
agronomy

Article

Individual and Combined Effects of Planting Date, Seeding
Rate, Relative Maturity, and Row Spacing on Soybean Yield

Peder K. Schmitz * and Hans J. Kandel

����������
�������

Citation: Schmitz, P.K.; Kandel, H.J.

Individual and Combined Effects of

Planting Date, Seeding Rate, Relative

Maturity, and Row Spacing on

Soybean Yield. Agronomy 2021, 11,

605. https://doi.org/10.3390/

agronomy11030605

Academic Editor: David Moseley

Received: 18 February 2021

Accepted: 20 March 2021

Published: 23 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA; hans.kandel@ndsu.edu
* Correspondence: peder.schmitz@ndsu.edu

Abstract: Planting date (PD), seeding rate (SR), relative maturity (RM) of cultivars, and row spacing
(RS) are primary management factors affecting soybean (Glycine max (L.) Merr.) yield. The individual
and synergistic effects of PD, SR, RM, and RS on seed yield and agronomic characteristics in North
Dakota were herein investigated. Early and late PD, early and late RM cultivars, two SR (408,000
and 457,000 seed ha−1), and two RS (30.5 and 61 cm) were evaluated in four total environments in
2019 and 2020. Maximizing green canopy cover prior to the beginning of flowering improved seed
yield. Individual factors of early PD and narrow RS resulted in yield increase of 311 and 266 kg ha−1,
respectively. The combined factors of early PD, late RM, high SR, and narrow RS improved yield
by 26% and provided a $350 ha−1 partial profit over conventional practices. Canopy cover and
yield had relatively weak relationships with r2 of 0.36, 0.23, 0.14, and 0.21 at the two trifoliolate,
four trifoliolate, beginning of flowering, and beginning of pod formation soybean growth stages,
respectively. Producers in the most northern soybean region of the USA should combine early
planting, optimum RM cultivars, 457,000 seed ha−1 SR, and 31 cm RS to improve yield and profit
compared to current management practices.

Keywords: seed yield; soybean; canopy cover; crop production

1. Introduction

The gap between genetic potential and the average producer soybean (Glycine max (L.)
Merr.) yield at the farm level has previously been investigated in the north-central USA
region. In the north-central USA region, the states North Dakota, South Dakota, and
Minnesota comprised 19% of USA soybean production in 2020 [1] with an average profit of
$230 USD ha−1 in southern North Dakota [2]. A grower survey of 524 soybean fields in
North Dakota by Rattalino Edreira et al. [3] found yield differences between the highest
and average-yielding (1200 kg ha−1) fields were due to three primary factors, including
planting date (PD) [3], relative maturity (RM) [4], and seeding rate (SR) [5]. Mourtzinis
et al. [4] stated that RS practices in North Dakota were about equally split between narrow
(~25 cm) and wide (~76 cm) spacings in surveyed soybean fields. The effects of PD, RM,
SR, and RS on soybean production have been individually well-investigated. Current
North Dakota management trends of second-half of May planting, cultivars with RM not
best-adapted for the region, and 408,000 seed ha−1 SR can be improved upon [6], with
narrow RS providing yield benefits compared to wide RS in northern growing regions [7].
The potential synergistic effects of early planting, cultivars with longer RM [6], and SR
higher than 408,000 seed ha−1 require further exploration, especially in northern USA
soybean production environments [8,9].

The soybean planting date is considered the most important cultural management
factor to production [10]. Delaying soybean planting from 1 May to 15 May decreased
yield by 0.5% d−1 in Minnesota [11]. Delaying soybean planting beyond May resulted in
declining yields in the north-central USA region [3,12–16]. In addition, Stanley [6] reported
a 0.4% d−1 yield loss when delaying planting beyond 1 May (up to 1 June) in North Dakota.
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However, soybean yield response to PD can vary considerably from year-to-year, especially
depending on the magnitude of environmental constraints [15,16].

The length of the cropping season in the north-central USA has increased by 5 to 20 d
since the 1950s, according to Kucharik et al. [17], generating uncertain optimal soybean
maturity recommendations [18]. Soybean cultivar RM groups in the USA range from 00.0
to 10.0 [19], with the suggested maturity groups for production in North Dakota ranging
from 00.0 to 1.0 [20]. Mourtzinis and Conley [21] delineated optimal soybean maturity
group zones and noted a range of RM 0.0 to 1.5 is more suited for North Dakota production.
To maximize yield, current production recommendations suggest utilizing a cultivar with
the longest maturity group suitable for a growing region [22].

With similar SR, the distance between soybean rows has an impact on plant den-
sity within the row and soybean seed yield. Narrow rows can cause earlier in-season
canopy closure [23], resulting in greater accumulated light interception compared to wider
RS [24,25]. In the northern and central soybean growing regions in the USA, narrow RS
can improve soybean yields in normal environmental conditions [9,25–30]. Narrow rows
can increase soybean yield when planted late or under no-till conditions [14]. In contrast,
wide soybean RS improves yields under soil water deficit conditions [29,31].

Various SR have been reported as optimal for yield and typically differ between grow-
ing regions. Seeding rates below 560,197 seeds ha−1 in Iowa [32], 284,050 to 573,000 seeds ha−1

in high yield conditions in Kansas [29], and 444,600 to 494,000 seeds ha−1 in North
Dakota [9], all of which have been found to produce the greatest yield. Soybean iron
deficiency chlorosis (IDC) in IDC-prone North Dakota soils can be reduced by increasing
plant density from 300,000 to 600,000 plants ha−1, resulting in increased seed yield [33]. To
produce similar yields around 3600 kg ha−1, Lee et al. [34] reported optimal SR for planting
in May in Kentucky was as low as 171,000 seed ha−1, where SR in Wisconsin was as high
as 741,000 seeds ha−1 [14]. Gaspar et al. [5] found SR below the agronomical optimal SR
exponentially increased risk and potential yield loss. Reducing risk for soybean yield loss
may be circumvented by optimizing canopy cover through management, which would
require a greater understanding of the effect of management practices on canopy cover.

Canopy cover is a useful proxy measurement for light interception and crop produc-
tivity [35]. Maximum photosynthesis is achieved when plants maximize light interception
and utilization of photosynthetic radiation [36,37]. Light interception can be quantified
with methods such as quantum line sensors [38], approximated by fractional green canopy
cover (FGCC) from pictures using the Canopeo app [39], and leaf area index.

Estimating and predicting crop yields using canopy cover measurements is of high
relevance to producers. Crop growth stage [40], RS [41], and canopy structure [42] can affect
FGCC. Green canopy cover may allow for better yield prediction and a useful application
in soybean production. To our knowledge, no previous research in the northern USA
soybean growing region has evaluated the combined effect of management factors and
their potential for synergism to increase soybean yields, and their use in yield prediction
based on canopy cover.

The objectives of the research were to determine how PD, SR, RM, and RS, as indi-
vidual factors and when combined, affect seed yield, and agronomic characteristics, if
combining factors are more economical than current practices, and to evaluate if FGCC can
predict soybean yield.

2. Materials and Methods

Field experiments were conducted in 2019 and 2020 in Fargo, North Dakota, USA
(46.932◦ N, 96.513◦ W). Each year the location had two experiments: one tile-drained,
as described by Kandel et al. [43], and one non-tile-drained. Each experiment and year
combination were called an environment, for a total of four environments.

The experimental design was a randomized complete block (RCB) with a split-plot
arrangement with four replicates. The whole plot was PD, and the sub-plots were a factorial
combination of RM of cultivars, SR, and RS, with the combination of all factors described
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as a package. Planting dates were at an optimal time, which is no earlier than 5 d before
the last projected spring frost in mid-May and a late PD two weeks thereafter (Table 1).
Cultivars were from the same company and differed by 0.3 RM units and were described
as early or late RM relative to the cultivars grown in that environment (Table 2). Seeding
rates were 408,000 and 457,000 pure live seeds (germinable seeds) ha−1 and adjusted using
a 98% germination average. The RS widths were narrow (30.5 cm) and wide (61 cm). The
four factors of PD, RM, SR, and RS were combined over 2019 and 2020, with the main
effects analyzed individually. To answer if a combination of factors provided higher yield
compared to conventional practices, individual factors were combined into ‘packages’,
combined across environments, and analyzed by packages using an RCB. The ‘improved
package’ consisted of an early PD, late RM, 457,000 seeds ha−1, and narrow RS factors,
whereas the ‘conventional package’ was a late PD, early RM, 408,000 seeds ha−1, and
wide RS.

Table 1. Important dates and environment information for 2019 and 2020 soybean environments.

Planting Date

SCN 1 2019 2020 Harvest Date

Environment 2019 2020 1 2 1 2 2019 2020

eggs 100 cc−1 DOY
Fargo 0 0 137 154 133 149 302 275

1 SCN, Soybean cyst nematode; DOY, Day of year. DOY 135 is 15 May and DOY 280 is 7 October.

Table 2. Soybean cultivars used and descriptive features.

NDSU Company

Cultivar Maturity IDC 1 IDC SCN 2 Canopy Height

AG 05x9 0.5 2.4 3 R Medium Medium
AG 08x8 0.8 - 4 R Medium Medium Tall

1 IDC, iron deficiency chlorosis. NDSU IDC scored on 1–5 scale (1 = green, 5 = dead) [33]. Company IDC scored
on 1–9 scale (1 = green 9 = dead). 2 SCN, soybean cyst nematode; R, resistant.

Experimental units were seeded using a Hege 1000 no-till planter (Hege Company,
Waldenberg, Germany). Seeds were sown to a depth of approximately 3 cm, with the
experimental unit size being 1.52 m by 5.47 m. Soils were tested (Table 3) for plant essential
nutrients before seeding to ensure fertility was not a limiting factor based on North Dakota
State University recommendations [20]. Soil fertility levels were sufficient and no additional
fertilizer was applied. Soybean seed was pre-treated with Acceleron seed treatment, (Bayer
CropScience, Monheim, Germany). Seeds were inoculated with Bradyrhizobium jamponicum
using Vault SP (BASF, Ludwigshafen, Germany) at a rate of 40 g per 23 kg of seed.

Table 3. Soil test results for soybean environments in 2019 and 2020.

Depth NO3-N P K pH OM

cm kg ha−1 mg kg−1 %

2019

0–15 8 15 495 8 6
15–61 14 5 300 8 4

2020

0–15 22 18 489 8 6
15–61 26 6 353 8 4

Two applications of Roundup PowerMAX (Bayer CropScience, Monheim, Germany)
at a rate of 1.6 L ha−1 were applied during the season for weed control. Soybean aphid
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(Aphis glycines Matsumura) and grasshopper (Orthoptera: Acrididae) were controlled when
pest densities surpassed the economic threshold [44] using the insecticide Mustang Maxx
(FMC Corporation, Philadelphia, PA, USA) at a rate of 1.75 L ha−1.

After planting, a number of established plants per experimental unit were recorded at
the V2 or two trifoliolate stage [45]. Established plant density was determined by counting
a 0.91 m length from the middle soybean rows, and the final plant density was determined
by counting plants from the same length before harvest. During the growing season, soil
cover percent was recorded using the Canopeo app (Oklahoma State University, Stillwater,
OK, USA). Fractional green canopy cover photos were processed to determine a canopy
coverage percentage [39]. Canopy pictures were taken approximately 1.5 m from the soil
surface in the center of each plot using an iPad (Apple, Cupertino, CA, USA). Matlab
software (MathWorks, Inc., Natick, MA, USA) was used to estimate canopy cover by FGCC.
The FGCC measurements were recorded when soybean plants in the early PD were at
the V2, V4, R1, R3, R5, or R7 growth stage (two trifoliolate, four trifoliolate, beginning of
flowering, beginning of pod formation, beginning of bean development, and pod and leaf
yellowing), respectively [45]).

Experimental units were harvested after physiological maturity [45] using a Winter-
steiger classic plot combine (Wintersteiger AG, Ried, Austria). Seed samples were cleaned
and weighed post-harvest and analyzed for oil and protein content using a Perten Instru-
ments DA 7250 NIR analyzer (Perten Instruments, Inc., Springfield, IL, USA). Moisture
and test weight were determined using a GAC 2100 moisture tester (DICKEY-John Corp.,
Minneapolis, MN, USA) and observations were corrected to 13% moisture content. Seed
weights were obtained by counting 1000 seeds using an electric counter and weighing them.
Weather data were collected using the North Dakota Agricultural Weather Network [46]
providing weekly maximum and minimum air temperature and rainfall using the Fargo
NDAWN weather station.

Normality and homogeneity of variance assumptions of ANOVA were met, as deter-
mined by residual histograms and the ratio of the highest and lowest error mean square
being less than 10 [47]. Analysis of variance was performed for 2019 and 2020 environments
using the GLIMMIX procedure in SAS 9.4 (SAS Institute, SAS Circle, Cary, NC, USA). The
individual factor analysis used fixed and random effect designations described by Carmer
et al. [48], where PD, RM, SR, and RS were considered fixed effects, while environment, and
replicate within environment, were considered random. Analysis of variance of dependent
variables for packages were performed using the GLIMMIX procedure, where package
was considered a fixed effect, and environment a random effect. The FGCC dependent
variable was analyzed as a repeated measure over time using the design structure sim-
ilar to the respective analysis [49]. Simple linear correlations between FGCC and yield
were performed using the CORR procedure. Orthogonal contrasts were made using Proc
GLIMMIX to compare improved and conventional management packages. Means were
separated using a Tukey’s HSD with p = 0.05.

A partial net profit economic analysis for the individual factors and packages were
only included costs associated with seed and no other costs, such as machinery and labor
which do not affect the economics of SR. The partial net profit was calculated by subtracting
seed cost (price per seed (PPS)× live seeding rate (SR)) from gross revenue (seed yield
(SY)× market price (MP)): Partial Net Profit = (SY × MP) − (PPS × SR). Price per
seed was calculated by dividing a $49.20 seed cost unit−1 by 140,000 seeds [50]. Gross
revenue calculations used the 2010–2020 soybean market price average of $0.41 kg−1 from
the Chicago Board of Trade. Means were separated using Tukey’s HSD with p = 0.05.

3. Results and Discussion
3.1. Weather Data

Rainfall amounts and temperature conditions differed slightly between the years.
Rainfall events were more frequent in 2019 compared to 2020 (Figure 1). Total rainfall
between weeks 1 to 25 was greater in 2019 (558 mm) compared to 2020 (404 mm). Weekly
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rainfall averages post week 15 were considerably drier in 2020 compared to 2019. The
two-week period following planting in 2019 was warmer and drier compared to the first
two weeks following planting in 2020. In 2020, minimum air temperatures decreased below
0 ◦C, causing slight frost damage to the longer relative maturity soybean cultivar. On
average, average temperatures of 16.2 and 16.4 ◦C between weeks 1 and 25 were similar in
2019 and 2020, respectively.
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Figure 1. Soybean growing season weekly (week 1 starts at 1 May) mean temperatures after seeding and rainfall totals for
2019 and 2020 Fargo environments.

3.2. Individual Factor Analysis

Analysis of interactions among individual factors were non-significant, PD, RM,
and RS affected most dependent variables (Table 4). Early planting resulted in reduced
established plant density compared to late planting, thereby affecting final plant densities
(Table 4). Above-normal rainfall events before the early PD created poor seeding and
emergence conditions. The yield of early PD soybean was significantly higher compared
with late PD soybean. Delaying planting beyond May in the upper Midwest can reduce
yields [32] and consequently resulted in a 9% decrease in partial net profit (Table 4).
Although late planting provided better germination and establishment, early planting
allows for greater accumulated solar radiation throughout the growing season providing
greater yields comparatively [51]. In Japan, planting three weeks later than optimal
decreased soybean yield due to reduced node production, slower canopy development [52].
Delaying planting can shorten vegetative and reproduction growth stage periods resulting
in less radiation accumulation when planting after 20 May in Iowa [53].

The later RM cultivar yielded significantly higher than the early RM cultivar. Plant-
ing longer maturing (2.0) cultivars in Minnesota and Wisconsin tend to increase yields
compared to earlier RM (0.5) confirming the trend in our experiment [22]. Cultivars had sig-
nificant differences in seed protein, oil content, and weight, which can partly be explained
by the genetics of the cultivar (Table 4). Other studies have also found that longer-maturing
cultivars can accumulate greater amounts of solar radiation throughout the season often
resulting in greater seed yield and oil content, and reduced protein content [51,54]. How-
ever, autumn frost damage is a risk in the northern growing region therefore selecting a
RM which can mature before the average frost date is critical to maximize production.

Seeding rate did not have a significant effect on observations, other than plant stands.
Established and final plant stands were greater for the higher SR (Table 4). Both SRs had
similar stand loss from established to final density of around 9%. In southern Brazil,
optimal SRs were greater in high yielding environments (>5000 kg ha−1) where SRs
could be reduced by 18% without a yield penalty compared to low yield environments
(<4000 kg ha−1) [55]. Gaspar et al. [56] recommends soybean farmers in Wisconsin to adjust
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SRs to the economic optimum of 255,000–293,000 seeds ha−1 for maximum yield. For this
research, increasing the separation between the two SRs or adding additional rates may
have shown an effect of SR.

Table 4. Mean agronomic trait observations for planting date, relative maturity, seeding rate, and row spacing averaged
across controlled tile drainage and naturally environments in 2019 and 2020 for a total of 4 environments.

SOV 1 ES FS Protein Oil TSW Yield Partial Net
Profit FGCC

PD plants ha−1 g kg−1 g kg ha−1 $ ha−1 %
Early 380,608 b 344,881 b 335 a 173 a 140 a 3884 a 1604 a 56 a
Late 432,649 a 403,757 a 335 a 171 a 137 a 3573 b 1476 b 58 a

RM
Early 409,419 a 362,826 a 339 a 168 b 142 a 3584 a 1480 a 56 a
Late 403,838 a 385,812 a 331 b 176 a 136 b 3873 a 1600 a 58 a

SR
seeds ha−1

408,000 392,081 b 360,607 b 334 a 172 a 139 a 3686 a 1522 a 57 a
457,000 421,176 a 388,031 a 335 a 172 a 139 a 3772 a 1557 a 58 a

RS
cm
30.5 424,782 a 395,411 a 334 a 173 a 138 a 3862 a 1595 a 59 a
61 388,475 a 353,227 a 336 a 171 a 140 a 3596 b 1485 b 55 a

Within columns, for each main factor, means followed by the same letter are not significantly different at p ≤ 0.05. 1 SOV, source of variation;
ES, established stand; FS, final stand; TSW, 1000 seed weight.

Narrow rows were found to be superior to wider rows regarding yield. Cox and
Cherney [28] found a linear increase in yield as RS when decreasing RS from 76 to 19 cm
in north-central USA. Row spacing results showed the benefit of narrow RS (30.5 cm) in
the northern USA soybean growing region (Table 4). Previous research in the northern
USA soybean growing region deemed RS a major yield contributing factor with narrow
RS (30.5 cm) providing a 6% greater yield than wide RS (61 cm) [9]. Andrade et al. [7]
similarly reported 540 kg ha−1 yield benefit to narrow RS compared to wide RS. The yield
increase in narrow RS is likely due to an advantage of increased light interception during
the limited growing season [7]. Lee et al. [34] reported complete canopy cover at the R5
growth stage was required for maximum yield potential. Narrow RS of 19 and 38 cm
also can provide weed control for multiple-resistant waterhemp (Amaranthus tuberculatus)
which is commonly found in the north central growing region of the USA [57].

In general, PD was expected to be the most critical determinant of yield. Moreover, nar-
row RS improved yield and partial net profit by 7% compared to wider spacings (Table 4).
Many previous studies have confirmed the importance of soybean RS particularly due to
increased light interception [24,25]. Evaluating these individual effects within an improved
management package of early PD, a late-maturing cultivar, high SR (457,000 seed ha−1),
and narrow RS (30.5 cm) permits assessment of the potential synergism between four yield
benefitting factors.

The fractional green canopy cover (FGCC) was significantly different across the grow-
ing season. The greatest FGCC occurred at R3 (89%) and R5 (90%). Canopy measurements
at the V2, V4, R1, and R3 growth stages were significantly correlated with yield, with r2

values for all growth stages ranging from −0.05 to 0.36 which are not relatively strong
relations (Table 5). The FGCC measurement at the V2 growth stage was the most closely
correlated with yield, suggesting management practices that maximize FGCC may im-
prove soybean yields. Edreira et al. [51] found that the average producer can improve their
accumulated photosynthetically active radiation, and therefore seed yield by 14%, through
earlier canopy closure. Our data reinforces that maximization of FGCC earlier in the season
likely improves light interception and seed yield. Although significant, the associations
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between V2 and R3 growth stages and yield were relatively poor (on average r2 = 0.24).
Additionally, subsequent environmental events (e.g., drought, hail, early frost) can alter
seed yield after early canopy measurements making these measurements unreliable for
end-season seed yield predictions.

Table 5. Simple correlation coefficients for the relationship between soybean seed yield and fractional
green canopy cover (FGCC) measured at different growth stages throughout the growing season for
the combined environments in 2019 and 2020.

Correlations

Growth Stage r2 p FGCC

%
V2 0.36 <0.001 11 e
V4 0.23 <0.001 46 c
R1 0.14 0.033 75 b
R3 0.21 0.002 89 a
R5 0.10 0.138 90 a
R7 −0.05 0.442 33 d

Within column, means followed by the same letter are not significantly different at p ≤ 0.05.

3.3. Treatment Package Analysis

Analysis by packages allowed for a more comprehensive depiction of a producer’s
management system as producers typically compare yield differences through a systematic
approach. The package analysis followed similar trends as the individual factor analysis
(PD, RM, and RS). Although factors like early planting, late RM, and narrow RS have yield
advantages alone, consolidating these factors into a singular package can improve yield
when compared to other potential packages farmers may use.

Established and final plant stand results did not show any definite trends related to
the packages (Table 6). In general, packages with the early RM cultivar had higher protein
content and lower oil content, with the inverse true for the late RM, however, this is mostly
due to the genetics of the cultivars used. Conventional compared to the improved package
did not differ for plant stand, protein content, oil content, and seed weight. Producers are
currently not directly compensated for relatively high protein or oil content and should not
consider them when investigating profitability.

The improved management strategy provided for higher yield (26% increase) and
partial net profit (+$350 ha−1) compared to conventional practices (Table 6). Comparing
the conventional to treatment 8 (Table 6), the difference in RS had a non-significant yield
increase, suggesting that a change in RS does not impact yield or partial net profit if a late
RM soybean is planted late at a lower SR. In this case, changing the SR of the improved
treatment to the lower SR (Treatment 5) results in similar profits, but would likely buffer
plant density-reducing events (e.g., disease, hail, early frost). Schmitz et al. [9] found
increased yields associated with narrow RS compared to wide RS in the same growing
region. In North Dakota, in the absence of ideal temperature and rainfall, wide RS can result
in incomplete canopy closure, whereas narrow RS improves the potential to maximize
accumulated photosynthetically active radiation, therefore, increasing grain yield [24,51].
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Table 6. Treatment package means and contrasts for soybean agronomic characteristics and partial net averaged across environments in 2019 and 2020.

Package 1 PD 2 RM SR RS ES FS Protein Oil TSW Yield Partial Net Profit 3 FGCC

seeds ha−1 plants ha−1 g kg−1 g kg ha−1 $ ha−1 %
I E L 457,000 N 326,306 a 399,705 bcd 330 f 177 ab 136bcd 4162a 1719 a 58 a
C L E 408,000 W 396,754 a 536,117 abc 339 abcd 165 e 143abc 3316g 1369 g 57 a
1 E E 408,000 N 289,801 a 331,818 d 338 abcde 170 bcde 139 abcd 3867 abcde 1597 abcde 55 a
2 E E 457,000 N 321,823 a 365,121 cd 339 abcd 170 bcde 142 abcd 3843 abcde 1587 abcde 53 a
3 E E 408,000 W 335,272 a 457,984 abcd 340 ab 170 bcde 147 a 3639 bcdefg 1503 bcdefg 58 a
4 E E 457,000 W 369,215 a 526,511 abcd 340 ab 168 de 147 a 3581 cdefg 1478 cdefg 60 a
5 E L 408,000 N 348,081 a 425,322 abcd 331 def 180 a 141 abcd 4085 ab 1687 ab 54 a
6 E L 408,000 W 334,631 a 470,793 abcd 330 f 174 abcd 136 bcd 3831 abcde 1582 abcde 55 a
7 E L 457,000 W 353,204 a 489,366 abcd 333 bcdef 178 ab 138 abcd 4013 abc 1657 abc 56 a
8 L E 408,000 N 355,125 a 424,041 abcd 339 abcd 167 de 140 abcd 3489 defg 1441 defg 60 a
9 L E 457,000 N 376,260 a 458,625 abcd 337 abcdef 171 bcde 136 bcd 3670 bcdefg 1515 bcdefg 54 a

10 L E 457,000 W 421,731 a 593,116 ab 341 a 167 de 145 ab 3356 fg 1385 fg 56 a
11 L L 408,000 N 304,531 a 413,794 abcd 330 f 176 abc 136 bcd 3783 abdef 1562 abcdef 62 a
12 L L 457,000 N 361,831 a 471,787 abcd 332 cdef 174 abcd 133 d 3944 abcd 1629 abc 61 a
13 L L 408,000 W 398,675 a 579,027 ab 331 def 174 abcd 133 d 3437 efg 1419 efg 56 a
14 L L 457,000 W 421,090 a 604,644 a 333 bcdef 174 abcd 134 cd 3542 defg 1462 defg 57 a

P ns <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ns
Improved vs. Conventional P 0.572 0.809 0.962 0.510 0.956 0.004 0.004 0.518

Within the column, means for each treatment followed by the same letter are not significantly different at p ≤ 0.05. 1 I, suggested improved management for growers; C, conventional management currently used
by growers. 2 PD, planting date; RM, relative maturity; SR, seeding rate; RS, row spacing; E, Early; L, Late; N, narrow (30.5 cm) row spacing; W, Wide (61 cm) row spacing; TSW, 1000 seed weight; FGCC,
fractional green canopy cover. 3 Partial net profit accounts for $49.20 per 140 000 seeds and $0.41 kg−1 market price.
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4. Conclusions

Our research benefits soybean producers in the north-central USA region, as other
research on these management strategies has been limited in this region. Planting as early
as appropriate and using narrow RS can increase soybean yield. Although an individual
management strategy may not improve yields alone, combining yield-promoting man-
agement practices provided greater yield and partial net profit compared to conventional
practices. These findings display a synergistic yield effect when combining favorable
management strategies. The relationship between canopy cover at early growth stages
and yield was significant; however, it is important to consider that various environmental
stressors can influence seed yield beyond early season measurements. It is recommended
that northern USA soybean producers combine favorable management practices of early
planting, optimal maturity cultivars adapted to the area, and narrow RSs to maximize
yield potential.
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