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Abstract: Salinity is a major agriculture problem for citrus in the Mediterranean basin, which is
a major global producer region. Citrus crops are also threatened by emerging diseases such as
Huanglongbing (HLB). The use of different rootstocks increases the variability of citrus plant material
in orchards, thus preventing extensive damage caused by abiotic and/or biotic diseases. In this work,
we have evaluated the salinity response of five citrus rootstocks (US942, US897, X639, Forner Alcaide
No. 5 and Carrizo citrange) some of which have known tolerance to HLB, under Mediterranean
conditions. Four treatments with different salt concentrations (0, 25, 50 and 75 mM of NaCl) were
applied by watering the plants three times per week for eleven weeks. Chlorophyll index (SPAD),
growth and plant symptom parameters were recorded on a biweekly basis. At the end of the trial,
roots, stem and leaves biomass and plant mineral content were obtained. The increasing concentration
of NaCl resulted in visible leave damage symptoms for all citrus rootstocks assayed, hindering plant
growth in all citrus rootstocks assayed, except for X639. The highest concentration of toxic ions in
leaves was detected in Carrizo citrange and US897 for Cl−, while the lowest concentration of Na+

was obtained in X639. These results provide growers with information about the sensitivity to salinity
of different citrus rootstocks.
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1. Introduction

Citrus (Rutaceae family) is one of the most economically important fruit crop produc-
tion in the Mediterranean basin, yielding more than 26 million tons and accounting for 13%
of the worldwide Citrus production [1]. Due to climate change, the Mediterranean basin is
seeing the rise of soil desertification [2–6], and most recently the emerging risk of diseases
which have never been reported on citrus crops in this region, such as Huanglongbing
disease (HLB) [7,8].

Salinity is a major negative abiotic factor in agriculture, and around 6% of the total
land on the Earth and 20% of its arable area is under salinity conditions [9,10]. The Mediter-
ranean basin is a semiarid region [11], where the low levels of water resources require usage
of poor quality water from rivers, aquifers and/or treatment plants with high salt con-
centrations (chloride and/or sodium) [12,13]. Hence, these water resources often contain
high electrical conductivity levels of over 3 dSm−1, which further increase soil salinity and
produce negative effects on citrus crops [14,15]. Crops respond differently to salinity, and
Citrus is a sensitive crop [16]. In citrus, salt stress can cause reduction of plant growth, fruit
quality and production [16–19]. Salinity symptoms are due to the accumulation of chloride
(Cl−) and sodium (Na+) ions in leaves [20]. This accumulation causes osmotic disorders,
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where long-term exposure can modify plant water relations [10]. Moreover, the increase of
salt concentration in plant tissue leads to stomatal closure, decreases conductance, reduces
leaf area, and produces chlorotic and necrotic patches on leaves [21–23]. As a result, the
chlorophyll content and photosynthesis decrease [21–23]. Furthermore, the main negative
effects related to transpiration, physiological and molecular aspects are involved with
Cl− [24–26]. Tolerant Citrus rootstocks can avoid salinity disorders, due to the fact that
they are capable of excluding Cl− and Na+, showing different responses compared to
salt-susceptible rootstocks [27,28]. In addition, salt stress produces Citrus plant disorders
such as macronutrient deficiency [29].

In addition, HLB, caused by three bacterial species, Candidatus Liberibacter asiaticus
(Jagoueix, Bové & Garnier) (CLas), Candidatus Liberibacter americanus (Teixeira, Saillard,
Eveillard, Danet, da Costa, Ayres & Bové) (CLam), and Candidatus Liberibacter africanus
(Jagoueix, Bové & Garnier) (CLaf) [30–34], is one of the most devastating citrus diseases
in the world. Trees affected by this pathogen become unproductive and, as time elapses,
they may eventually die [30,35]. Candidatus Liberibacter spp. are proteobacteria Gram-
negative, obligate parasite, phloem-restricted and unculturable under laboratory in vitro
conditions [32–36]. HLB affects production and fruit quality, and can occasionally cause
tree death [30]. The most commonly used strategies for controlling the bacteria are the
application of chemical antibiotics and a three-pronged system (TPS) [30], based on chemi-
cal and/or biological control of the psyllid vector complementary with planting healthy
nursery trees and removing HLB-infected trees. However these solutions show moderate
efficacy, [37] and the requisite chemical compounds are not currently approved for use in
agriculture by the European Union authorities [38]. Thus, citrus plant breeding has become
a major strategy to combat this disease [39]. This pathogen is widely distributed through-
out all citrus producer regions in the world, except in Australia and the Mediterranean
basin [7,8]. These bacterial species may spread by grafting from infected citruses to healthy
citruses; and/or naturally by psyllids vectors [30]. Diaphorina citri (Kuwayama) has been
described as the insect vector of CLas and CLam, whereas Trioza erytreae (Del Guercio) as
the insect vector of CLaf [30]. However, T. erytreae has been recently reported as carrying
CLas in Ethiopia [40]. Furthermore, this insect vector has recently appeared in mainland
Mediterranean basin countries, such as Portugal and Spain [41–43].

Against this background, the accurate selection of citrus rootstocks is necessary to
improve new trends and requirements of citrus crops [44,45]. Hence, new rootstocks have
a huge importance due to their influence on multiple factors, such as tree vigor, production,
quality and tolerance to abiotic and biotic agents [46]. Citrus rootstocks diversification
reduces the risk of suffering enormous losses due to abiotic or biotic stresses [46,47]. Cur-
rently the Carrizo citrange [Citrus sinensis L. Osb. x Poncirus trifoliata L. Raf.] is the most
common citrus rootstock used in Spain [48], although this rootstock is described as having
an intermediate level of sensitivity to HLB [49] and it is also sensitive to salinity [28].
Nowadays, different citrus breeding programs continue to develop improved new citrus
rootstocks for different factors [46]. Consequently, new trifoliate citrus hybrids such as
US897 (C. reticulata ‘Blanco’ x P. trifoliata), US942 (C. sunki Hort. ex Tan. ‘Sunki man-
darin’ x P. trifoliata) and X639 (C. reshni Hort. ex Tan. ‘Cleopatra mandarin’ x P. trifoliata)
have been reported, with better tolerance response to HLB than Carrizo citrange [50–52]
and with positive response against salinity stress [22,49,53]. To our knowledge, these
citrus rootstocks have never been proposed as a viable option in Mediterranean basin
citrus orchards.

Therefore, this work aims at studying the development of new citrus rootstocks,
with known tolerance to HLB disease, under one of the most limiting abiotic factors
in Mediterranean basin—salinity—in order to extend the variability of rootstocks for
citrus growers and provide useful knowledge for the development of sustainable HLB
control strategies.
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2. Materials and Methods
2.1. Plant Material and Experimental Conditions

A total of 160 plants belonging to five different citrus rootstocks were used in this work.
Two referenced comparative rootstocks including Carrizo citrange and Forner Alcaide
No. 5 [FA No. 5; C. reshni ‘Cleopatra mandarin’ x P. trifoliata (L.) Raf.], and three citrus
rootstocks with described HLB tolerance [49–52] as US942, US897, X639. Six-month-old
citrus rootstocks from in vitro culture were obtained and provided by Agromillora Group
nursery (Subirats, Barcelona, Spain).

The experiment was carried out in 2018 summer season under greenhouse condi-
tions (30 ◦C average temperature and 56% average relative humidity) located in “Las
Torres” Center of the Andalusian Institute for Agricultural and Fisheries Research and
Training (IFAPA), in Alcalá del Río, Seville, Spain (Figure 1) (37◦30′43.3′′ N; 5◦57′47.4′′ W).
Rootstocks were planted in 1.6 L pots with silica sand; this substrate allows leaching the
solute and roots aeration. Plants were maintained under an acclimation period for two
weeks where the rootstocks were irrigated three times a week with Hoagland and Arnon
solution [54], with brief modification to citrus (3 mM of KNO3, 3 mM Ca(NO3), 1 mM
MgSO4 7H2O, 1.2 mM H3PO3 85%, 20 µM Fe-EDDAH, 54.4 µM MnSO4 H2O, 7.64 µM
ZnSO4 7H2O, 0.5 µM, CuSO4 5H2O, 46.25 µM H3BO3, 0.55 µM MoO3). The nutritive
reagents were weighted with a digital scale and dissolved in a tank in the laboratory, and
finally this primary solution was diluted in the greenhouse before of the irrigation process.
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Figure 1. Satellite image of the greenhouse location.

2.2. Treatments and Experimental Design

A total of four salinity treatments (0, 25, 50 and 75 mM of NaCl) were established
for all citrus rootstocks. To this end, a factorial experimental design was set on with four
repetitions (block) and an elemental plot of eight plants (n = 8). The first application
was carried out at the beginning of the experiment (W1) with eight plants per rootstock
and treatment and after an acclimation period of two weeks. Each plant was irrigated
with 500 mL of Hoagland and Arnon solution three times per week for ten weeks. Each
treatment was prepared in a specific tank using nutritive solution amended with each salt
concentration as described previously.

2.3. Variables Recorded
2.3.1. Evaluation of Plant Symptoms

The above-ground leaves symptoms were evaluated for each rootstock/plant and
treatment to estimate the effect of the different salinity treatments, using a symptom scale
of 0–4: plants without symptoms = 0, plants with 25% leaves affected by chlorosis = 1,
50% leaves affected by chlorosis = 2, over 50% leaves affected by chlorosis = 3, and fully
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desiccated and dead plants = 4. This evaluation process was repeated every two weeks,
the values were recorded for each plant for 11 weeks and starting from the first salinity ap-
plication until two months later. These values were used to calculate the standardized area
under the disease progress curve (SAUDPC, [55]), which increases in the same proportion
as the symptom scale.

2.3.2. Plant Growth

Plant growth was determined in six plants per rootstock and treatment based on tree
height. This parameter was measured with a measuring tape from the beginning of the
assay (W1), with a frequency of every two weeks (W3, W5, W7, W9 and W11).

2.3.3. Chlorophyll Index (SPAD)

The leaf chlorophyll index was measured for a total of six plants by a SPAD chlorophyll
meter (Minolta Co., Osaka, Japan). Two expanded leaves per plant were measured in four
different weeks (W1, W5, W9 and W11).

2.3.4. Biomass

At the end of the experiment (W11), all plants (eight plants per treatment and citrus
rootstock) were harvested and separated into three sections: roots, stem, and leaves. The
fresh plant samples were then rinsed in distillated water, dried with filter paper, and
weighted using a digital scale (COBOS precision, CB-3000C, L’Hospitalet de Llobregat,
Barcelona, Spain). The different plant samples were introduced in a labeled paper envelope
and dried in an oven at 60 ◦C for 48 h, and then weighted again to record the dry weight.
The percentage of biomass reduction (PBR, %) was calculated for dry weight (DW) and fresh
weight (FW) in each section plant for each sample, according to Vincent’s equation [56]:

PBR (%) = 100× (CW− TW)

CW

where: CW = weight (g) of control treatment plants (0 mM of NaCl) averaged eight replicates
from dry weight (DW) and/or fresh weight (FW) per each section plant. TW = weight (g)
of treated plants at each concentration of salt tested (25, 50 and 75 mM of NaCl) from dry
weight (DW) and/or fresh weight (FW) per each sample replicate and section plant.

2.3.5. Mineral Contents in Leaves and Roots

Analysis of Cl−, Na+ and macronutrients (N, P, K, Ca, Mg and S) in three leaves
and for each citrus rootstock and treatment were carried out by a certified agriculture
laboratory (Laboratorio Agrama S.L, La Rinconada, Seville, Spain) for plant analysis. The
methodology analyses technique used for macro- and microelements was inductively
coupled plasma optical emission spectroscopy (ICP-OES), for nitrogen a potentiometric
technique was used and chloride was determined by Dumas’s method.

2.4. Data Analysis

All data obtained were subjected to variance analysis (ANOVA) using the STATISTICA
10 software (StatSoft, Palo Alto, CA USA). Means separation were obtained using Fisher’s
test (p < 0.05). Normality and homogeneity assumptions were tested before ANOVA, using
the Kolmogorov-Smirnov and Cochran’s test, respectively. For non-observance of the
normality and/or homogeneity assumptions, a non-parametric Kruskal-Wallis test was
adopted. Two-way ANOVA and one-way ANOVA analysis were performed for SAUDPC
data and the other results obtained respectively.

3. Results
3.1. Plant Symptoms

Plant symptoms for all five rootstocks assayed showed different SAUDPC value
responses among salt treatments and rootstocks. Treatment application at 0 mM of salt



Agronomy 2021, 11, 653 5 of 16

did not produce any stress symptoms. However, with a higher concentration of salt
treatment, the values of SAUDPC saw a directly proportional increase as the salt treatment
increased. No significant differences were detected at 25 mM among the citrus rootstocks
assayed, in which US897 and FA No. 5 showed similar response than the results of control
treatment (0 mM of NaCl). When concentration increased at 50 mM, significant differences
in SAUDPC appeared among the rootstocks assayed, thus Carrizo citrange showed the
lowest salinity rate even with a similar response as in the previous dosage described. On
the contrary, FA No. 5 was the highest damaged rootstock at a 50 mM concentration,
followed by US897, US942 and X639, with the latter showing a similar response as Carrizo
citrange. Moreover, under the highest salt concentration (75 mM) X639 was the strongest
rootstock against salinity, whereas US897 showed the highest symptoms values followed
by FA No. 5, Carrizo citrange and US942 (Table 1). Similarly, mortality response started
at 50 mM, with the same value for US897, X639 and FA No. 5. This parameter increased
at 75 mM, in which US897 showed the highest percentage of plant death, followed by
US942, FA No. 5 and Carrizo citrange; X639 plants did not die at the highest concentration
treatment throughout experiment evaluation (Table 1).

Table 1. Mean standardized area under the disease progress curve (SAUDPC) ± standard error (SE) and Percentage of plant
mortality (%) due to the effect of salinity treatments (0, 25, 50 and 75 mM NaCl) on leaves in five citrus rootstocks (US942,
US897, X639, Forner Alcaide No. 5 and Carrizo citrange) over eleven weeks of treatments.

Salinity Treatments (mM)

Rootstock 0 25 50 75

SAUDPC ± SE

US942 0 i 0.47 ± 0.07 h 0.69 ± 0.10 efg 1.01 ± 0.13 bcd
US897 0 i 0.24 ± 0.04 hi 0.79 ± 0.06 def 1.31 ± 0.14 a
X639 0 i 0.26 ± 0.06 h 0.66 ± 0.14 fg 0.74 ± 0.07 efg

FA No. 5 0 i 0.23 ± 0.06 hi 0.92 ± 0.10 cde 1.25 ± 0.19 ab
Carrizo citrange 0 i 0.25 ± 0.06 h 0.58 ± 0.10 gh 1.07 ± 0.18 abc

Mortality (%)

US942 0 0 0 25
US897 0 0 12.50 37.50
X639 0 0 12.50 0

FA No. 5 0 0 12.50 12.50
Carrizo citrange 0 0 0 12.50

Values with different letters mean significant differences among rootstocks and treatments assayed by Fisher’s test (p < 0.05).

3.2. Plant Growth

A different response in growth among the citrus rootstocks and salt concentrations
was shown compared with the treatment control (0 mM of NaCl) during all the experiment
periods. Generally, all citrus rootstocks reduced in height when salt treatment concen-
tration increased, compared with the control treatment. US942 and growth of Carrizo
citrange began to reduce significantly from the third week evaluated between the high-
est concentration of salt tested salinity concentration (75 mM of NaCl) and the control
treatment. Whereas FA No. 5 and US897 showed significant growth reduction in height
between control and the highest concentration tested from the seventh and ninth week,
respectively. Otherwise, X639 did not show significant differences in growth among all the
treatments assayed, although growth was slightly reduced with the two highest treatments
assayed (50 mM and 75 mM of NaCl) at the end of the experiment evaluation. At the end
of experiment, US942 and X639 reduced their growth in height by less than 30% at the
highest salt concentration compared with the control treatment. On the contrary, FA No. 5,
Carrizo citrange and US897 showed a reduction of 35%, 38% and 47% at a concentration of
75 mM, compared with the control treatment in the eleventh week, respectively (Figure 2).
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and 75 mM of NaCl) on five citrus rootstocks plants (US942, US897, X639, Forner Alcaide No. 5 and Carrizo citrange) during
eleven weeks of evaluation. Values in points with different letters mean significant differences among treatments for each citrus
rootstock and evaluation time by Fisher’s test (p < 0.05). FA No. 5: Forner Alcaide No. 5; ns: not significant differences.

3.3. Chlorophyll Index (SPAD)

All citrus rootstocks showed similar SPAD responses without significant differences
among the treatments at the beginning of the experiment compared with the control
treatment (0 mM of NaCl). However, SPAD values decreased when exposure time and
salinity concentration increased. No rootstock significantly reduced this index in the first
week evaluated. Only US942 and US897 reduced significantly the SPAD response with the
highest salt concentration (75 mM) compared with the control treatment in the fifth week.
In the nineth week evaluated, US942, US897 and X639 plants reduced the SPAD index
at the highest concentration tested significantly, while the two others rootstocks assayed
reduced this parameter slightly without significant differences at the highest dosage tested,
compared with the salt concentration of 0 mM. Finally, only US897 plants reduced the
SPAD values significantly, with a reduction rate of 47% at the highest concentration assayed
compared with the control treatment at the eleventh week, the other rootstocks tested
reduced slightly this parameter without significant differences at the same concentration
and time compared with the control treatment, showing a reduction rate of 28%, 27%, 25%
and 18% for FA No. 5, Carrizo citrange, US942 and X639, respectively (Figure 3).
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salinity treatments (0, 25, 50 and 75 mM NaCl) on five citrus rootstocks plants (US942, US897, X639, Forner Alcaide No. 5
and Carrizo citrange) during eleven weeks of evaluation. (*) indicate significant differences among treatments for each
citrus rootstock and evaluation time by Fisher’s test (p < 0.05). FA No. 5: Forner Alcaide No. 5.

3.4. Biomass

At the end of the experiment, all evaluated rootstocks reduced fresh weight (FW)
and dry weight (DW) for all plant sections evaluated with different level of significance
compared with the control treatment (0 mM of NaCl).

All rootstocks tested showed significant differences among them for fresh weight of
roots (FWR) and dry weight of roots (DWR) at a salt concentration of 25 mM. In this concen-
tration, Carrizo citrange showed the highest significant PBR in FWR, with 46.8% followed
by US942, US897, FA No. 5 and X639 with 28.06%, 27.12%, 16.96% and 15.04% respectively.
However, percentage of reduction in DWR, X639 (41.23%) and Carrizo citrange (33.92%)
displayed the highest reduction, followed by US942 (25.98%) and Fa No. 5 (29.39%), while
US897 showed the least reduction (7.95%) (Table 2).
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Table 2. Mean Percentage of biomass reduction (%, PBR) ± standard error (SE) on leaf (L), stem (S) and root (R) in dry (DW)
and fresh weight (FW) after eleven weeks of four salinity treatment (0, 25, 50 and 75 mM of NaCl) in five citrus rootstocks,
US942, US897, X639, Forner-Alcaide No. 5 and Carrizo citrange.

NaCl Rootstock FWR ± SE FWS ± SE FWL ± SE DWR ± SE DWS ± SE DWL ± SE

25 mM

US942 28.06 ± 11.05 ab 41.09 ± 9.91 ns 24.35 ± 9.86 ns 25.98 ± 10.13 ab 41.85 ± 7.94 ns 20.67 ± 8.12 ns
US897 27.12 ± 9.47 ab 34.94 ± 11.23 ns 22.14 ± 11.67 ns 7.95 ± 7.95 b 28.00 ± 13.14 ns 6.25 ± 6.25 ns
X639 15.04 ± 6.26 b 23.21 ± 7.36 ns 18.31 ± 8.07 ns 41.23 ± 5.38 a 28.18 ± 7.59 ns 12.50 ± 6.55 ns

FA No. 5 16.96 ± 5.61 b 23.57 ± 7.76 ns 25.00 ± 8.33 ns 29.39 ± 11.97 ab 31.84 ± 10.28 ns 25.38 ± 12.15 ns
Carrizo citrange 46.84 ± 4.96 a 40.85 ± 7.78 ns 8.09 ± 6.57 ns 33.92 ± 5.64 a 20.41 ± 9.33 ns 11.31 ± 5.90 ns

50 mM

US942 48.67 ± 4.04 ns 56.06 ± 6.99 ns 31.76 ± 7.19 ab 41.67 ± 5.76 b 59.51 ± 5.91 ns 37.50 ± 0.07 b
US897 62.57 ± 12.26 ns 52.24 ± 12.23 ns 51.43 ± 12.56 a 49.24 ± 12.63 ab 54.00 ± 12.69 ns 45.31 ± 0.13 b
X639 50.48 ± 10.71 ns 45.13 ± 11.56 ns 39.79 ± 13.6 ab 67.86 ± 7.88 a 57.45 ± 9.42 ns 38.10 ± 0.15 b

FA No. 5 53.97 ± 7.30 ns 51.43 ± 8.33 ns 61.90 ± 11.76 a 73.65 ± 8.75 a 68.42 ± 4.43 ns 78.46 ± 0.08 a
Carrizo citrange 69.04 ± 3.51 ns 64.15 ± 4.05 ns 14.46 ± 6.00 b 64.34 ± 6.91 ab 57.19 ± 6.38 ns 32.9 4± 0.11 b

75 mM

US942 64.36 ± 7.48 ab 77.10 ± 4.90 a 68.24 ± 9.39 a 55.88 ± 10.99 ns 78.26 ± 5.90 ns 66.35 ± 09.39 a
US897 67.91 ± 10.64 ab 76.60 ± 4.45 a 84.29 ± 4.55 a 57.58 ± 8.26 ns 67.00 ± 7.47 ns 71.88 ± 10.76 a
X639 56.51 ± 4.83 ab 56.49 ± 4.43 b 39.61 ± 5.32 b 70.78 ± 6.01 ns 63.04 ± 4.26 ns 36.31 ± 6.36 b

FA No. 5 53.09 ± 10.35 b 55.43 ± 9.63 b 64.29 ± 10.86 a 62.84 ± 5.91 ns 63.68 ± 6.98 ns 68.46 ± 7.30 a
Carrizo citrange 77.17 ± 3.38 a 74.04 ±2.41 a 27.94 ± 8.16 b 71.33 ± 2.35 ns 69.42 ± 3.52 ns 50.79 ± 8.20 ab

Values with different letters means significant differences among rootstocks for each treatment by Fisher’s test (p < 0.05). FA No. 5: Forner
Alcaide No. 5; ns: not significant differences.

At a 50 mM of NaCl treatment, roots only reported a significant reduction among
rootstocks in DWR but not in FWR. FA No. 5, and X639 showed the highest reduction
(73.65% and 67.86%, respectively), followed by Carrizo citrange (64.34%), US897 (49.24%)
and US942 (41.67%). At this concentration, stem did not report a reduction of biomass
among rootstocks significantly. In contrast, leaves displayed significant reductions in FWL
and dry weight in leaves (DWL). In FWL highest reduction occurs in US897 (51.43%) and FA
No. 5 (61.9%), intermediate reduction appeared in US942 (37.76%) and X639 (39.79%), with
a low reduction in Carrizo citrange (14.46%), whereas DWL showed 78.46% of reduction in
FA No. 5 and the same reduction in the rest of citrus rootstocks (Table 2).

75 mM treatment generated significant difference in roots, stem and leaves fresh
weight and only in leaves by dry weight. In FWR, the highest reductions occurred in
Carrizo citrange (77.17%), whereas the lowest was in FA No. 5 (53.09%), with the reduction
in US942 (64.36%), US897 (67.91%) and X639 (56.51%) being intermediate. However, in
fresh weight of stem (FWS) a reduction higher than 70% of biomass was obtained in Carrizo
citrange, US942 and US897, while in X639 and FA No. 5 it occurred below 60%. X639
and Carrizo citrange displayed less than 40% reduction in FWL whereas the remaining
citrus rootstocks reported more than 60% reduction. Finally, significant differences among
rootstocks were not found in DW of roots and stem. However, significant differences were
achieved in DWL, where X639 reduced its biomass by less than 40%, but the remaining
had an influence on salinity which led to a reduction higher than 50% (Table 2).

3.5. Concentration of Salt Ions (Chloride and Sodium) in Leaves and Roots

Overall, chloride concentration significantly increased, while salt concentration of the
treatments increased in both plant tissues analyzed (roots and leaves) at the end of the plant
experiments. Thus, Carrizo citrange displayed the highest significant concentration of Cl−

in leaves at 75 mM, compared with the other salt treatment concentrations, whereas US897
and US942 showed the highest leaf Cl− concentration at 50 of salt; significant differences
only compared with the lowest salt concentration (0 mM) for each rootstock. X639 and
FA No. 5 displayed the highest levels of Cl− in leaves at 75 mM of salt, with significant
differences compared with the control treatment for each (Figure 4A).
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Figure 4. Mean Cl− concentration (%) ± standard error (SE) after eleven weeks for all five rootstocks
(US942, US897, X639, Forner Alcaide No. 5 and Carrizo citrange) under four concentrations of salt
treatments (0, 25, 50 and 75 mM of NaCl). (A) Mean Cl− concentration in leaves. (B) Mean Cl−

concentration in roots. Values in columns with different letters mean statistical differences among
treatments for each rootstock by Fisher’s test (p < 0.05). FA No. 5: Forner Alcaide No. 5; ns: not
significant differences.

US942 showed the highest concentration of Cl− in roots at 75 mM of salt, with sig-
nificant differences compared with the remaining salt treatments. US897 and FA No. 5
reported a significant highest concentration of Cl− in roots at 75 mM of salt compared with
the control treatment for each rootstock. In addition, X639 showed the highest Cl− in roots
at a salt concentration of 50 mM, with significant differences compared with the control
treatment. Finally, Carrizo citrange showed the significant highest concentration of Cl−

with a salt treatment of 25 mM, compared with the control treatment (Figure 4B).
Similarly, the sodium concentration increased significantly, while the salt treatments

concentration increased for all plant tissues analyzed (roots and leaves) at the end of the
plant experiments. Hence, Carrizo citrange and US942 showed the highest level of Na+ in
leaves and roots at 75 mM of salt, which was significantly different where compared with
the other treatments for each rootstock. Additionally, US897, X639 and FA No. 5 recorded
the significant highest concentration of Na+ in leaves and roots, with the salt treatment of
75 mM compared with the control treatment for each rootstock (Figure 5).
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Figure 5. Mean Na+ concentration (%)± standard error (SE) after eleven weeks for the five rootstocks
(US942, US897, X639, Forner Alcaide No. 5 and Carrizo citrange) under four concentrations of salt
treatments applied (0, 25, 50 and 75 mM of NaCl). (A) Mean Na+ concentration in leaves. (B) Mean
Cl− concentration in roots. Values in columns with different letters mean statistical differences
among treatments for each rootstock by Fisher’s test (p < 0.05). FA No. 5: Forner Alcaide No. 5;
ns: not significant.

3.6. Macronutrient Concentration in Leaves

All evaluated Citrus rootstocks showed different response of macronutrients concen-
tration in leaves between salinity treatments (Table 3). Nitrogen concentration did not differ
significantly among salinity treatments within each rootstock, with the highest nitrogen
concentration being found under the treatments of 25 and 50 mM of NaCl in all rootstocks,
except for X639, which showed the highest nitrogen concentration in the control treatment
(0 mM of NaCl). The phosphorus content increased in leaves with the treatment of higher
salt concentration (75 mM of NaCl) compared to the control treatment (0 mM of NaCl),
showing significant differences in all rootstocks except for US897. All citrus rootstock
increased the leaf potassium concentration in intermediate salinity treatments (25 and
50 mM of NaCl), showing statistical differences among treatments within each rootstock,
except for US942. The concentration of calcium in leaves was significantly higher in the
control treatment compared with the other treatments applied for each rootstock tested,
except for Carrizo citrange. When the treatment concentration of salt increased, the calcium
level in leaves diminished. The highest leaf magnesium concentration was reported in
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control (0 mM of NaCl) in all evaluated rootstock. Thus, the leaf magnesium concentration
significantly decreased with the salt concentration for all rootstocks except for FA No. 5.
Regarding the sulfur content, FA No. 5 and C. citrange were the only rootstocks that
showed significant differences among the salt treatments applied, with a trend to increase
concentration of this nutrient in leaves when the salt concentration increased (Table 3).

Table 3. Effect of salinity treatments (0, 25, 50 and 75 mM of NaCl) on leaf macronutrients (nitrogen, phosphorous, potassium,
calcium, magnesium, and sulfur) expressed as the mean concentration (%) ± standard error (SE) for five rootstocks tested:
US942, US897, X639, Forner Alcaide No. 5 and Carrizo citrange after eleven weeks.

Macronutrients Concentration (%)

Rootstock NaCl (mM) N ± SE P ± SE K ± SE Ca ± SE Mg ± SE S ± SE

US942

0 3.74 ± 0.10 ns 0.15 ± 0.02 b 2.14 ±0.05 ns 2.11 ± 0.11 a 0.18 ± 0.00 a 0.26 ± 0.02 ns
25 4.06 ± 0.10 ns 0.19 ± 0.00 ab 2.32 ±0.13 ns 1.51 ± 0.07 b 0.14 ± 0.02 b 0.23 ± 0.02 ns
50 3.37 ± 0.43 ns 0.23 ± 0.02 a 2.21 ± 0.06 ns 1.53 ± 0.08 b 0.14 ± 0.01 b 0.31 ± 0.04 ns
75 3.71 ± 0.23 ns 0.21 ± 0.01 a 2.19 ± 0.07 ns 1.47 ± 0.17 b 0.16 ± 0.02 ab 0.31 ± 0.02 ns

US897

0 3.28 ± 0.19 ns 0.18 ± 0.01 ns 1.90 ± 0.08 ab 2.23 ± 0.10 a 0.17 ± 0.00 a 0.25 ± 0.01 ns
25 3.54 ± 0.16 ns 0.22 ± 0.00 ns 2.04 ± 0.06 a 1.75 ± 0.09 b 0.17 ± 0.02 a 0.24 ± 0.01 ns
50 3.55 ± 0.01 ns 0.22 ± 0.00 ns 2.03 ± 0.03 a 1.41 ± 0.03 c 0.15 ± 0.01 ab 0.25 ± 0.00 ns
75 3.46 ± 0.08 ns 0.21 ± 0.08 ns 1.45 ± 0.46 b 0.87 ± 0.09 d 0.11 ± 0.02 b 0.21 ± 0.06 ns

X639

0 3.55 ± 0.07 ns 0.13 ± 0.02 b 1.93 ± 0.07 b 2.09 ± 0.02 a 0.22 ± 0.03 a 0.23 ± 0.02 ns
25 3.46 ± 0.33 ns 0.20 ± 0.01 a 2.33 ± 0.12 ab 1.73 ± 0.08 b 0.15 ± 0.01 b 0.24 ± 0.02 ns
50 3.32 ± 0.18 ns 0.19 ± 0.01 a 2.72 ± 0.14 a 1.69 ± 0.05 b 0.18 ± 0.01 ab 0.26 ± 0.00 ns
75 3.29 ± 0.04 ns 0.21 ± 0.01 a 2.18 ± 0.15 b 1.40 ± 0.09 c 0.16 ± 0.02 b 0.25 ± 0.01 ns

FA No. 5

0 3.05 ± 0.09 ns 0.17 ± 0.01 b 1.57 ± 0.03 b 1.97 ± 0.08 a 0.20 ± 0.01 ns 0.20 ± 0.02 b
25 3.39 ± 0.08 ns 0.21 ± 0.01 a 2.08 ± 0.04 a 1.75 ± 0.07 ab 0.16 ± 0.01 ns 0.23 ± 0.00 ab
50 3.17 ± 0.39 ns 0.20 ± 0.02 ab 1.82 ± 0.38 ab 1.38 ± 0.12 b 0.11 ± 0.02 ns 0.24 ± 0.03 ab
75 3.09 ± 0.17 ns 0.22 ± 0.01 a 1.82 ± 0.14 ab 1.40 ± 0.27 b 0.15 ± 0.04 ns 0.25 ± 0.01 a

Carrizo citrange

0 3.98 ± 0.23 ns 0.19 ± 0.01 c 1.56 ± 0.06 c 2.49 ± 0.17 ns 0.21 ± 0.01 a 0.21 ± 0.01 b
25 4.02 ± 0.23 ns 0.24 ± 0.01 b 1.80 ± 0.04 b 2.12 ± 0.08 ns 0.14 ± 0.01 b 0.29 ± 0.01 a
50 4.02 ± 0.07 ns 0.24 ± 0.01 b 2.35 ± 0.07 a 2.36 ± 0.08 ns 0.16 ± 0.02 b 0.31 ± 0.02 a
75 3.39 ± 0.08 ns 0.28 ± 0.01 a 1.77 ± 0.12 bc NA 0.17 ± 0.01 ab 0.27 ± 0.02 a

Values with different letters mean significant differences among treatments for each rootstock by Fisher’s test (p < 0.05). ns = not significant
differences. N: nitrogen; P: phosphorous; K: potassium; Ca: calcium; Mg: magnesium; and S: sulfur. NA: Not available data. FA No. 5:
Forner Alcaide No. 5; ns: not significant differences.

4. Discussion

Salinity stress is one of the most common plant-limiting factors in the Mediterranean
region, and the crop surface affected by this issue increases every year [57]. Furthermore,
this factor can influence plant physiological development [58]. Different studies have
reported that Citrus crops can be symptomatic or asymptomatic in response to salinity
problems, depending on the salt level [59]. In this study, we have successfully evaluated
the influence of four salt concentrations by several plant parameters under Mediterranean
conditions in five citrus rootstocks, some of which possess described tolerance to HLB
disease [49,52,60]. These rootstocks showed different symptom and mortality responses to
salinity stress, which could be related to genotype [61]. As in previous studies, X639 showed
an adequate response of plant symptoms against salinity under the different assayed salt
treatments. In addition, US942 and Carrizo citrange only showed high symptoms levels
at the highest salt treatment [22,62]. However, FA No. 5 and US897 have been described
as salinity tolerant citrus rootstocks in similar studies, [63,64] but these two rootstocks
showed a high symptoms index upon moderate and severe salt treatments in our study.

As reported in prior research, salinity stress induces plant growth reduction of cit-
rus rootstocks [13,22,58]. However, in our study X639 showed a similar plant growth
response in height among the assayed salt treatments. According to Syvertsen and Ban-
daranayake [53], our results showed a better growth response under salinity for X639 than
the other tested citrus rootstocks. On the other hand, US942 and US897 only reduced their
growth at the highest treatment.
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Moreover, plant growth reduction is related to photosynthesis reduction and changes
in plant-water relations [16,65,66]. Some plant symptoms, such as chlorosis and necrosis,
are associated with chlorophyll concentration in leaves, with the SPAD index being an indi-
rect measure of this concentration [67]. SPAD index decreased in salt presence depending
on the citrus rootstocks [14]. This response can occur due to chlorophyll synthesis process
interruptions [68]. SPAD values between 50 to 60 denote non-stressed citrus plants [67];
all experiment plants were in optimal conditions at the beginning of the experiment. In
contrast, at the end all citrus, rootstocks displayed a loss of SPAD units under severe
treatment. US897 was the only citrus rootstock affected by salt stress on the last days of
the experiment, with treatments reaching SPAD values below 30, which suggests a loss of
chlorophyll in leaves. SPAD values are related with nutrients deficiencies [24,69].

Reduction of fresh and dry biomass is triggered by salinity treatment, which is also
influenced by rootstock. The first organ in a plant affected by osmotic stress as a result of the
presence of salt are roots. Carrizo citrange showed a high sensitivity to salt stress, showing
a reduction of biomass in roots with all salt treatments, whereas US942, US897, X639 and
FA No. 5 has less PBR. Additionally, Carrizo citrange and Forner-Alcaide No. 5 display
this reduction at the high and mild salt treatments. Regarding leaves, PBR was similar in
all citrus rootstocks at mild treatment, whereas it was similar at 50 mM in FA No. 5 in dry
and fresh weight. In contrast, under the highest concentration of salts, US897 decreased
above 70% its fresh and dry biomass when compared with control, which indicates a major
susceptibility to salts in growth terms. Furthermore, salt stress leads to a reduction both in
citrus growth and in biomass development over time. Our percentage of biomass reduction
values ranged from 8 to 85%, higher than described in previous research [70,71]. These
differences among works may be traced to different growth conditions and climatology.

All citrus rootstocks showed differences in nutrient concentration in the control treat-
ment; this variety could be explained because of different absorption capacities and roots
systems [72]. Nutritional imbalance under salinity exposure appears to be due to affections
on membrane selectivity [12] and/or competitive antagonist interactions [73,74]. Salinity
tolerance in citrus is due to the ability of exclude or avoid to uptake or transport the salt
ions from the roots to the shoots [75]. Several studies state that a high Cl− concentration is
related to sensitivity to salt stress, and the lower presence in leaves of this ion indicates
an exclusion mechanism, which is associated with a tolerant phenotype [63,66]. Low salt
concentration entails a low accumulation, although the differences on ion accumulation
found in our study depend on citrus rootstock. On the other hand, our results showed that
all citrus rootstocks treated with salts (25 mM, 50 mM, 75 mM of NaCl) exceed the limit Cl−

concentration (more than 0.7% according to Morgan and Obreza [76]). The accumulation
of Cl− in the leaves increased from salt concentration of 25 to 75 mM in US942, which
is described as a suitable rootstock for a mild salinity level, but not moderate or severe
levels [22]. Carrizo citrange and US897 displayed the highest Cl− concentration in leaves
at 75 and 50 mM of salt, respectively. This Cl− accumulation is related to less tolerance to
salt environments, which renders these citrus rootstocks options less suitable for areas with
soils and/or water with salt excess [75].

Our results showed a proportional accumulation of Na+ in leaves when salt treatments
increased. In addition, this accumulation increased in roots, which can be related to a
partial accumulation of this ion in roots in order to diminish the accumulation in leaves
where Na+ caused more damage. This exclusion is described in P. trifoliata citrus rootstocks,
which is the parental for all rootstocks studied in this work [77]. However, there are clear
differences in accumulation of Na+ in leaves and roots.

In keeping with Syvertsen et al. [53], leaf nitrogen contents were not impacted by salt
treatments in our study. There is a competitive relationship between Na+ and potassium;
hence as the concentration Na+ increases in leaves, potassium accumulation reduces in
plant tissues [78,79]. In our study, this effect occurs in US897, which saw its potassium
accumulation in leaves drop when the level of salt concentrations increased [12,75]. How-
ever, X639 increased potassium accumulation in leaves under high salinity treatments,
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which is associated with a mechanism to reduce osmotic stress caused by Cl− accumulation
within cell leaves [14,78]. The concentration of calcium and magnesium was reduced
in all rootstocks with salinity treatments higher than 0 mM [78,80]. This response was
aggravated in US897 for calcium accumulation, while magnesium accumulation reported a
similar decrease in all citrus rootstocks studied, except for FA No. 5, with no variations
in the magnesium percentage in leaves [81]. The low absorption of nutrients, such as
potassium, calcium and magnesium, may be associated with the high concentration of
Na+ in roots [82]. As opposed to other research, leaf phosphorus content decreases as
salinity concentration increases in all assayed citrus rootstocks, except for FA No. 5, the leaf
phosphorus content of which was not impacted by salinity [81,83]. The results obtained
report that X639 showed a better physiological and nutritional behavior under salt stress
that the remaining citrus rootstocks studied; similar results were reported by previous
studies [53,64,84] where X639 appears as sound citrus rootstocks for salinity environment.

5. Conclusions

Few studies have tested new citrus HLB tolerant rootstock against salinity problems
under Mediterranean conditions. The proper choice of citrus rootstocks is a determinant
factor against salinity, which can largely solve the salinity issues of citrus crops in this area.
In addition, citrus selection should be done in light of other limiting factors and threats
in this region, increasing the availability of citrus rootstocks against abiotic and biotic
stress. Thus, X639 demonstrated an optimal response against high salinity concentration
of the Mediterranean Basin conditions. Likewise, US942 and FA No. 5 were reported as
optimal citrus rootstock for mild salinity concentration conditions. Conversely, US897 and
Carrizo citrange are not shown as the best option for Mediterranean salinity conditions.
Our findings provide interesting information for citrus growers about new citrus rootstocks
for Mediterranean basin conditions in order to increase the diversity of citrus rootstocks
and address current and future abiotic and biotic stress problems.
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