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Abstract: Land use change and soil organic carbon stock (SOCS) depletion over time is one of the
predominant worldwide environmental problems related to global warming and the need to secure
food production for an increasing world population. In our research, satellite images from 1988
and 2018 were analyzed for a 177.48 km2 region in Kurdistan Province, Iran. Across the study area.
186 disturbed and undisturbed soil samples were collected at two depths (0–20 cm and 20–50 cm).
Bulk density (BD), soil organic carbon (SOC), rock fragments (RockF) and SOCS were measured.
Random forest was used to model the spatial variability of SOCS. Land use was mapped with
supervised classification and maximum likelihood approaches. The Kappa index and overall accuracy
of the supervised classification and maximum likelihood land use maps varied between 83% and
88% and 78% and 85%, respectively. The area of forest and high-quality rangeland covered 5286 ha in
1988 and decreased by almost 30% by 2018. Most of the decrease was due to the establishment of
cropland and orchards, and due to overgrazing of high-quality rangeland. As expected, the results
of the analysis of variance showed that mean values of SOCS for the high-quality rangeland and
forest were significantly higher compared to other land use classes. Thus, transformation of land
with natural vegetation like forest and high-quality rangeland led to a loss of 15,494 Mg C in the
topsoil, 15,475 Mg C in the subsoil and 15,489 Mg C−1 in total. We concluded that the predominant
causes of natural vegetation degradation in the study area were mostly due to the increasing need
for food, anthropogenic activities such as cultivation and over grazing, lack of government landuse
legislation and the results of this study are useful for land use monitoring, decision making, natural
vegetation planning and other areas of research and development in Kurdistan province.

Keywords: land use degradation; remote sensing data; random forest; GIS; digital soil mapping

1. Introduction

Currently, indiscriminate land use change, without considering environmental sustain-
ability, is one of the most important concerns in the world [1–3]. Rising concerns about the
impact of land use transformation on global warming and climate change have also focused
more attention on changes in soil organic carbon stocks (SOCS) [4–6] due to the vital role
of SOCS in the world carbon cycle [7–9]. Further, SOCS act as a recognized applicable
soil quality index which influences many key soil properties such as carbon sequestration
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and soil fertility [10–12]. The amount of SOCS is clearly affected by plant type and land
use [13–15]. In many cases SOCS will be decreased when the native vegetation is removed
to create grazing land or cropland [16,17]. Zhou et al. [18] assessed spatial variability of
SOCS under various land uses through DEM derivatives and remotely sensed data in
Central Europe. As expected, they showed that large SOCS were found in mountainous
areas mainly covered by forests, and conversely, small SOCS were found where farmland
dominated. Schulze and Schütte [19] also mapped SOCS using soil profile, terrain and
binomial soil series databases in South Africa and reported higher SOCS in areas with
higher rainfall and areas of natural vegetation compared to drier areas and agricultural
lands, respectively.

Conventional mapping and monitoring of land use is costly and time consuming [20]
and these limitations have encouraged many researchers to use remote sensing (RS) tech-
niques and geographical information systems (GIS) to map and monitor land use [3,21–23].
Further, many land use change studies are based on RS data [3,24]. Such change detection
studies can help quantify and improve understanding of alterations to landscapes that re-
sult from human activities [25,26]. For example, Alijani et al. [25] assessed spatio-temporal
changes of land use cover through multi-temporal satellite images in Iran during a 20-year
period (1996–2016). They showed that built-up areas were increased by 15.89% and crop
land was reduced by 11.09% during the period of 20 years.

Kumar et al. [27] detected land cover changes from 1996 to 2017 using multispectral
Landsat 8 (OLI), 7 (ETM+) and 5 (TM) imagery data in India. Their results indicated
that orchards and agricultural land area had been decreased and transformed due to
urbanization and industrialization, and urban land, and rangeland areas had increased.
Salem et al. [28] applied GIS and remote sensing techniques to assess land use change
from 1985 to 2018 in Egypt. Their change detection analysis showed that the built-up area
increased by more than 30% causing a serious loss of agricultural land. Mei et al. [29] also
assessed spatial and temporal land use changes from 1984 to 2014 using Landsat 5 (TM),
8 (OLI) images, and GIS in Italy. Their results demonstrated that land use classes of bare
soil (46.2% to 44%) and sparse vegetation (45.4% to 42%) were reduced while intensive
vegetation (5.9% to 8.5%) and urban areas (2.5% to 5.4%) were increased from 1984 to 2014.

In Kurdistan province, located in the western part of Iran, the natural vegetation
has been cleared by cultivation and over grazing, and there have been rapid land cover
transformations in recent decades due to increasing population and the resulting demand
for the necessities of life (e.g., food, energy and housing). Nabiollahi et al. [11] assessed
SOCS under land-use change in Marivan region, Kurdistan province, Iran and their results
showed that converting forestland and wetland to cropland caused a loss of SOCS from
the soil. These changes are a new challenge to the ecosystem, directly producing negative
impacts on SOCS. Due to the lack of information on land use and SOCS in soils, monitoring
and mapping of SOCS changes in this area is essential to prevent removal of the natural
vegetation. It can also help improve decisions on land degradation management and policy
developments. Thus, the main objectives of this study were: (a) to map and detect land
uses change over 30 years from 1988 to 2018 using RS and GIS methods, (b) to assess the
impact of land use change on SOCS, and (c) to map the spatial distribution of SOCS.

2. Materials and Methods

Figure 1 shows a flowchart of the procedures used in this research. In Step 1, remotely
sensed data for two time intervals (1988 and 2018) were obtained, pre-processed, and two
land use maps were calculated. In Step 2, soil samples were collected and SOCS were
calculated. In Step 3, a suite of environmental covariates that were expected to influence
SOCS were acquired from various sources (e.g., remote sensing, land-use map, and digital
elevation data). These covariates represent the environmental conditions of 2018. In
Step 4, a random forest model was used to establish a relationship between covariates and
SOCS. Once the random forest model was trained, the model was applied to the suite of
environmental covariates to make spatial predictions of soil quality for 2018 in Step 5. To
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evaluate the historical changes in SOCS, the environmental data that represented 1988 were
acquired from satellite imagery and the fitted random forest model was then applied to the
historic data in Step 6.
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Figure 1. Flowchart of methodology used in this study.

2.1. Study Area

The study area (17,748 ha) is located between 46◦54′43.11′′ and 47◦07′59.1′′ E longitude
and 34◦59′3.41′′ and 35◦03′33.10′′ N latitude, in Kamyaran region, Kurdistan Province, in
western Iran (Figure 2). Based on the De Martonne climate classification, the study area has
a semi-humid climate with a mean precipitation of 550 mm (Table 1). The altitude of the
area ranges from 1340 to 2303 m above sea level. Major agricultural crops include wheat,
barley, and orchards (grape, apple, peach, pear, cherry and strawberry). The dominant
native vegetation covers are forest (oak and bush-like oaks) and rangeland. These forests
have also been called western oak forests and the dominance of oak species are Quercus
brantii, Quercus infectoria, Pistacia khenjuk and Pestacia atlantica.
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Table 1. Meteorological conditions of the study area for two years 1988 and 2018.

Years
Mean Absolute

Minimum
Temperature

Mean Absolute
Maximum

Temperature ◦C

Mean
Temperature ◦C

Evaporation
mm

Wind Velocity
ms−1

Precipitation
mm

1988 1.4 26.5 13.4 141.8 15.2 535
2018 2.1 28.5 14.3 164.23 13.2 591

2.2. Land Use Change Detection

Land use changes in the study area were assessed using two multispectral satellite
images (1988 and 2018) including Operational Land Imager (OLI)/Landsat 8 and Thematic
Mapper (TM)/Landsat 5 from June 23, 1988 and June 27, 2018, respectively [30]. The land
use classes included Forest, orchard, cropland, built environment, poor, moderate and
high-quality rangeland were identified in the study area based on field visits, Google earth
and aerial photo interpretation.

Each satellite image was rectified using pre-processing techniques such as radiometric
and geometric corrections. The images were geo-referenced to a topographic map (with
a scale of 1:25,000 and Universal Transverse Mercator (UTM) WGS84) using 30 ground
control points, and resampling was done through the nearest neighbour method in the
R programming environment. For each of the pre-determined land use types, training
samples were selected by delimiting polygons around representative sites. A supervised
classification method and a maximum likelihood algorithm were applied for accuracy
evaluation. Detection of the land use classes was performed in ENVI software (5.3).
Maximum likelihood algorithms have been used successfully in supervised classification
in the past [11,25,31,32].

Validation of prepared land use maps was done through comparison between the
classified images of 1988 and 2018 and ground reference points. Therefore, 100 random
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ground reference points were selected and gathered based on stratified-random sampling
methods, and then, verification of the 1988 and 2018 land use maps was carried out using
overall accuracy, kappa index, producer’s accuracy and user’s accuracy [33].

Finally, in the study, the post-classification comparison method was applied to conduct
the change detection analyses for 1988–2018 using ENVI (5.3) software as one of the most
widely used methods for detection of land use changes [34–37].

2.3. Soil Organic Carbon Stocks (SOCS)

To characterize the impact of land use on soil organic carbon stocks, 93 sampling sites
were selected based on a stratified method using current land use classes including forest,
cropland, orchard, high- and poor-quality rangelands and slope classes including 0–2%,
2–5%, 5–10%, and >10% and a total of 186 disturbed and undisturbed soil samples were
collected at two depth increments from the surface (0–20 cm) and subsurface (20–50 cm)
in 2018 (Figure 3). The soil sampling sites were selected from similar slopes and aspects
(Figure 3).
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The soil samples were air-dried and passed through 2-mm sieves before any analyses
in the laboratory. Soil organic carbon was measured using the Walkley-Black method [38],
soil bulk density measurement was conducted by the core method based on the vol-
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ume of undisturbed core samples and the dry mass after oven-drying [39] and rock
fragments > 2 mm were determined using the volumetric method. SOCS were calculated
using the following equation (Equation (1)) [11,40]:

SOCS = SOC × BD × d × (1 - RockF/100) (1)

where, SOCS is the SOC stock (Mg ha−1), SOC is the SOC value (g kg−1), BD is bulk
density (Mg m−3), d is soil depth thickness (m), and RockF is the volume-based (%) of rock
fragments > 2 mm.

2.4. Digital Mapping of SOCS
2.4.1. Environmental Covariates

The set of 30 covariates used for this study were selected due to their relationship to
SOCS [25,41–47]. The majority of the covariates were derived from remote sensing data
(i.e., Landsat imagery) as well as from a digital elevation model (DEM). The multi spectral
bands of Landsat 8 OLI (operational land imager) and Landsat 5 TM (Thematic Mapper)
acquired on June 27, 2018 and 1988, respectively, and the spectral indices from the satellite
image were determined including the soil adjusted vegetation index (SAVI) [48], brightness
index (BI) [49], normalized difference vegetation index (NDVI) [50], and the clay index
(CI) [51], (Table 2). Derived terrain parameters were calculated using a DEM (10 × 10 m
grid cell resolution) [52] using SAGA GIS software (System for Automated Geoscientific
Analysis) [53] (Table 2). A map of physiography, parent material, land use, temperature
and precipitation were also used as environmental covariates. The Mountain, fan and
piedmont plain are the major physiographic units and limestone, conglomerate, shale,
travertine, alluvium and sandstone are the dominant geological units in this area (Figure 2
and Table 2). All environmental covariates are co-registered to the same raster grid with a
size of 30 × 30 m.

2.4.2. Random Forest

In the current research, random forests have been used to make links between SOCS
and covariates for understanding the spatial and temporal variability of SOCS [54–57].
Random forests are one of the most commonly applied machine learning algorithms in DSM
due to the good accuracy level, ease of use, and their ability to identify the most important
covariates [11,58–61]. Random forests are ensemble and nonparametric techniques based
on the prediction of multiple randomized regression trees. The results of all individual
trees are aggregated together to create a singular prediction, whereby randomness is
incorporated through a bootstrap sample of the training data and variable selection based
on a random subset of the variables at each node [62]. Notably, a random forest is easily
adjustable using two tuning hyperparameters: the number of trees (Ntree) and the number
of input covariates in each random subset (Mtry). We analyzed the interaction effect
of different random subsets (from 2 to 30) and different tree sizes (from 50 to 5000 by
increments of 50).

The random forests were assessed through ten-fold cross-validation with 10 replica-
tions. Furthermore, three accuracy criteria namely, the root mean square error (RMSE),
coefficient of determination (R2) and mean absolute error (MAE), were used to quantify
the accuracy of the random forests.

2.5. Reconstructing of SOCS in 1988

We used the trained random forest in 2018 on the covariates sets in 1988 to reconstruct
the SOCS maps because we did not have enough soil data (only 10 samples) for training
random forest and mapping SOCS in 1988. Importantly, we used 10 legacy data to assess
and evaluate the reconstructed SOCS maps in 1988. Furthermore, in the study, only land
use maps have changed significantly during the 30-year study. Therefore, to highlight the
impact of land use change on SOCS from 1988 to 2018, the SOCS were compared between
the two maps.
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Table 2. Applied covariates were used to predict SOCS.

Covariate Data Source Symbol Attribute

Digital Elevation Model

AS Aspect
CA Catchment area
CS Catchment slope

CNBL Catchment network base level
CND Catchment network distance

EL Elevation
LS factor Slope length factor
MrVBF Multi-resolution valley bottom flatness

CU Curvature
RSP Relative slope position
SL Slope

TWI Topographic wetness index
VD Valley depth
FA Flow accumulation

Landsat 8

BL Blue band
BG Green band
BR Red band
BN Near infrared

BSH1 Shortwave IR-1
BSH2 Shortwave IR-2

CI Clay index: (SWIR-1/SWIR-2)
BI Brightness index: ((RED)2+(NIR)2)0.5

NDVI Normalized difference vegetation index: (NIR − RED)/(NIR + RED)
SAVI (1 + L) × (NIR − RED)/(NIR + RED + L)
EVI Enhanced vegetation index: (NIR − RED)/(NIR + C1 × RED − C2 × BLUE + L2)

Land use map Landu map Land use unit
Geology map Geo map Geology unit

Physiography map Physi map Physiographic unit
Temperature map Tem map Mean annual temperature
Precipitation map Pre map Mean annual precipitation

3. Results and Discussion
3.1. Accuracy Assessment of Land Use Classification

The overall accuracy and the kappa index for the supervised and maximum likeli-
hood classification algorithms for the classification of land use types in 1988 and 2018
are shown in Table 3. The user’s accuracy and producer’s accuracy of individual land
uses in 1988 ranged between 84.61% and 100% and 61.53% and 100%. For 2018, the user’s
and producer’s accuracy of individual land uses ranged between 64.28% and 100% and
76.92% and 90%, respectively. The overall accuracy for 1988 and 2018 were 88% and
83% with kappa index values of 85 and 78, respectively. The minimum level of land
use classification accuracy using remote sensing data is 85% [25,63]. Therefore, our land
use classification has an acceptable level of accuracy and other researchers have reported
similar results [1,25,64,65].
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Table 3. Results of accuracy assessment of land use maps using supervised and maximum likelihood classification algorithms and 100 ground reference points.

Years Land Use Class Poor-Quality
Rangeland Forest Built-Up Orchard Moderate-Quality

Rangeland
High-Quality

Rangeland Cropland Total User’s Accuracy (%)

1988

Poor-quality rangeland 15 1 0 0 0 0 0 16 93.75

Forest 0 23 0 4 0 0 0 27 85.18

Built-up 0 0 6 0 0 0 0 6 100

Orchard 0 0 0 8 0 0 0 8 100

Moderate-quality rangeland 0 2 0 0 11 0 0 13 84.61

High-quality rangeland 0 0 0 0 0 10 0 10 100

Cropland 0 0 0 1 0 4 15 20 75

Total 15 26 6 13 11 14 15 100

Producer’s Accuracy (%) 100 88.46 100 61.53 100 71 100

Overall accuracy (%) 88

Kappa index (%) 85

2018

Poor-quality rangeland 2 0 0 0 - 1 16 19 82.85

Forest 2 9 1 0 - 1 1 14 64.28

Built-up 0 0 0 8 - 0 0 8 90.90

Orchard 1 0 1 0 - 11 0 13 100

High-quality rangeland 1 0 10 0 - 0 0 11 84.61

Cropland 29 1 1 2 - 1 1 35 84.21

Total 35 10 13 10 - 14 18 100

Producer’s Accuracy (%) 82.85 90 76.92 80 - 78.57 88.88

Overall accuracy (%) 83

Kappa index (%) 78
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3.2. Land Use Change Trends

The land use maps developed for 1988 and 2018 using remote sensing methods are
shown in Figure 4. The majority of forest and rangeland land use classes are located in
the mountain physiographic unit having steep to very steep slopes. However, cropland
and orchard land use classes are distributed throughout the study area from the pied-
mont plain to the mountain physiographic units starting from the low to steep slopes. A
clear increase in the orchard, poor-quality rangeland and cropland classes was observed
while a clear decrease was observed in the forest, high- and moderate-quality rangeland
area during the 30-year study. The area of forest, high- and moderate-quality rangeland
changed by approximately 1052.14 ha with a rate of change of−22.27%, 430.44 ha,−29.31%,
and 3595.77 ha and −100%, respectively (Table 4). In contrast, the area of poor-quality
rangeland, cropland and orchards increased by approximately 1897.92 ha with a rate of
increase of 10.73%, 1640.05 ha, 9.29%, and 1748.32 ha and 66.19%, respectively (Table 4).
The most dominant changes were the conversion of forest to cropland, moderate-quality
rangeland to cropland, cropland to poor-quality rangeland, moderate-quality rangeland
to poor-quality rangeland, forest to poor-quality rangeland, forest to orchard, and with
converted areas of 8.96%, 6.26%, 6.10, 5.77%, 5.63% and 4.44%, respectively. The spatial
trend of cropland and orchard expansion in the forest and rangeland areas from 1988 to
2018 is clearly demonstrated in Figure 4. The area of natural vegetation (forest, high-quality
rangeland and moderate-quality rangeland) cover decreased by approximately 5286.29 ha
with a decrease of −29.78% over the 30-year study. The natural vegetation has mostly
been consumed by cropland and orchard growth, which can be considered as the most
important areas of natural vegetation removal in the Kurdistan province. Cropland and
orchard expansion, overgrazing in the high and moderate-quality rangeland areas, increas-
ing land prices, lack of vegetation protection policies, and lack of proper supervision and
management by government are other factors which have led to the degradation of forests
and high-quality rangelands and the expansion of poor-quality rangelands.
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These results are similar to the results of Haque and Basak [66], Huang et al. [22],
Jombo et al. [23], Sibanda et al. [67], Yin et al. [26], and Zembe et al. [68] who demonstrated
spatial-temporal changes in natural vegetation due to unsustainable farming practices,
overgrazing and deforestation.

In the study area, a clear decrease also was observed in the built-up area. The built-up
area changed by approximately 207.94 ha with a decrease of −34.46% (Table 4) and the
most dominant change was the conversion of the built-up area to cropland and poor range
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lands. The change is mostly affected by the low income of the villagers and migration of
villagers towards cities due to lack of government support.

Table 4. Area and changed area for each land use class.

Land Use Unit

Area Change Area Rate Changed Area Rate

(ha) (%) (ha) (%) (ha) (%)

1988 2018 1988 2018 Loss Gain

Forest 4723.11 3670.965 26.61 20.68 −1052.14 −22.27
High-quality rangeland 1468.26 1037.813 8.27 5.85 −430.44 −29.31

Moderate-quality rangeland 3595.77 0 20.26 0 −3595.77 −100
Built-up 603.27 395.32 3.40 2.23 −207.94 −34.46

Cropland 3698.01 5338.08 20.84 30.08 +1640.05 +30.72
Poor-quality rangeland 2766.69 4664.61 15.59 26.28 +1897.92 +40.68

Orchard 892.89 2641.21 5.03 14.88 +1748.32 +66.19
Sum 17,748 17,748 100 100 5286.29 5286.29

3.3. Summary Statistics of SOC and SOCS

Table 5 shows the descriptive statistics of SOC, SOCS, bulk density and rock fragment
in the study area. The average SOC in the surface soil (0–20 cm) and subsurface soil
(20–50 cm) are 0.88% and 0.46%, respectively and it ranges from 0.07% to 2.96% in the
surface soil and from 0.46% to 2.03% in the subsurface soil. These values indicate that the
SOC has low to medium levels. The average SOCS in the surface soil and subsurface soil
are 1.67 Mg C ha−1 and 1.28 Mg C ha−1, respectively, and it ranges from 0.7 Mg C ha−1

to 8.18 Mg C ha−1 in the surface soil and from 0.4% to 7.59% in the subsurface soil. The
lowest SOC and SOCS were observed for the poor-quality rangeland and cropland, while
the highest SOC and SOCS were observed for the high-quality rangeland and forestland.
SOC and SOCS decreased with depth and they showed a log-normal distribution. The
coefficient of variation (CV) value of SOC and SOCS in the surface soil and subsurface
soil were more than 35% indicating a high variability across the study area [69]. Wild-
ing [69] classified values based on the coefficient of variation (CV) into 3 levels with Low
(CV < 35%), moderate (15% < CV < 35%) and high variability (CV > 35%). Based on CV
analysis, the results indicate that SOCS have a semi-homogeneous spatial variability that
could be related to the differences in land use classes, parent material and topography in
the study area.

Table 5. Descriptive statistics for soil properties and SOC Stock (SOCS).

Depth
(cm) Number Mean Minimum Maximum Standard

Deviation Skewness Kurtosis CV

SOC (%) 0–20 93 0.89 0.07 2.96 0.61 0.90 0.68 69.91
BD (g cm−3) 0–20 93 1.49 1.2 1.89 0.17 0.38 0.38 11.78

Rock fragment >2 mm (%) 0–20 93 33.78 0.00 84.88 21.29 0.56 −0.26 65.38
SOC Stock (Mg C ha−1) 0–20 93 1.73 0.07 8.18 1.33 1.53 4.59 80.21

SOC (%) 20–50 93 0.46 0.04 2.03 0.38 1.69 3.59 84.01
BD (g cm−3) 20–50 93 1.35 1.1 1.88 0.25 −0.23 −0.23 17.25

Rock fragment >2 mm (%) 20–50 93 33.71 0.00 89.00 23.56 0.52 −0.48 70.29
SOC Stock (Mg C ha−1) 20–50 93 1.35 0.05 6.87 1.25 1.81 4.16 96.33

3.4. Link between SOCS and Land Use

Table 6 shows the mean values of SOCS in the surface soil (0–20 cm), subsurface
soil (20–50 cm) and both depths together (0–50 cm) for each land use class in the study
area. High-quality rangeland, forest, orchard, cropland, and poor-quality rangeland have
2.94, 3.08, 1.79, 1.49 and 1.17 Mg C ha−1 in the surface soil, 3.41, 1.66, 0.90, 1.39 and
0.90 Mg C ha−1 in the subsurface soil, and 6.49, 4.6, 2.69, 2.88 and 2.07 Mg C ha−1 in
total, respectively.
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Table 6. Mean value of SOCS (Mg C ha−1) in each land use class at three depths 0–20 cm (topsoil), 20–50 cm (subsoil) and 0–50 cm (total).

Land Use

Slope Class Total of Soil Samples

0–2% (Flat) 2–5% (Southern) 5–10% (Northern) 10%< (Eastern)

0–20 20–50 0–50 0–20 20–50 0–50 0–20 20–50 0–50 0–20 20–50 0–50 0–20 20–50 0–50

cm cm cm cm

Forest - - - - - - - - - 2.94a 1.66ab 4.6ab 2.94a 1.66b 4.6b
High-quality rangeland 4.48a 4.12a 8.60a 2.88a 3.61a 6.49a 3.02a 2.70a 5.72a 2.83ab 2.63a 5.46a 3.08a 3.41a 6.49a

Cropland 1.61b 2.00b 3.61b 1.43b 1.08b 2.51b 1.30a 1.31a 2.61a 2.24ab 0.95c 3.19abc 1.49b 1.39b 2.88bc
Poor-quality rangeland - - - 0.99b 1.03b 2.02b 2.01a 1.13a 2.14a 0.84c 0.55c 1.39c 1.17b 0.90b 2.07c

Orchard 1.37b 0.86b 2.23b 1.21b 0.80b 2.01b 2.17a 0.99a 3.16a 1.48ab 1.02c 2.50bc 1.79b 0.90b 2.69c
p = (Tukey’s test) <0.05 ** <0.05 ** <0.05 ** <0.05 ** <0.05 ** <0.05 ** ns ns ns <0.05 ** ns <0.05 ** <0.05 ** <0.05 ** <0.05 **

** and ns, are significant and non-significant at the 0.01 level, respectively, and means that do not share a letter are significantly different at the 0.01 level (p < 0.05) according to Tukey’s test.
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An analysis of variance test was used to compare the mean values of SOCS with
respect to land use (Table 6). Based on all soil samples, the mean values of SOCS for the
high-quality rangeland and forest in the surface soil (3.08 and 2.94 Mg C ha−1, respectively),
subsurface soil (3.41 Mg C ha−1) and total (6.49 and 4.6 Mg C ha−1, respectively) were
significantly higher compared to other land use classes.

Based on the slope class 0–2%, the mean values of SOCS for the high-quality range-
land in the surface soil (4.48 Mg C ha−1), subsurface soil (4.12 Mg C ha−1), and total
(8.60 Mg C ha−1) were significantly higher than cropland and orchards. Based on the
2–5% slope class, the mean values of SOCS for high-quality rangeland in the surface soil
(2.88 Mg C ha−1), subsurface soil (3.61 Mg C ha−1), and total (6.49 Mg C ha−1) were sig-
nificantly higher compared to other land use classes. Based on the 5–10% slope class, the
mean values of SOCS for the high-quality rangeland in the surface soil (3.02 Mg C ha−1),
subsurface soil (2.70 Mg C ha−1), and total (5.72 Mg C ha−1) were higher than the other
land use classes although not significantly higher. Based on the >10% slope class, the
mean values of SOCS for the forest and high-quality rangeland in the surface soil (2.94 and
2.83 Mg C ha−1, respectively), subsurface soil (1.66 and 2.63 Mg C ha−1, respectively), and
total (4.6 and 6.49 Mg C ha−1, respectively) were significantly higher in comparison with
the other land use classes (Table 6). This result is similar to those of previous studies [40],
which indicated that deforestation and cultivation caused 48.2% decrease in SOC of surface
soils for a sub humid region in northern Iran. Their results also showed that forestland
had significantly higher SOC contents for all slope gradients (< 5%, 5–15%, 15–30% and
>30%) [40]. Lizaga also et al. [10] and Wang S. et al. [70] also assessed the effect of natural
vegetation transformation (forest and grassland) to cropland on SOC in Spain and China,
respectively. They showed that afforested and natural forest areas had the highest SOC
and total nitrogen contents, and agricultural land had the lowest SOC and total nitrogen
contents due to loss by erosion and cultivation. Removal of natural vegetation, due to
anthropogenic activities, is a major global cause of land use change [71–73] which causes
land degradation [74,75].

Removal of natural vegetation has negative impacts on soil quality [71,76,77]. SOCS is
one of the main indices for assessing the effect of land use change on soil quality [11,78,79]
and is very sensitive to land use type and its management [16,80,81]. It also diverges with
variations of land use and cover.

These findings showed that land use type is one of the most important parameters
responsible for SOCS levels which decrease with land use change from natural vegetation to
cropland and orchard in the study area. Besides land use change, conventional agriculture,
over grazing and lack of vegetation protection policies and proper management have led
to accelerated decreases in SOCS in the study area.

3.5. SOCS Loss

Based on the changed area of forest, high- and moderate-quality rangeland and their
SOCS content, the loss of carbon was calculated for the forest and high-quality rangeland
(Figure 5 and Table 4). Approximately 1052.14 ha of the forests have been converted to
other land uses and this conversion has caused a decrease of approximately 3376.69 Mg C
from the surface soil (0–20 cm), 1935.48 Mg C from the subsurface soil (20–60 cm) and
5312.17 Mg C from the total (0–50 cm) in SOCS compared to the forest that was cleared
(Figure 5). About 430.44 ha and 3595.77 ha of the high- and moderate-quality rangelands,
respectively, have been converted to other land uses and this conversion has caused a de-
crease in SOCS of between 1404.95 Mg C and 6047.60 Mg C from the surface soil (0–20 cm),
987.10 Mg C and 3828.52 Mg C from the surface soil (20–60 cm), and 2392.06 Mg C and
9876.12 from both depths combined (0–50 cm) compared to the high-quality rangeland
that was cleared (Figure 5). In general, removal of natural vegetation cover (forest and
moderate and high-quality rangelands) led to the loss of 10,829.25 Mg C in the surface soil,
6751.11 Mg C in the surface soil, and 17,580.36 Mg C in the total, respectively.
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Figure 5. SOCS and SOCS loss contents at depths of 0–20 cm (surface), 20–50 cm (subsurface) and 0–50 cm (total).

Nabiollahi et al. [11] also assessed SOCS under land-use changes in Marivan region,
Iran and they indicated that converting forestland and wetland to cropland caused a loss
of SOCS from surface soil (22,860 and 4193 Mg C, respectively) and subsurface soil (15,685
and 2680 Mg C, respectively); those results were similar to our results.

Depletion of SOCS and transformation of natural vegetation are some of the most
important reasons for greenhouse gases increasing and climate changing in the last
100 years [82–84]. Soil is one of the most important ecosystem components and third
most important carbon stores [80,85]. In addition, to balancing climate change soil carbon
sequestration is suggested for decreasing CO2 and for reserving and increasing soil carbon
stocks [86–88]. Due to the effects of SOC on soil physical, chemical and biological prop-
erties such as water holding capacity and availability, aggregate stability, soil erodibility
and fertility, nutrient cycling and plant growth, it has an important role in sustainable
land management.

3.6. Digital Mapping of SOCS
3.6.1. Covariate Importance

Figure 6 shows the significance of each applied environmental covariates in predicting
SOCS. In terms of predicting surface, subsurface and total SOCS for the 2018 land use
map (9.08, 8.00 and 8.10), NDVI (7.68, 6.48 and 5.80), physiographic map (6.08, 6.50,
and 6.00), topographic wetness index (5.91, 5.95 and 5.8) and elevation (6.01, 5.8, and
5.96) were the six most important environmental variables. These findings indicate that
data extracted from remote sensing imagery, land use and terrain attributes are powerful
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covariates for predicting surface SOCS in the study area. It is demonstrated that land
cover, remotely sensed imagery and DEM derivatives are important factors for determining
surface SOC [44] and they have been widely applied for prediction of SOC in previous
studies for Iran [11,89,90] and the world [46,91–93]. Guo et al. [94] and Zhou et al. [18]
mapped SOC using different machine learning algorithms and environmental variables in
China and their results showed that SOC has strong associations with spectral bands and
vegetation indices such as NDVI, EVI and RVI. Ellili et al. [95] also mapped SOCS between
2009 and 2016 in France using different models and covariate variables and showed that
slope, wetness index, elevation, profile curvature, tangential curvature, geology map and
crop rotation were the most important variables for predicting SOCS. The validation was
obtained based on 10 legacy soil sample data.

Agronomy 2021, 11, x FOR PEER REVIEW 13 of 19 
 

 

between 2009 and 2016 in France using different models and covariate variables and 
showed that slope, wetness index, elevation, profile curvature, tangential curvature, ge-
ology map and crop rotation were the most important variables for predicting SOCS. The 
validation was obtained based on 10 legacy soil sample data. 

 
Figure 6. Significance of each auxiliary variable used in the random forest (RF) learning machine 
for prediction of surface (0–20 cm,), subsurface (20–50 cm) and total (0–50 cm) soil organic carbon 
stocks. 

3.6.2. Random Forests 
The ability of the random forest algorithm to predict surface, subsurface and total 

SOCS, in the Kamyaran region were tested using 10-fold cross-validation with 10 repli-
cations. The RMSEs, R2 values, and MAEs, are presented in Figure 7. Across all accuracy 
metrics (RMSE, R2 and MAE), the random forest algorithm had acceptable accuracy for 
prediction of surface SOCS (0.70, 0.66 and 0.72, for 2018 and 0.96, 0.46 and 1.01, for 1988, 
respectively), subsurface SOCS (0.69, 0.67 and 0.69, for 2018 and 0.94, 0.48 and 1.01, for 
1988, respectively) and total SOCS (0.74, 0.63 and 0.51, for 2018 and 0.99, 0.47 and 1.04, for 
1988, respectively). The success in using random forest machine learning was also re-
ported by Akpa et al. [86], Lamichhane et al. [44], Wang B. et al. [59] and Zhou et al. [18] 
for predicting SOC; and therefore, it can be suggested that this machine learning algo-
rithm could show promise in subsequent DSM studies. 

3.6.3. Spatial Distribution of SOCS 
Figure 7 shows the DSM of SOCS at three depths for 1988 and 2018 prepared 

through the RF algorithm. The maps show that the majority of the areas with high levels 

Figure 6. Significance of each auxiliary variable used in the random forest (RF) learning machine for
prediction of surface (0–20 cm,), subsurface (20–50 cm) and total (0–50 cm) soil organic carbon stocks.

3.6.2. Random Forests

The ability of the random forest algorithm to predict surface, subsurface and total
SOCS, in the Kamyaran region were tested using 10-fold cross-validation with 10 replica-
tions. The RMSEs, R2 values, and MAEs, are presented in Figure 7. Across all accuracy
metrics (RMSE, R2 and MAE), the random forest algorithm had acceptable accuracy for
prediction of surface SOCS (0.70, 0.66 and 0.72, for 2018 and 0.96, 0.46 and 1.01, for 1988,
respectively), subsurface SOCS (0.69, 0.67 and 0.69, for 2018 and 0.94, 0.48 and 1.01, for
1988, respectively) and total SOCS (0.74, 0.63 and 0.51, for 2018 and 0.99, 0.47 and 1.04,
for 1988, respectively). The success in using random forest machine learning was also
reported by Akpa et al. [86], Lamichhane et al. [44], Wang B. et al. [59] and Zhou et al. [18]
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for predicting SOC; and therefore, it can be suggested that this machine learning algorithm
could show promise in subsequent DSM studies.
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3.6.3. Spatial Distribution of SOCS

Figure 7 shows the DSM of SOCS at three depths for 1988 and 2018 prepared through
the RF algorithm. The maps show that the majority of the areas with high levels of
predicted SOCS are concentrated in the center, north, east, northwestern, and southwestern
mountainous areas of the study area mostly covered by forest and high-quality rangeland.
In contrast, lower SOCS are mainly concentrated in poor-quality rangeland, cropland, and
orchards in the south, southeastern, and central part of the study area.
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This result reflected the effect of vegetation type on the variability of SOCS. The
important role of vegetation type to predict SOCS has been demonstrated by other stud-
ies [18,44,46]. Moreover, differences in terrain attributes affect SOCS using its relationship
with vegetation cover. The mountain areas of this study area had higher SOC content and
were mostly covered by high-quality rangeland and forest. Conversely, lower lands had
lower SOC contents and were mostly covered by farmland and orchard. These results
are similar to the results of Schulze and Schütte [19] and Zhou et al. [18] who indicated
that cropland has lower SOC contents compared to the natural vegetation due to the loss
of SOCS by clearing natural land resources. The SOCS map is essential for helping to
decrease climate change and greenhouses gas emissions, land use change and degradation
and increasing environmental monitoring, improving farm operations and increasing crop
production. As was shown in the study, anthropogenic activities such as cultivation and
overgrazing in general cause a reduction in SOCS. Therefore, it is suggested that conserva-
tion agricultural operations (conventional tillage is a common tillage operation and the
depth of the tillage layer is 30 cm) are adopted (e.g., the construction of contour banks,
minimum tillage or no tillage), that over grazing and conversion of natural vegetation
to other land uses (e.g., cropland, orchard and built-up) is discouraged to prevent land
degradation, SOCS depletion, and greenhouse gases increasing in the study area. Other
studies have shown that policies of natural vegetation degradation abandonment and
natural revegetation can help to control natural vegetation removal. Lizaga et al. [10]
demonstrated that after a land abandonment policy of natural transformation was applied,
cropped areas decreased by 16.5%, while in contrast, afforestation and natural revegetation
areas were increased to 83.5% of the study area. Akinyemi et al. [21] also indicated that
the government’s policy led to an increase in the national forest of 30% in Rwanda. The
majority of natural vegetation conversion in the study area was done by villagers due
to need for food so funding and social government support is essential for sustainable
land management.

4. Conclusions

Land use change and SOCS maps that identify areas of high risk of degradation can
be used for sustainable land management and decreasing the effects of these changes on
the environment. This study assessed the spatial and temporal distribution of land use
transformation and SOCS depletion in the Kamyaran region of the Kurdistan province,
Iran. The integration of supervised classification, post-classification, and satellite images
from the beginning and end of the study period (1988–2018) were applied to develop land
use maps for 1988 and 2018. Seven land use types have been identified, which are forest,
cropland, built-up, orchard, high, moderate, and poor-quality rangeland. The crop land and
poor-quality rangeland areas were the most abundant land use categories in the study area.
Over the 30-year study, a clear increase was observed in orchards, poor-quality rangeland
and cropland, and a clear decrease was observed in the forest, high-quality rangeland,
moderate-quality rangeland, and built-up area; this is mostly due to the increasing need
for food and anthropogenic activities such as cultivation and over grazing and lack of
government decision-making policies.

The clearing of natural vegetation cover (forest, high- and moderate-quality range-
land) causes decreases in SOCS. Therefore, to reduce the challenge of natural vegetation
conversion to other uses, SOCS depletion and greenhouse gas increase, applying suitable
strategies e.g., conservation agriculture operations, the discouraging over grazing and
natural vegetation conversion to other land uses, and increasing villagers’ awareness of the
value of natural vegetation through the government are required. It is also recommended
that additional research to assess the scenarios of natural vegetation degradation through
interpretation of a continuous time series of remote sensing images is undertaken for swift
decision making.
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