
to overcome these obstacles and to facilitate future research.

Mid-infrared spectroscopy (MIRS) is increasingly being used for the fast determination
of chemical soil parameters [20–23]. Optic instruments such as MIRS have great potential
to reduce laborious efforts, because various sample properties can be derived from a single
spectrum and analytical labor can be minimized after model calibration, thus making
infrared spectroscopy more cost- and time-efficient. Recently, portable MIR (pMIRS)
instruments became available and are increasingly being used by scientists as they provide
the potential for on-site measurements. Comparisons of a pMIRS to an established benchtop
device showed similar results for calibration models predicting soil organic carbon [24–26].
Yet these studies focused on soil samples and research regarding pMIRS on OA properties
is still scarce.

For the prediction of sample properties via pMIRS, statistical models need to be cali-
brated. Calibration requires conventionally analyzed samples prior to predicting properties
of unknown samples. In a partial least squares regression (plsr) approach, the authors
of [27] used benchtop MIRS (bMIRS) to predict organic carbon and total nitrogen in com-
post and organic waste products, and the authors of [28] used bMIRS to predict humic acids
as well as respiration activity to determine compost quality. Calibrated models provided
convenient results for these parameters. However, these studies did not aim at combining
various compost and BCS amendments in one prediction model. Moreover, the spectral
response of OA can vary widely and limit the performance of linear models such as plsr
because factors such as material origin, particle size distribution, fermentation conditions,
or pyrolytic decomposition during biochar production and therefore the chemical com-
position during biochar production vary to a high degree. A computational approach to
overcome these interfering influences is the use of machine learning methods [29]. Because
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of their ability to determine complex and non-linear relationships, these methods became
popular in several research fields. For this study, support vector machines (SVM) were
of special interest. They are a non-parametric, non-linear statistical learning method that
does not assume a known statistical distribution of the data [30]. This supervised machine
learning method was initially developed for classification of linearly separable classes of
objects by a hyperplane [31]. However, SVM can also be a powerful tool for predictive
regression modeling when classes of objects cannot be separated with a linear classifier.
The coordinates of the objects are rearranged in a higher dimensional feature space with
up to infinite dimensions [32]. For computation of the classification hyperplane in a high-
dimensional feature space, so-called kernels are used. Kernels are mathematical functions
that move the data in the feature space while operating in the input space. Further, SVM are
capable of handling rather small training datasets [33] while maintaining a high generaliza-
tion potential for unknown (test) data [30]. Finally, they provide robustness to (spectral)
outliers [34]. In this context, pMIRS in combination with SVM regression seems promising
for the determination of organic C and N pools in OA and their particle size classes (psc’s).

The aims of this study were (i) to identify variation of C and N pools and their particle
size distribution in differing OA, and (ii) to develop a prediction model for C and N pools
using pMIRS via SVM. First, we analyzed the ground truth data of the OA regarding C and
N pools; second, we calibrated predictive models for these C and N pools using pMIRS
and bMIRS via SVM; and third, we calibrated prediction models using pMIRS and SVM
including differing OA and psc’s in one model.

2. Materials and Methods
2.1. Organic Amendments

The sample set comprised 15 OA, thereof 12 greenwaste composts and 3 biochar
compost substrates (BCS) that were all designated for application in German vineyards.
The greenwaste composts were supplied by the Bundesgütegemeinschaft Kompost e.V.
(Cologne, Germany) and originated from different recycling facilities in North Rhine-
Westphalia and Rhineland-Palatinate (Germany). The commercial BCS products were
provided by Palaterra GmbH (Hengstbacherhof, Germany).

Before further processing, all OA were dried at 40 ◦C. The materials were obviously
heterogeneous, i.e., particle size distribution varied between the materials. Therefore,
8 selected composts and 2 BCS were fractionated to size classes of <0.5, 0.5–2, 2–4, and
>4 mm to examine potential differences in the amounts of C and N pools related to differing
particle size (subset “psc”). The dry weight fraction of each psc from the total material is
given in Table 1.

Table 1. Weight proportions (g kg−1) from the particle size classes (psc’s) of the materials.

Substrate >4 mm 2–4 mm 2–0.5 mm <0.5 mm

Compost 1 304 201 326 169
Compost 2 105 89 348 459
Compost 3 225 190 400 184
Compost 4 407 221 265 106
Compost 5 243 162 357 238
Compost 6 295 157 279 26.9
Compost 7 375 180 302 142
Compost 8 603 108 157 132

BCS 1 102 223 468 207
BCS 2 150 152 526 173

The fractionated materials were trifold independently sampled for subsequent analy-
ses. Furthermore, we included the integer (unfractionated) samples of all OA under study.
The entire sample set under study can be seen in Table 2. Finally, all samples were ground
in a ball mill to standardize surface conditions for MIRS and analytical measurements.
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Table 2. Number of fractionated and unfractionated samples of compost and biochar compost
substrates (BCS) materials.

Substrate Unfractionated <0.5 mm 0.5–2 mm 2–4 mm >4 mm Total

Compost 36 24 24 24 21 129
BCS 9 6 6 6 6 33
Total 45 162

2.2. Determination of Laboratory Data

Determination of hwC and hwN followed the method of [13] and was carried out by a
1-h extraction of 5 g OA and 25 mL distilled water at 100 ◦C under reflux. After extraction,
cooling, filtration, and centrifugation at 2600 min−1 for 10 min, the dissolved organic
carbon and nitrogen in the supernatant were analyzed with a TOC analyzer (Shimadzu
TOC-VCPA; Shimadzu Deutschland GmbH, Duisburg, Germany). For each sample, 3
repeated measurements were carried out.

Total organic carbon was determined from the difference between total carbon and
inorganic carbon. Total carbon and TN were determined by dry combustion and elemental
analysis (ISO 10694, 1995) by 2 repeated measurements. If present, inorganic carbon was
determined by the gas-volumetric Scheibler Method (ISO 10693). Otherwise, if no inorganic
carbon was present, total carbon was rated as TOC for further analyses.

2.3. Acquisition of Benchtop and Portable MIR Spectra

For bMIRS, about 20 mg of the ground sample was divided into 5 repetitions into the
hollowed positions of a microtiter plate and smoothed with a plunger. Diffuse reflectance
mid-infrared Fourier transform (DRIFT) spectra were recorded in the laboratory with
a Bruker Tensor 27 HTS-XT for automated high-throughput screening (Bruker Optik,
Ettlingen, Germany). The device is operated with a liquid N2 cooled mercury cadmium
telluride detector and a broadband KBr beam splitter (Figure 1a). Spectra acquisition was
carried out with 120 scans at a resolution of 4 cm−1 and a spectral range of 7500–550 cm−1.

Figure 1. Mid-infrared spectrometers (MIRS) used for spectra acquisition (a) benchtop MIRS Bruker
Tensor 27 (b) portable MIRS Agilent 4300.

For pMIRS measurements, a handheld FTIR Agilent 4300 (Agilent Technologies, Santa
Clara, CA, USA) equipped with a deuterated triglycine sulfate (DTGS) detector and a zinc
selenide beam splitter, a DRIFT interface, and a golden reference cap was used (Figure 1b).
For spectra acquisition, 2 g of each ground sample was placed in a Petri dish and smoothed
by gentle pressing. For each sample, 3 repeated measurements were carried out after
slightly rotating the Petri dish between the measurements. Each spectrum was recorded
with 80 scans, as previous tests had shown no reduction in standard deviation of the spectra
with 100 and 120 scans, respectively. Spectra acquisition with pMIRS was carried out on
an instrument stand provided by the manufacturer (Figure 1b). Spectra with the portable
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device were collected in the 4000–650 cm−1 range and a spectral resolution of 4 cm−1.
For compensation of instrument drift and variation in the environment of the measuring
chamber, a background spectrum was taken every 10 min using a golden reference cap.
The comparison of predictive models gained by bMIRS and pMIRS was performed as a
preliminary test on the unfractionated dataset (n = 45, Table 2). For further investigation
of pMIRS spectra, the entire dataset, including psc’s, was used for model calibration and
validation (n = 162, Table 2).

2.4. Spectra Pre-Treatment and SVM Model Calibration

For further analysis, the spectra of each sample were averaged in order to reduce
noise. Model calibrations were done using the spectral range of 3800–650 cm−1 from
both instruments. Spectral pre-treatment and SVM model calibration were done with
the statistic software R (2013) using the packages: “e1701” [35], “prospectr” [36], and
“ggplot2” [37] for visualization. Eight pre-treatments of absorbance spectra were selected
to remove light scattering effects, to correct baseline offset, and to improve model perfor-
mance: no pre-treatment, multiplicative scatter correction (MSC), Savitzky Golay Filter
(SG), SNV Standard Normal Variate-Detrend algorithm (SNV), first derivation (1st der),
first derivation + SG (1st der + SG), second derivation (2nd der), second derivation +
SG (2nd der + SG). These preprocessing approaches were evaluated by the associated
cross-validation results and the best model was finally chosen. Prior to model calibration
and to avoid overfitting of calibrated models, the 2 different sample sets (Table 2) were
divided into independent calibration (70%) and validation (30%) samples by using the
k-means sampling algorithm [38]. For an optimal distribution of calibration and validation
set, the k-means sampling algorithm was run with 100 iterations. For the non-linear SVM
approach in this study, we used the radial basis function kernel for model calibration.
Some general information about the SVM approach is outlined in the Introduction section;
for a more detailed explanation of SVM, see [31,39,40]. The SVM prediction models were
trained using repeated 10-fold cross validation for all spectral pre-treatments in order to
find the optimal prediction model for each investigated parameter. Cross-validation was
optimized by an automated grid search for the SVM hyperparameters gamma (γ) and cost.
The range for both hyperparameters was set to 0.1, 0.5, 1, 5, 10, 25, 50, and 100. Then, a
test set validation was performed to test the model performance on “unknown” data. To
determine the quality of the predictive models, we used the coefficient of determination
of cross validation (R2

CV), the coefficient of determination of prediction (R2
pr; for test set

validation), root mean squared error of cross validation (RMSECV), root mean squared
error of prediction (RMSEPr), the ratio of performance to interquartile distance of cross
validation (RPIQcv), and the ratio of performance to interquartile distance of prediction
(RPIQpr) according to [41], and calculated it as follows:

RMSE =

√
1
n

n

∑
i=1

(fi − yi)2 (1)

where fi is the predicted, and yi the respective observed value, and

RPIQ =
IQ

RMSE
(2)

where IQ is the interquartile distance that gives the range that accounts for 50% of the
population around the median.

For RPIQ values, the threshold for an unsuccessful model performance was defined
by RPIQ < 1.89 according to [42]. Nevertheless, the authors stated that the usefulness of a
model should additionally by evaluated in its specific context.
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3. Results and Discussion

With respect to fundamental differences between composts and BCS in some of the
properties under study, the OA were grouped as such in the following section.

3.1. Laboratory Analysis

The results of the laboratory analyses are displayed as boxplots where the lower and
upper hinges correspond to the first and third quartiles, respectively, while the line in
between marks the median. The whiskers extend no further than the largest or smallest
value of 1.5 * interquartile range from the hinges. Values beyond the end of the whiskers
are marked as outliers.

Overall, BCS products tended to equal TOC, lower TN, and higher CN values than
composts, yet had notably less hwC (Figure 2a–d). This further resulted in lower hwCprop
values for BCS. As hwC is considered to contain labile C pools [16,43], these results indicate
that BCS products might be more suitable in terms of potential soil C-storage.

Figure 2. Conventionally analyzed properties of unfractionated compost and BCS samples (n = 45)
of (a) total organic carbon (TOC), (b) total nitrogen (TN), (c) ratio of TOC to TN (CN-ratio), (d) hot-
water extractable carbon (hwC), (e) hot-water extractable nitrogen (hwN), (f) ratio of hwC to hwN
(hwCN-ratio), (g) proportion of hwC to TOC (hwCprop), (h) proportion of hwN to TN (hwNprop).

Other studies found that the addition of biochar to compost products were beneficial
for C-sequestration compared to pure compost [44], because biochar has a high recalcitrance
and therefore large amounts of stable C as a consequence of the pyrolysation process during
biochar production. These results support our assumptions. Nevertheless, samples of
both OA types revealed a considerable variation for most C and N pools. In Figure 3a–h,
analytical data of four psc’s, ranging from <0.5 mm to >4 mm, is shown. In general, the
results of psc fractionation were similar to unfractionated samples. For most examined
parameters (e.g., TN, hwC, hwN, hwCprop, and hwNprop), psc’s of compost products had
higher variations than those of BCS.
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Figure 3. Conventionally analyzed samples of different organic amendments (OA) particle size
classes (psc) (n = 117) for (a) TOC, (b) TN, (c) CN-ratio, (d) hwC, (e) hwN, (f) hwCN-ratio, (g)
proportion of hwC to TOC (hwCprop), (h) proportion of hwN to TN (hwNprop).

High variation of these pools can be considered a consequence of varying raw materi-
als in different production facilities, thus resulting in a diverse chemical composition of the
materials and their psc’s under study. For BCS, especially TOC values and variation were
larger for the psc > 4 mm compared to the other psc’s of this parameter. Within this psc,
the highest visible biochar content was found. As the biochar amount varied between the
tested BCS products, this would explain higher TOC values and variation of BCS > 4 mm.
This is further supported by lower hwCprop values for BCS > 4 mm, underlining the higher
amount of stable C within biochar [44]. For the other parameters, psc fractionation elevated
variation in most parameters compared to the unfractionated samples. In the context of
these findings, a quick and precise determination of these pools and therefore C storage
potential of OA is desirable.

3.2. Comparison of Prediction Models for Integer OA Calibrated on bMIRS and pMIRS Spectra

Portable MIRS combined with SVM was expected to be a promising approach for a
quick determination of the above-described C and N pools. Nevertheless, before a more
general approach can be addressed, the prediction accuracy of pMIRS was compared to an
established benchtop MIRS to justify the use of a portable spectrometer.

When observing the MIRS data within the space of the principal component analysis
(PCA), it was evident that spectral information varied between the tested devices, even
though spectra were MSC-corrected before PCA to cope with differing measuring con-
ditions (Figure 4a,c). As a consequence, the k-means sampling algorithm chose different
spectra for calibration and validation among pMIRS and bMIRS datasets, because it eval-
uated data on the basis of spectral information within the PC space [38]. The different
selection of samples is also reflected in the MSC-corrected MIR spectra in Figure 4b,d.
While the shape of pMIRS and bMIRS spectra was generally similar, the spectra obtained
with pMIRS revealed higher noise, especially in the region of 3800–3000 cm−1.
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Figure 4. Principal components (PC1 and PC2 scores) of multiplicative scatter correction (MSC)-
corrected calibration (black; n = 31) and validation (red; n = 14) samples as selected by k-means
sampling and associated MIRS spectra (a,b) benchtop MIRS and (c,d) portable MIRS.

The higher noise of the pMIRS spectra was perhaps due to a less reproducible and/or
smaller pressure when compacting and smoothing the ground sample in the Petri dishes
prior to spectra acquisition. It is proven that surface conditions impact MIR spectra qual-
ity [45]. However, the larger quantity of sample material needed for pMIRS made this
preparation step particularly challenging. However, the larger noise did not eventually
result in worse model accuracy and robustness. The same statement was made by [24,46],
although the authors used a plsr method. In this study, SVM model validations revealed
corresponding results and proved that modelling coped with different measuring condi-
tions. Within the test set validation, most OA properties were predicted with satisfactory
to excellent performance (Table 3), wherein R2

pr values ranged from 0.61 (hwCprop; bMIRS)
to 0.93 (TN; bMIRS) and RPIQpr from 1.38 (hwNprop; pMIRS) to 5.15 (hwN; bMIRS). For N
pools, bMIRS prediction accuracy of validated models outperformed those of pMIRS with
R2

pr of 0.93 (TN), 0.93 (hwN), and 0.91 (hwNprop). The best bMIRS models listed in Table 3
were all calibrated by pre-treating bMIRS spectra via first derivation and SG smoothing.
Yet, RPIQ values for TN and hwN prediction models of pMIRS also indicated good model
robustness.
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Table 3. Test set validation (n = 14) statistics and kernel function hyperparameters gamma (γ) and
cost (C) of SVM models for the prediction of compost and BCS properties using a benchtop MIRS (B)
and a portable MIRS (P).

Property Device Spectral
Pre-Treatment RMSEPr R2

Pr RPIQPr γ C

TOC (g kg−1) B 1st der + SG 25.8 0.79 2.11 0.5 100
P SG 24.8 0.91 3.86 0.1 25

TN (g kg−1) B 1st der + SG 1.0 0.93 3.11 0.1 25
P MSC 1.4 0.73 2.45 0.1 5

CN-ratio B MSC 3.96 0.72 1.60 0.1 100
P 1st der 2.69 0.85 3.03 1 100

hwC (g kg−1) B SNV 2.08 0.72 2.75 0.1 10
P none 2.28 0.76 2.53 0.1 5

hwN (g kg−1) B 1st der + SG 0.19 0.93 5.15 1 10
P SG 0.30 0.78 2.62 0.5 5

hwCN-ratio B 1st der 2.43 0.71 2.38 1 100
P 1st der 2.01 0.88 2.82 1 100

hwCprop (g kg−1) B 1st der + SG 13.2 0.61 2.75 0.1 100
P none 15.0 0.71 1.88 0.1 5

hwNprop (g kg−1) B 1st der + SG 19.7 0.91 3.52 1 100
P 1st der 34.7 0.81 1.38 1 100

For TOC, TN, and the CN-ratio, the observed and predicted values were consistent
and close to the 1:1 line for both devices (Figure 5a–c). Yet pMIRS performed better for
TOC and CN-ratios (Table 3). For hwC, the portable device performed slightly better
with overall moderate accuracy (R2

pr = 0.76 for pMIRS and 0.72 for bMIRS) (Figure 5d).
Even though regression lines for the hwC validation samples differed between the tested
MIRS devices, RPIQpr values revealed good model robustness for both spectrometers
(Table 3). For hwCprop and hwNprop of pMIRS models, RPIQpr values showed low model
robustness and thus a low generalization capacity of SVM models for the prediction of
these parameters (Table 3, Figure 5g,h).

Figure 5. Test set validation: support vector machines (SVM) predicted (pr) and observed (obs) (n =
14) values of benchtop and portable MIRS spectra for (a) TOC, (b) TN, (c) CN-ratio, (d) hwC, (e) hwN,
(f) hw-CN-ratio, (g) proportion of hwC to TOC (hwCprop), (h) proportion of hwN to TN (hwNprop).

While predictive models from bMIRS performed better for N pools, pMIRS models
revealed a higher prediction accuracy and model robustness for the C and CN pools.
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Nevertheless, statistical model parameters for the validation dataset were satisfying for
both devices and most parameters. Recent findings of other authors [24,46,47] suggest
similar results for soil samples. All in all, pMIRS is considered a reliable alternative to
benchtop devices for the prediction of C and N parameters of OA.

3.3. Calibration of pMIRS SVM Prediction Models for Particle Size Classes of OA

The principal component analysis of MSC corrected pMIRS spectra revealed no clear
clusters neither for psc’s nor for OA (Figure 6a), revealing sample set heterogeneity and
therefore its suitability for subsequent modeling. Therefore, the k-means sampling parti-
tioning into calibration and validation sample sets showed an even distribution within the
PC space (Figure 6b).

Figure 6. (a) PC1 and PC2 scores of OA samples and particle size classes (psc’s) and (b) PC1 and PC2
scores of OA calibration (black) and validation (red) samples (BCS and compost).

In agricultural practice, particle size fractionation prior to OA application would not
be convenient for labor and time reasons. Here, it was considered necessary to understand
the chemical and physical composition of the varying OA in more detail. Further, the
importance of a wide range of target values to be modelled is evident [48]. By creating
psc’s, the range of target values was increased in order to potentially strengthen the
modelling performance. For pMIRS evaluation of unfractionated OA in combination with
size classified samples of the same materials, non-linear SVM regression was of special
interest. For a linear approach, e.g., plsr, the samples could not have been considered as
independent because spectral information within one size class would possibly occur in
unfractionated samples of the same OA. Further, chemical properties and thus spectral
information varied among the tested OA and psc’s (Figure 6a), underlining the necessity of
a non-linear modelling approach with high generalization potential such as SVM. Support
vector machines generally cope with such restrictions in the dataset [30]. Accordingly, the
models calibrated via repeated 10-fold cross validation provided excellent correlation with
R2

CV values ranging between 0.93 (TOC) and 0.98 (hwC and hwN) and small RMSECV
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for all parameters under study (Table 4). For test set validations, SVM provided good
to excellent predictive accuracies and model robustness for TOC, TN, CN-ratio, hwN,
hwNprop, hwC, and hwCprop. These test set results are in line with [49], who found best
validation accuracies for a SVM approach predicting SOC and TN, although via near
infrared spectroscopy.

Table 4. Calibration (n = 114) and validation (n = 48) parameters and kernel function hyperparameters
gamma (γ) and cost (C) of SVM models for the prediction of compost and BCS and associated psc’s
via portable MIRS (pMIRS) (CV = cross validation, calibration; pr = prediction, test set validation).

Property Spectra
Pre-Treatment

RMSE R2 RPIQ γ C
CV pr CV pr CV pr

TOC (g kg−1) 1st der 18.8 44.7 0.93 0.77 4.34 1.19 0.5 50
TN (g kg−1) MSC 0.7 0.9 0.94 0.93 4.80 5.70 0.1 10

CN-ratio 1st der + SG 3.44 7.00 0.94 0.79 2.99 2.72 0.5 100
hwC (g kg−1) 1st der + SG 0.65 2.55 0.98 0.81 10.09 3.87 1 25
hwN (g kg−1) MSC 0.09 0.22 0.98 0.89 9.37 3.33 0.5 10
hwCN-ratio SNV 0.10 3.65 0.97 0.49 8.54 2.03 0.1 50

hwCprop (g kg−1) 1st der + SG 4.6 12.8 0.96 0.85 7.33 4.07 1 10
hwNprop (g kg−1) MSC 1.0 21.1 0.96 0.88 7.98 2.20 0.5 100

Best model validations were obtained for N pools with highest R2
pr values ranging

from 0.88 (hwNprop) to 0.93 (TN), and low prediction errors and RPIQpr values ranging
from 2.2 to 5.7, showing excellent model robustness. Test set validation for hwC and hwN
showed good model robustness and correlation of predicted and observed laboratory
values with RPIQpr values of 3.87 and 3.33 and R2

pr values of 0.81 and 0.89, respectively.
These results suggest a good suitability of the SVM approach for the above-described C
and N parameters. Findings of other authors [29,42] who used and compared SVM with
linear methods for MIRS modelling generally support these results, although they were
not obtained for organic materials but for soil samples with far smaller C and N contents.

In BCS, most parameters under study revealed rather small variations as compared
to composts (Figure 3). Nevertheless, hwC and hwN values and variations of BCS were
correctly predicted by the SVM models (Figure 7d,e), which, however, were calibrated
upon BCS and composts together. Further, test set values of hwCprop and hwNprop were
predicted with high accuracy (Figure 7g,h). However, accuracies of SVM models obtained
for the test set validation of the hwCN-ratio were not satisfactory, although CV results
suggested excellent model statistics (Table 4). From Figure 7f, it is visible that this was
mostly caused by false predictions of larger psc’s (2–4 mm and >4 mm) for BCS. Although
test set validation accuracies for TOC (R2

pr = 0.77) and CN-ratio (R2
pr: 0.79) were better

compared to hwCN-ratio (R2
pr = 0.49), the same trend of misclassified parameters for

these psc’s can be observed (Figure 7a,c). For these C pools, the psc > 4 mm revealed the
highest variation for both OA (see Section 3.1, Figure 3). A wide range of target values
is generally regarded beneficial for model robustness [48]. However, high variation of
chemical compounds affiliated to the examined parameters may lead to lower model per-
formance because non-similarity of calibration and validation samples greatly influences
the obtained results [50]. Even though SVM are considered to have good generalization
capacity [30], our results suggest that varying OA origin and, consequently, differing chemi-
cal composition diminished model robustness and therefore test set validation. Further, the
calibration dataset contained fewer BCS than compost samples, which probably affected
validation accuracy for properties of BCS samples.
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Figure 7. Test set validation SVM predicted (pr) and observed (obs) for (a) TOC, (b) TN, (c) CN-ratio,
(d) hwC, (e) hwN, (f) hw-CN-ratio, (g) proportion of hwC to TOC (hwCprop), and (h) proportion of
hwN to TN (hwNprop) in different OA size classes (pMIRS test set, n = 48).

As the hw-pool characterizes labile C and N fractions, its proportion of the total C
and N concentrations is an important indicator for potential C storage after application
in cultivated soils. Therefore, the direct prediction of hwCprop and hwNprop of pMIRS
spectra for a broad range of OA is a step towards a fast determination of labile C fractions
before soil incorporation. Results showed good model validation accuracy (Figure 7g,h)
and excellent to good model robustness (hwCprop RPIQpr = 4.07; hwNprop RPIQpr = 2.2)
for both parameters. All in all, pMIRS in combination with this SVM modelling approach
was shown to be a convenient method for the quick determination of OA properties related
to expected C storage potential for a broad range of OA.

4. Conclusions

The chosen C and N parameters can be considered as convenient indicators before
soil incorporation for a potential C storage of OA. The large variation of chemical and
physical properties of the selected organic amendments and their psc’s was underlined
by the laboratory analyses and revealed the necessity of a rapid determination method
to characterize these materials. As portable MIRS instruments recently became available,
the implementation of these instruments towards routine applications became necessary.
In this study, models calibrated on pMIRS spectra were equivalent or superior to those
from bMIRS. Yet, both instruments provided robust and accurate performance for most
parameters under study. Support vector machines are a crucial part of the procedure
because large variation, auto-correlation, and non-linearity of target parameters do not
allow linear calibrations. To further develop the implementation of pMIRS devices for
evaluating potential C storage of OA in management of cultivated soils, further research
should focus on (i) the development of reduced sample preparation to cope with surface
roughness for on-site measurements and (ii) test the non-linear SVM approach on a more
diverse dataset that includes a wider range of composts, especially BCS products, to
enhance model robustness for unknown samples. Further, for specific information on
important spectral regions for SVM model calibrations and to gain further insights for
future work, research could combine a spectral variable importance approach with SVM
calibrations.
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