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Abstract: Determination of the optimum sowing window not only can improve maize yield sig-
nificantly but also can fit maize in the existing cropping pattern. To get the advantages of sowing
maize at the optimum time, a study was designed and carried out at the research field of Bangladesh
Agricultural Research Institute, Rangpur, Bangladesh during 2015–2017. Another aim of the study
was to forecast the yield of maize for the northern and western regions of Bangladesh using the
CERES-Maize model. The study considered 5 November, 20 November, 5 December, 20 December,
and 5 January as sowing dates for maize to identify the optimum sowing window. Three hybrid
maize varieties, viz., BARI Hybrid Maize-9 (BHM-9), NK-40, and Pioneer30V92 were used. The study
was laid out in a split-plot design, assigning the sowing dates in the main plot and the varieties in the
sub-plot. To forecast the yield, the daily weather data of 2017 were subjected to run the model along
with thirty years (1986–2015) of weather data. The genetic coefficients of the tested maize varieties
were obtained through calibration of the model by using the observed field data of 2015–2016 and
through validation by using the data of 2016–2017. The seasonal analysis was done using the DSSAT
CERES-Maize model to confirm the experimental findings for optimizing the sowing window for
maize at the northern region (Rangpur) of the country and subsequently adjusted the model for the
western region (Jashore). The model performances were satisfactory for crop phenology, biomass,
and grain yield. The NRMSE for anthesis was 0.66% to 1.39%, 0.67% to 0.89% for maturity date, 1.78%
to 3.89% for grain yield, and 1.73% to 3.17% for biomass yield. The optimum sowing window for
maize at the Rangpur region was 5 November to 5 December and 5 to 20 November for the Jashore
region. The CERES-Maize model was promising for yield forecasting of the tested maize varieties. It
gave a realistic yield forecast at approximately 45 days prior to the harvest of all the tested varieties.
The study results are expected to be useful for both the farmers and the policy planners to meet up
the future maize demands.

Keywords: climate change; crop model; grain yield; maize; sowing window; yield forecast

Agronomy 2021, 11, 635. https://doi.org/10.3390/agronomy11040635 https://www.mdpi.com/journal/agronomy

https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0001-8318-7146
https://orcid.org/0000-0003-4334-9088
https://orcid.org/0000-0001-8752-3450
https://orcid.org/0000-0003-1612-107X
https://orcid.org/0000-0003-0264-2712
https://doi.org/10.3390/agronomy11040635
https://doi.org/10.3390/agronomy11040635
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agronomy11040635
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy11040635?type=check_update&version=4


Agronomy 2021, 11, 635 2 of 14

1. Introduction

The area of maize (Zea mays L.) is remarkably increasing in Bangladesh [1] as it has a
great demand in the poultry industry [2]. Over the last 10 years (2010–2020), the production
of maize has substantially increased from 1954 to 4400 thousand tons [3]. The northern and
western parts of Bangladesh are the important regions for maize production [2–4]. The
major hindrance of growing maize in these regions is to fit the crop within the existing
rice-based cropping pattern. In those areas, the transplanted rainy season rice (aman rice) is
commonly grown in all the existing patterns, which is rice occupied in field upto the end
of October; and therefore, no lands can get free for growing maize early than November.
Moreover, after the harvest of rainy season rice, the lands remain moist due to the late
monsoon. Therefore, it is very crucial to optimize sowing time for maize to fit in a pattern.

Maize has the benefit to grow both in winter and pre-monsoon seasons because of its
facultative nature to day-length [5]. Tropical maize varieties are photo-period sensitive,
and thus, long days in high latitudes allow maize plants to grow tall but with less grain
yield. Moreover, air temperature sometimes can directly influence the grain growth of
maize [6]. Several studies have confirmed that maize yield significantly decreases with
falling temperature [7]. Usually, plants require a definite growing degree day (GDD) to get
maturity, depending on daily temperature and date of sowing.

The sowing date has a great influence on both growth and yield of crops because
of environmental variations over time and space. For example, late sowing of sunflower
experiences lower temperature, with a decrease in GDD from 1731 to 1621 during the
grain filling period [8] resulting in low yield. However, the response of maize varieties
to sowing dates can be dissimilar depending on adopted management practices. Soler
et al. [9] reported a 55% yield loss in four hybrid maize varieties because of delay in sowing
under rainfed condition, whereas the loss was only 21% in irrigated condition. Therefore,
the knowledge on the sowing window of a variety at any particular location is important
to attain maximum yield [10].

To ensure the attainable yield under the changing climatic scenario and also to avoid
the costly time-consuming long-term experiments to address the long-term climatic vari-
ability issues, a reliable well-accepted strategic validated crop model can be helpful [11–13].
Among the crop models, APSIM (Agricultural Production Systems Simulator) and DSSAT
(Decision Support System for Agro-technology Transfer) are the most widely and frequently
used models [14]. Tovihoudji [14] and several other researchers notified that the DSSAT
CERES-Maize module implemented in DSSAT [15] for simulating maize growth and yield
is suitable for a broad range of soil, management, and climatic conditions in comparison
to APSIM [16–19]. Many researchers have already used the DSSAT model to get good
crop management practices to minimize production risks [20–25]. Soler et al. [26] used this
model to forecast maize yield. Therefore, the present study was designed and executed
with an aim to identify the best sowing date for hybrid maize varieties in the northern
region of Bangladesh and to forecast the yield before harvest. Another aim of the study
was to adjust the sowing window for maize in the western region of the country based on
the results of the northern region.

2. Materials and Methods
2.1. Field Experiments

An experiment was conducted with three hybrid maize varieties, viz., BARI Hybrid
Maize-9 (BHM-9), NK-40, and Pioneer30V92 at the research field of On-Farm Research
Division, Bangladesh Agricultural Research Institute (BARI), Rangpur (25◦43′28.9′′ N and
89◦15′80.7′′ E, elevation 8 m) during 2015 to 2017. Five dates were considered for maize
varieties, viz., 5 November, 20 November, 5 December, 20 December, and 5 January, to
get the optimum sowing window. The experimental design was split-plot, arranging the
sowing date in main plots and the varieties in the sub-plots. The number of replication was
three and the unit plot size was 6 m×4m. Maize seeds were sown at 20 kg ha−1maintaining
60 cm × 20 cm plant spacing. The experimental field was fertilized with N, P, K, and S
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@ 250, 55, 100, and 30 kg ha−1, respectively. The sources of N, P, K, and S were urea, triple
superphosphate, muriate of potash and gypsum, respectively. One-third of N and the entire
amounts of other plant nutrients were applied one day prior to sowing. The remaining
two-thirds N was applied at 35 and 65 days after sowing as a top dressing. Supplementary
irrigation was added at knee height and cob initiation stage. Manual weeding was done as
and when necessary to keep the crop–weed competition at a minimum level. No control
measure was required for pest or disease.

2.2. Weather and Soil Information

Daily air temperatures (maximum and minimum), rainfall, and sunshine hours were
collected from the nearby weather station of the experimental field under the Bangladesh
Meteorological Department, Rangpur. Solar radiation was derived from sunshine hour
using Weather Man software in the CERES-Maize model (Figure 1). The averages of the
two years’ cumulative total rainfall were around 413, 601, 650, 667, and 773 mm for the
1st, 2nd, 3rd, 4th, and 5th sowing dates, respectively. Similarly, maize plants received
1828, 1901, 1809, 1847, and 1822 MJ m−2d−1solar radiations for five different sowing dates,
respectively. Maximum temperatures (◦C) were 27.2, 27.4, 27.4, 28.1, and 28.6, respectively,
for first to 5th seeding. Similarly, minimum temperatures (◦C) were 15.5, 15.2, 15.4, 16.1,
and 16.9, respectively. Total rainfall during the crop growing period of 2015–2016 was
much higher than that of 2016–2017, therefore, irrigation frequency and quantity were
more in the second year (Table 1).

2.3. Model Description

DSSAT CERES-Maize model is used to simulate crop growth and development on
a daily basis under a wide range of environments [27]. This model effectively considers
all the parameters in the simulation that directly or indirectly influence the grain yield of
maize. The model also assesses the commencement of phenological events.

Cultivar specific parameters (CSPs) are developed by the generalized likelihood
uncertainty estimation (GLUE) program of DSSAT v4.6. To perform such task scientifically,
the model requires date of emergence, anthesis, physiological maturity duration, grain
yield, biomass yield, grains in cob, and individual grain weight, thermal time interval from
seedling emergence to end of the juvenile stage (P1), coefficient of photoperiod sensitivity
(P2), degree days requirement for physiological maturity considering the base temperature
of 8 ◦C (P5), maximum possible kernel number in a plant (G2), grain filling rate in mg
day−1 (G3), and phyllocron interval (PHINT) in days. Initially, a large number (6000) of
parameter values are generated by GLUE and then likelihood values are calculated for
each set of coefficients using differences between observed and simulated data [28].

2.4. Model Calibration and Validation

The CERES-Maize model was calibrated according to Hunt and Boote [29] by utilizing
the data of grain yield, aboveground biomass yield, anthesis period, physiological maturity,
number and weight of kernel that were collected from the first-year trial (2015–2016). These
data were copied in an existing DSSAT maize file and run in the model with the observed
weather and soil file. The process was repeated and error was adjusted until the best match
was found for the observed and simulated growth duration and grain yield. The derived
genotypic coefficients were used for validation of the model based on the observed data of
2016–2017 and then the model performance was evaluated for application.
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Table 1. Historical weather data of Rangpur and Jashore during the growing season of maize (average of 30 years).

Month

Average Temperature (◦C)
Total Rainfall (mm) Average Sunshine (h)

Maximum Minimum

Rangpur Jashore Rangpur Jashore Rangpur Jashore Rangpur Jashore

October 30.7 32.5 22.5 22.9 169.1 124.0 7.2 6.2
November 28.5 30.3 17.3 17.4 7.8 28.2 7.8 6.8
December 24.8 26.7 13.0 12.5 7.9 11.1 6.7 6.1

January 23.0 25.4 10.9 11.1 9.1 13.4 6.1 6.3
February 26.4 29.0 13.4 14.7 11.7 25.4 7.5 7.2

March 30.5 33.6 17.5 19.7 27.6 42.3 7.8 7.4
April 31.7 35.9 21.3 23.6 117.9 72.6 7.1 7.6
May 31.9 35.5 23.4 25.2 284.7 180.3 6.5 6.9

For soil properties, initially, soil samples were collected from four depths (0–15, 15–30,
30–60, and 60–90 cm). Collected samples were subjected to analysis to determine the
physical properties such as texture, bulk density, moisture content, and field capacity; and
the chemical properties such as pH, organic matter, and total N (Tables 2 and 3).
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Table 2. The soil texture of the initial soil in the experimental field.

Soil Depth (cm) Sand (%) Silt (%) Clay (%)

0–15 11 63 26
15–30 11 60 29
30–60 14 33 53
60–90 27 38 35

Table 3. Physicochemical properties of the initial experimental soil.

Soil Depth
(cm) pH

Bulk
Density (g

cm−3)

Organic
Carbon (%) TotalN (%) Field

Capacity (%)

0–15 5.4 1.37 1.60 0.10 39.54
15–30 6.5 1.42 0.61 0.08 39.37
30–60 6.4 1.37 0.45 0.05 40.79
60–90 6.5 1.44 0.21 0.03 38.29

2.5. Evaluation of CERES-Maize Model

The model was evaluated using the index of agreement (d) [30], root mean square
error (RMSE) and normalized RMSE [31], mean absolute percentage error (MAPE) [32],
and percentage of predicted deviation (PD), as shown in Equations (1)–(5). Variables such
as the emergence of maize, anthesis and maturity, aboveground biomass, and grain yields
were evaluated in the study.

PD =
Oi − Si

Oi
(1)

Here, Oi and Si refers to observed and simulated variables.

d = 1−
⌊

∑(Pi −Oi)
2

∑(|Pi|+ |Oi|)2

⌋
(2)

Here, Pi and Oi refers to predicted and observed data.

RMSE =

√
1
n

n

∑
1
(Xs − Xo)

2 (3)

MAPE was determined as follows:

MAPE =
1
n

n

∑
1

Xs − Xo

Xs
× 100% (4)

Here, n indicates the number of comparisons, Xs is the simulated yield, and Xo is the
observed yield. NRMSE was determined as follows:

NRMSE =
RMSE

X
× 100% (5)

Here, “x” is the average observed yield.
PD value tending to zero indicates perfect prediction. Negative divergence indicates

under prediction, but positive deviation means over prediction. A closer d-stat value to
unity indicates good simulation. The RMSE is widely used to find out statistical differences
between predicted and observed data [33]. If NRMSE is <10 and >10 but <20, then the
prediction is considered as excellent and good, respectively.
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2.6. Seasonal Analysis and Model Application

The validated CERES-Maize model was utilized to predict grain yields through sea-
sonal analysis considering the same weather and soil data, and coefficients of tested
genotypes under multiple runs for one season and five sowing times. Thirty years of
weather data obtained from the Bangladesh Meteorological Weather Station at Rangpur
and Jashore were used for running the model.

2.7. Yield Forecasting

Yield forecasting for three hybrid maize was accomplished through the use of the
CERES-Maize model. Daily weather data for 30 years from Bangladesh Meteorological
Weather Station, Rangpur were normalized and combined with daily recorded weather
data for 2017. Bi-weekly yield forecasting were made, starting from mid-January until the
end of May 2017. For these forecast results, the antecedent daily weather data of 2017 were
used until the forecast date, complemented with 30 years of normalized weather data for
the remaining growing season. For each forecast, the mean and standard deviations for the
forecasted yield were determined.

3. Results and Discussion
3.1. Genetic Coefficient Determination

The adjustment of CSPs is needed for model calibration so that observed data match
well with simulated values [34]. The “P” values (P1, P2, and P5) of CSPs were computed by
observed dates of anthesis and physiological maturity. These values were used to find out
the dates of the phenological events such as anthesis and physiological maturity for field
application. The values of G2 and G3 control the yield contributing characters such as grain
dry matter yield, straw yield (aboveground biomass), grain size, etc. Detailed descriptions
of the genetic coefficient values are shown in Table 4. The computed CSPs values for
BHM-9, NK-40, and Pioneer30V92 were put into the cultivar (CUL) file (MZCER046.CUL)
to calibrate and validate the model.

Table 4. CERES-Maize genetic coefficient for BHM-9, NK-40, and Pioneer30V92 varieties.

Variety
Cultivar Specific Parameters (CSPs)

P1 P2 P5 G2 G3 PHINT

BHM-9 308.1 0.300 950.6 785.1 8.40 47.00
NK-40 310.0 0.300 948.0 782.0 8.50 47.00

Pioneer30V92 306.0 0.300 940.0 776.0 8.50 47.00

3.2. Model Calibration Results

The simulated grain and biomass yields, anthesis, and physiological maturity of
all the tested maize varieties during 2015–2016 were similar with observed data. How-
ever, observed data were slightly lower than the simulated values (Figure 2). The cal-
ibration results under five dates of sowings at Rangpur location for grain yields were
R2 = 0.96, RMSE = 128, NRMSE = 1.26, and d = 0.94, for biomass R2 = 0.93, RMSE = 298,
NRMSE = 1.40, and d = 0.91, for anthesis date R2 = 0.98, RMSE = 0.42, NRMSE = 0.43, and
d = 0.96, and for physiological maturity were R2 = 0.99, RMSE = 58, NRMSE = 0.42, and
d = 0.96 (Figure 2). Therefore, model calibrations for grain and biomass yields, anthesis
date, and physiological maturity were analogous to the observed values with R2 approach-
ing one. These differences were rather small and also supported the good statistical indices.
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Figure 2. Calibration results of grain yield with their goodness of fit during the year 2015–2016.

3.3. Model Validation

The simulated grain and biomass yields, anthesis, and physiological maturity dates of all
the tested maize varieties under five sowing dates were similar to the observed data. The test
statistics for validation results were 0.93 < R2 < 0.97;175 < RMSE < 401; 1.78 < NRMSE < 3.89;
and 0.98 < d < 0.99 for grain yields; 0.91 < R2 < 0.97; 373 < RMSE < 658; 1.73 < NRMSE <
3.17; and 0.86 < d < 0.96 for biomass yields; 0.82 < R2 < 0.95; 0.63 < RMSE < 1.34; 0.66 <
NRMSE < 1.39; and 0.91 < d < 0.94 for anthesis date, and 0.99 < R2 < 1.00; 0.94 < RMSE < 1.13;
0.67 < NRMSE < 0.82; and 0.96 < d< 0.97 for physiological maturity (Table 5). Therefore,
model validation for grain and biomass yields, anthesis day, and physiological maturity
were well fitted to the observed values with R2 approaching to one. However, the CERES-
Maize model was well parameterized, showing a good performance in simulating phenology,
growth, and yield of maize varieties. In previous studies, this model was also provided with
comparable results [35,36].

3.4. Phenological Development Phases and Yields

The observed and simulated outputs were compared after the calibration of the
model. The percent deviation (%PD) of the simulated data from the observed values
were calculated. The model predicted anthesis and physiological maturity periods for
five sowing dates, which have been presented in Table 6. Irrespective of varieties, the
differences between observed and simulated anthesis and physiological maturity were
+1 to +3 and +1 to +3 days, respectively. Close prediction of anthesis and maturity days
with 0- to 2-days difference between observed and simulated values were also noticed
by Soler et al. [26]. Chisanga et al. [27] found the CERES-Maize model predicted days to
anthesis (−2 to ±1) and maturity (−4 to ±1) within the range of observed data. Deviations
of phenological stages from the observed values were 0 to −3.13% at anthesis and from
−0.8% to −2.2% at physiological maturity.
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Table 5. Indicators of the goodness of fit for grain and biomass yields, and growth duration using CERES-Maize model
validation irrespective of sowings dates at Rangpur, Bangladesh during 2016–2017.

Parameters
R2 RMSE MAPE NRMSE D

BHM-9

Yield, kg ha−1 0.93 192 13.93 1.92 0.98
Tops weight, kg ha−1 0.97 373 7.81 1.73 0.96

* ADAP, days 0.82 1.34 2.54 1.39 0.93
* MDAP, days 1 0.94 3.59 0.67 0.96

NK-40

Yield, kg ha−1 0.97 401 13.21 3.89 0.98
Tops weight, kg ha−1 0.91 476 7.21 2.21 0.92

ADAP, days 0.95 0.63 2.76 0.66 0.94
MDAP, days 1 0.94 3.73 0.67 0.96

Pioneer30V92

Yield, kg ha−1 0.91 175 14.01 1.78 0.99
Tops weight, kg ha−1 0.97 658 7.95 3.17 0.86

ADAP, days 0.93 0.85 3.00 0.89 0.91
MDAP, days 0.99 1.13 3.77 0.82 0.97

* ADAP = anthesis days after planting, and MDAP = maturity days after planting.

Table 6. Comparison between observed and simulated, and percent differences for phenological development stages, grain,
and biomass yields as affected by different sowing dates and maize hybrids with the CERES-Maize model at Rangpur,
Bangladesh during 2016–2017.

Phenological
Stages

Obs. Sim. % PD Obs. Sim. % PD Obs. Sim. % PD
BHM-9 NK-40 Pioneer30V92

5 November
Anthesis day 99 98 1.01 98 98 0.00 98 98 0.00
Maturity day 145 148 −2.1 145 148 −2.1 145 148 −2.1

Grain (kg ha−1) 10,062 10,047 0.1 10,020 10,150 −1.3 10,285 10,065 2.1
Biomass (kg ha−1) 22,319 23,231 −4.1 23,457 23,464 0.0 22,633 23,310 −3.0

20 November
Anthesis day 99 99 0.0 98 99 −1.02 96 99 −3.13
Maturity day 144 146 −1.4 144 146 −1.4 143 145 −1.4

Grain (kg ha−1) 11,650 10,833 7.0 11,474 10,925 4.8 11,042 10,626 3.8
Biomass (kg ha−1) 22,306 23,207 −4.0 17,440 18,617 −6.7 22,075 23,328 −5.7

5 December
Anthesis day 96 98 −2.1 96 98 −2.1 96 98 −2.1
Maturity day 140 142 −1.4 140 142 −1.4 139 142 −2.2

Grain (kg ha−1) 11,150 11,220 −0.6 11,481 11,315 1.4 10,998 11,240 −2.2
Biomass (kg ha−1) 22,763 23,557 −3.5 21,701 23,405 −7.9 23,115 23,287 −0.7

20 December
Anthesis day 95 97 −2.1 95 97 −2.1 95 97 −2.1
Maturity day 136 138 −1.5 136 138 −1.5 135 138 −2.2

Grain (kg ha−1) 10,051 10,542 −4.9 10,847 10,631 2.0 9904 10,561 −6.6
Biomass (kg ha−1) 17,942 18,677 −4.1 21,935 23,246 −6.0 21,745 23,257 −7.0

5 January
Anthesis day 93 93 0.0 92 93 −1.1 91 92 −1.10
Maturity day 131 132 −0.8 130 131 −0.8 129 130 −0.8

Grain (kg ha−1) 7005 6937 1.0 7005 6937 1.0 6971 6730 3.5
Biomass (kg ha−1) 21,420 23,330 −8.9 21,619 23,215 −7.4 17,100 17,888 −4.6
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However, up to November seeding, observed anthesis and maturity days were 99
and 145, respectively. Anthesis and maturity days reduced under late sowing dates. On
5 January sowing, anthesis and maturity days were 91 to 92 and 129 to 131, respectively.
Due to late planting from November to January, days to anthesis of maize decreased. The
possible reason could be prevailing high temperatures during the pre-flowering stage in
late-planted maize, decreased GDD, and thus leading to early maturity of the crop. Ahmed
et al. [31] also reported a similar incidence in late-planted maize. The increment of both
maximum and minimum temperature shortens the duration of flowering and maturity of
maize [33]. In the present study, the deviation in simulated grain and biomass yields from
the observed values ranged from −2.2% to +1% and −8.9% to 0%, respectively. The second
and third sowing dates (20 November and 5 December) produced higher grain yields
satisfactorily which was close to the yield of 5 November sowing. Grain yield reduced
beyond 5 December sowing, and the lowest was obtained from 5 January planting. Liaqat
et al. [37] also marked a reduction in grain yield for delayed planting. Biswas [38] reported
similar findings and identified 20 to 30 November as the optimum sowing time for hybrid
maize at Jamalpur district of Bangladesh.

3.5. Seasonal Outputs

Long-term simulated grain yield of maize varied from 10,039 to 11,839 kg ha−1in
Rangpur. Varietal performances were almost similar for five sowing dates. The highest
grain yield of maize was attained when sown on 5 November, and the lowest on 5 January
seeding, which was similar to the 4th and 5th sowing dates (Figure 3a). Gradual decrement
of grain yield was from November to early January sowing. Biomass yield also followed a
similar trend. Prolonged life duration and favorable temperature, especially at the grain
filling stage, might be the main reason for the higher grain yield of maize in early sowing
dates. Ahmed et al. [31] also reported similar findings in maize. The relationship between
grain yield and different sowing dates of maize are linear. Simulated grain yield was higher
in November sowing and decreased thereafter. The lowest grain yield was obtained in
January sowing. Considering varietal performances, NK-40 and Pioneer30V92 gave higher
grain yields in all the sowing dates compared to BHM-9, though the differences were not
remarkable. On average, about 300 kg ha−1 grain yields reduced for every 15 days’ delay
in sowing date. On the other hand, the long-term simulated grain yield of maize in the
Jashore region ranged from 6512 to 10,034 kg ha−1. Varietal performances were almost
similar in five sowing dates (Figure 3b). Sowing dates follow a sharp linear relationship;
the simulated yield on 5 November was higher and close to 20 November sowing, and
then declined gradually with late sowing dates. With a delay in the sowing date from
5 November to 20 November, yield reductions were 872–891 kg ha−1. This indicates that
a farmer may delay sowing because of the unsuitability of land or other socioeconomic
conditions, but he/she has to lose about one-ton grain yield than the optimum seeding time.
Our findings are concurrent with that of Porter and Semenov [39] and Adnan et al. [16]
that early planting offered benefit to achieve targeted maize yield while the risk of yield
reduction increased with the delay in planting.

3.6. Yield Forecasting

High variability with yield forecasting was observed during February and March
sowing, as seen from the large standard deviations (Figure 4). The standard deviation of
simulated grain yield decreased for all three hybrids with the progress of a growing season
when the simulations were run, considering an extensive period with real weather data of
2017 (Figure 4). For all the tested varieties, the standard deviation of the estimated yields
for 1st April was close to zero (Figure 4a–c), but at the end of the growing season, the
simulated and observed yields in 2016–2017 were similar (triangle points in Figure 4). These
similarities were expected because the CERES-Maize model was evaluated using observed
grain yields. Using observed weather data of 2017, we found perfect yield prediction at
least 45 days prior to harvest for all three maize varieties. Similar findings have been
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reported by others for millets [40], groundnut [41], and maize [6]. The tested CERES-Maize
model showed many potentialities for yield predictions. The present study confirms the
findings of Boggione et al. [42] and Amaral et al. [43], who forecasted maize yield through
CERES-Maize and got satisfactory results. However, the study suggests calibrating and
validating the model before application for new hybrids in the new location under different
agro-climatic conditions.
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4. Conclusions

The CERES-Maize model was capable of simulating phenology and yield of three
hybrid maize varieties for five sowing dates in the northern and western regions of
Bangladesh. The simulated results were in close agreement with the observed values.
The validated CERES-Maize model was able to estimate the attainable grain yield satis-
factorily for various sowing dates. The seasonal analysis option of the model identified
the optimum sowing windows for maize for both the northern and western region of
Bangladesh. The optimum sowing window for Rangpur (northern region) was between
5 November to 5 December, and 5 to 20 November for Jashore (western region). Therefore,
the study claimed that now maize can easily be fitted into rice-based cropping patterns
at the northern and western regions of the country. Moreover, the model successfully
forecasted the grain yield of the tested maize varieties at approximately 45 days prior
to harvest. The study results will definitely be beneficial for the farmers to boost up the
maize production under the adverse climatic conditions and also for the policy planners
to estimate the future requirement for import maize to meet the national demand or for
export if production is surplus. Further research would be needed for new varieties to
determine the optimum sowing window(s) at different locations and to forecast the yield
at the early stage of maize by using a multi-criteria model following an artificial neural
network as well as using the DSSAT model.
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