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Abstract: Rising temperature, rainfall, and wind regime changes, increasing of frequency and
intensity of extreme events are only some of the effects of climate change affecting the agro-forestry
sector. Earth Observation data from satellite missions (often available for free) can certainly support
analysis of climate change effects on vegetation, making possible to improve land management in
space and time. Within this context, the present work aims at investigating natural and agricultural
vegetation, as mapped by Corine Land Cover (CLC) dataset, focusing on phenological metrics trends
that can be possibly conditioned by the ongoing climate-change. The study area consists of the
entire Piemonte region (NW-Italy). MOD13Q1-v6 dataset from TERRA MODIS mission was used
to describe pluri-annual (2001–2019) phenological behavior of vegetation focusing on the following
CLC classes: Non-irrigated arable land, Vineyards, Pastures, and Forests. After computing and
mapping some phenological metrics as derivable from the interpretation of at-pixel level NDVI
(Normalized Difference Vegetation Index) temporal profile, we found that the most significant one
was the maximum annual NDVI (MaxNDVI). Consequently, its trend was analyzed at CLC class level
for the whole Piemonte region. Natural and semi-natural vegetation classes (Pastures and Forests)
were furtherly investigated testing significance of the Percent Total Variation (TV%) of MaxNDVI
in the period 2001–2019 for different altitude classes. Results proved that Non-irrigated arable land
showed a not significant trend of MaxNDVI; differently, vineyards and forests showed a significant
increasing one. Concerning TV%, it was found that it increases with altitude for the Forests CLC
class, while it decreases with altitude for the pastures class.

Keywords: climate change effects; vegetation phenology; vegetation trend analysis; altitudinal
gradient; NDVI; MOD13Q1

1. Introduction

Humans have always interacted with environment; through their activities, they have
modified and adapted natural environment by continuing to take advantage of resources
over time. Starting from the second half of the 18th century, man has prevailed over
environment and, during the last century, ecosystems structure has been changing much
more rapidly than in the past [1]. According to the Global Environment Outlook [2], the
planet is suffering the sixth great extinction that for the first time will be not due to natural
global changes, but rather to human activity [3].

Rising temperatures, changes in rainfall and wind regime, and changes in frequency
and intensity of extreme events are the main factors conditioning animal and plant
species [4]. These events regulate environmental characteristics like the availability of
nutrients, essential for the development of primary producers, ice cover and, in the sea, the
intensity of convective movements, transparency, and water level. With these premises,
it is mandatory to consider response times characterizing those processes influenced by
climate change: from the short times for impacts on physiology (day–months) to the longer
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ones for area changes (year–decades), up to the typical scales of evolutionary processes
(hundreds of year–millennia) [5,6].

Plants are very sensitive to climate and its variations: distribution of vegetative types
defines the bioclimatic zones (or belts), whereas phenology is strictly dependent on sea-
sonal meteorological trend [7,8]. Consequently, climate change could lead to changes
in geographical distribution of species and, contemporarily, to timely shift appearance
of plant pheno-phases, with probable consequences on crop productivity and landscape
in general [9,10]. In particular, vegetation trend changes could be related to vegetation
management, climate and climate change as deeply discussed in literature [11–13]. Pheno-
logical observations and agronomic calendars have been used by humans for thousands of
years and long historical time series of such information can be found in many documents.
There are, in fact, important historical archives: some records from Japan date back to
the early 1800s [14]; some from Europe go back to the early 1700s [15]. More recently,
over the last fifteen years, phenology has regained a new interest in the scientific com-
munity (included the European Topic Centre on Air and Climate Change (ETC-ACC) of
the European Environment Agency (EEA)). Applications focusing on seasonal dynamics
of vegetation [16–18] and phenological modelling use these data to predict capacity and
productivity in agriculture [19] or as a source of robust proxies for medium and long-term
effects of climatic variations.

At medium and high latitudes spring phenological phases—sprouting, foliar unfold-
ing, and flowering—are mainly regulated by temperature, and a considerable number
of studies have found good correlations between spring phenophases and air tempera-
ture [20–25]. Differently, meteo-climatic influence on autumn phenology is still unclear [26].

Satellite data and predictive model simulations are the basis to understand the cli-
mate system [27]. Satellite remote sensing for Earth Observation can effectively support
this process, making possible to get information about the earth’s surface, subsoil, and
atmosphere [28]. Since the first spatial observation of solar radiation and cloud reflec-
tion, remote sensing has gradually become a major research method in climate change
studies [29]. The use of satellites permits the observation of states and processes of the
atmosphere, earth, and oceans at different space-time scales. For example, it is one of
the most efficient approaches for monitoring land cover and its changes over time at a
variety of spatial scales [30,31]. Satellite data are often used in combination with climate
models to simulate climate system dynamics and to improve climate forecasting [32]. The
Global Climate Observing System (GCOS) has reported 26 of the 50 key climate variables
(ECVs) as significantly dependent on satellite observations [33]. Remote sensing data are
also largely used to develop prevention, mitigation, and adaptation measures to cope
with the impact of climate change [34], to take out insurance policies based on vegeta-
tion trends [35–38], to support Common Agricultural Policy control in agriculture [39],
to support wildlife diseases assessment [40], to manage the risk of falling trees and heat
islands monitoring [41–43]. Studies on climate change, in fact, need continuous calibration
and validation data and appropriate temporal and spatial sampling over a long period of
time [44].

Study Aims

The aims of this work were to assess how low spatial resolution satellite data from
TERRA MODIS mission can evaluate the effects of mid-term climate change on vegetated
areas (that have not changed over time), with special concerns about annual phenological
metrics as derivable from Normalized Difference Vegetation Index (NDVI) maps time
series between 2001 and 2019 in the Piemonte Region.

A preliminary trend analysis was performed to test the presence of climate change
in area of interest (AOI) according to regional meteorological stations. Consequently
vegetated “natural/semi natural” (forests and pastures) and “managed” (agricultural)
classes, derived by the Corine Land Cover (CLC), were, separately, considered. Moreover
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altitude effects on phenology changes were also taken into account to deepen investigation
for forest and pasture classes.

2. Materials and Methods
2.1. Study Area

The study area corresponds to the entire Piemonte region (North-West Italy) (Figure 1).
It sizes about 25,400 km2. From a climatic point of view, North-Western Alps cause a
gradual reduction of temperature while altitude increases making the local climate a typical
temperate one with continental character. Average annual precipitation and temperature
are 1050 mm and 11.9 ◦C, respectively. Thermal inversion phenomena, caused by cold air,
can often affect the area, especially in the valleys.
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2.2. Available Data

The following data were used: (a) MOD13Q1-v6 product from the NASA TERRA
MODIS sensor; (b) 2000, 2006, 2012 and 2018 CLC datasets; (c) Digital Terrain Model (DTM)
of the Piemonte Region (2011).

2.2.1. Satellite Data

Monitoring of biomass along time requires that uniform and comparable metrics are
used. Vegetation Indices (VIs) from multispectral data are often used to describe vegetation
cover/status and, consequently, to assess phenology with high temporal resolution [45,46].
For this reason, data form the Moderate-Resolution Imaging Spectroradiometer (MODIS)
sensor, operating on TERRA satellite mission since 2000 and having 1-day temporal res-
olution, was taken into account. The MOD13Q1-v6 NDVI collection product, obtained
from NASA’s Land Processes Distributed Active Archive Center (LPDAAC) [47], was
specifically used. Data were downloaded from AppEEARS, provided as Tagged image File
(TIF) georeferenced in the WGS84 geographic reference system. MOD13Q1-v6 product is a
16 days timely-spaced one, having a spatial resolution of 250 m. It is a composite product
containing the “best” available local observations (at pixel level) within a 16 days period.
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Selection of the best pixel relies on criteria that minimize cloud cover effect and viewing
angles and maximize NDVI local value (maximum in the reference period). MOD13Q1-V6
product contains many layers, included the NDVI and the pixel reliability (PR) ones. PR
codes are reported in Table 1.

Table 1. Codes used in the MOD13Q1/Pixel Reliability (PR) layer.

Code Meaning Description

−1 Fill/No Data Not Processed
0 Good Data Use with confidence
1 Marginal data Useful, but look at other QA information
2 Snow/Ice Target covered with snow/ice
3 Cloudy Target not visible, cover with cloud

For this work, 437 images (MOD13Q1-v6) were obtained covering a sensing period
between 1 January 2001 and 19 December 2019. Available NDVI layers allowed to generate
a NDVI Time Series (NTS).

2.2.2. Land Cover Map

CORINE Land Cover—Level 3 datasets were used to map and label vegetated areas
of Piemonte. CORINE datasets were obtained, for free, from the Copernicus Land Moni-
toring Service for the years 2000 (hereinafter CLC2000), 2006 (hereinafter CLC2006), 2012
(hereinafter CLC2012) and 2018 (hereinafter CLC2018). CLC technical features are reported
in Table 2. CLC Level 3 is the most detailed one, where each patch presents more than 75%
of the characteristics of a given class according to the CLC nomenclature rules [48].

Table 2. Technical features of the Corine Land Cover (CLC) data (2000, 2006, 2012, and 2018).

Technical Features Value CLC 2000 Value CLC 2006 Value CLC 2012 Value CLC 2018

Satellite data source Landsat-7 ETM
single date

SPOT-4/5 and IRS P6
LISS III

IRS P6 LISS III
and RapidEye

Sentinel-2 and
Landsat-8 for

gap filling
Time consistency

(years) 2000 +/− 1 year 2006+/− 1 year 2011–2012 2017–2018

Geometric accuracy
(satellite data) ≤25 m ≤25 m ≤25 m ≤10 m

Geometric accuracy
(CLC) Better than 100 m Better than 100 m Better than 100 m Better than 100 m

Thematic accuracy ≥85% ≥85% ≥85% ≥85%
Minimum mapping

unit/width 25 ha/100 m 25 ha/100 m 25 ha/100 m 25 ha/100 m

Access to the data free free free free
Number of

countries involved 35 38 39 39

All the available CLC maps were combined by intersection to recognize those patches
whose meaning (class) remained the same along the entire explored period (2001–2019).
Only agricultural and natural classes were considered (Table 3). Among these classes,
only the Forests one includes sub-classes: deciduous forests (311), coniferous forests (312),
and mixed deciduous and coniferous forests (313). Consequently, they were preventively
merged into a single class (Forests) in order to define a single land cover class representative
of natural vegetation conditions (no human activity is generally performed to manage
tree growth). All data were finally projected into the WGS84/UTM 32N reference frame.
Data processing was achieved by QGIS 3.2.0 and SAGA GIS 7.0. Statistical analysis was
performed using Past 4.01.
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Table 3. CLC code of classes used in this work.

CLC Code Class Meaning

211 Non-irrigated arable land
221 Vineyards
31 Forests
321 Pastures

2.2.3. Digital Terrain Model

A 25 m grid sized raster DTM (Digital Terrain Model) was obtained for free from the
geoportal of the Piemonte Region administration [49]. It covers the entire regional territory
and was generated from LiDAR (Light Detection and Ranging) point clouds. Native DTM,
having a grid size of 5 m and a height accuracy of 0.66 m, was generalized down to a 25 m
grid product, and made available for large size areas investigation. In this work, DTM
was used to investigate dependence of natural and semi-natural vegetation (Pastures and
Forests classes) from altitude; 4 altitudinal zones (hereinafter called AZs) were defined
(Table 4) according to Mayr-Pavari bioclimatic zones [50].

Table 4. Altitudinal range used in this work.

Code Altitudinal Range (m a.s.l.) Description

AZ1 0–600 Basal plane
AZ2 600–1200 Sub-Mountain plane
AZ3 1200–2000 Mountain plane
AZ4 ≥2000 Alpine plan

2.2.4. Reference Temperature Data

In order to test climate induced trends, some ground-retrieved temperature data
were used as reference. A total of 24 meteorological stations (MS) were selected from the
Regional meteorological network (www.arpa.piemonte.it, accessed on: 16 January 2021) in
order to explore the temperature trends in AOI. In particular daily average temperature
was analyzed in the period 2000–2019 defining time series with a time step of 1 day
(7671 observations for each MS). The MS selection was achieved by spatial intersection
between the CLC and AZs classes previously defined. Specifically 3 MS temperature time
series were collected for each CLC and AZs classes (Figure 2).

2.3. Data Processing
2.3.1. Reference Classes and Patches Selection

Selection of unchanged CLC patches, i.e., maintaining the same class meaning along
time, is mandatory while investigating climate trends along time (2001–2019) at class level.
This step is basic to avoid misleading deductions that could significantly compromise time
trend analysis. For example, NDVI trend of a forest area will certainly change if, in the
meantime, it turns to urban. For this reason, a preliminary step was performed to select
only those patches (belonging to the above-mentioned classes) whose meaning remained
the same in all the available 4 CLC maps. Selection was achieved by polygons intersection
by ordinary GIS procedures. Results are reported in Figure 3.

Since natural and semi-natural vegetation is assumed to be more susceptible by climate
change [51] in respect of agricultural vegetation, a further level of investigation was carried
out for natural classes solely (Forests and Pastures).

www.arpa.piemonte.it
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For these two classes authors investigated the role of altitude (at AZs level) on time
trends of the explored phenological metrics. CLC patches were consequently completed
with the correspondent height information derived from DTM by GIS zonal statistics.
Forest and Pasture classes were finally analyzed at AZs level determining a total of eight
new sub-classes to analyze.

Two analyses were consequently carried out: one testing phenological metrics trend at
class level with reference to classes of Table 3; one testing differences between phenological
metrics trends of the same class placed at different AZ. For this second analysis Forest and
Pasture classes, solely, (natural/semi-natural) were considered.

2.3.2. Temperature Trends Analysis

Starting from the MS data, the average time series was computed for each CLC and
AZs classes. Resulting daily average temperature time series were analyzed by first order
polynomial regression. In particular the gain values and their significance level were
obtained in order to test the presence and quantify the strength of climate induced trends.

The basic assumption was that vegetation phenology is strongly affected by tem-
perature [52,53]. Therefore an increase of temperature trend changes phenological re-
sponse [54,55]. Nevertheless, human management can mitigate the climate change effects
on vegetation [56].

2.3.3. Phenological Metrics (PM)

For each investigated class, the correspondent average NDVI temporal profile was
computed from NTS (hereinafter called ANTS). Phenological response is strictly related
to many factors as vegetation species, terrain aspect, local nutrients availability, and
climate. Only the latter can be assumed homogenous over AOI while other factors are
characterized by high variability necessarily affecting phenological metrics estimates.
Averaging phenological profiles within the same land cover class mitigates this variability
enhancing climate related effects [57,58].

A Savitzky–Golay [59] filtering was run (3rd degree local polynomial; span values = 0.016)
to smooth ANTS and minimize outliers’ oscillations.

The following phenological parameters were computed at year level with the aim
of summarizing annual growing season (from leaf development to leaf senescence) of
vegetated classes: SOS (Start Of Season), EOS (End Of Season), LOS (Length Of Season),
MaxNDVI (annual maximum NDVI value), and DOY (Day Of the Year when MaxNDVI
occurs). In particular SOS is define as the moment of the year having a consistent upward
trend in leaf development. Otherwise the EOS is the moment of the year having a consistent
downward trend in leaf senescence. While MaxNDVI is related to maximum biomass
development and maximum level of canopy photosynthetic activity [60].

SOS and EOS were calculated by a first derivative approach where SOS and EOS are
located at the maximum and minimum of the 1st derivative, respectively. These moments
occur where ANTS is positively and negatively steeper [61,62]. LOS was obtained by dif-
ferencing of EOS and SOS; it measures the vegetative season length in the considered year.

The previously mentioned metrics describe specific moments (in the time-domain)
when vegetation expresses a peculiar event (e.g., leaf development or leaf senescence),
but are not able to measure the strength of canopy vigor. Many authors reported that
yearly maximum NDVI value is a good metric to compare vegetation behavior throughout
the years [63,64]. Consequently, yearly MaxNDVI was calculated and the correspond-
ing DOY recorded.

2.3.4. Class Effects on PM Trends

A feasibility analysis was conducted considering the 4 CLC classes of Table 3 to deter-
mine if and how phenological metrics showed significant trends, in the reference period,
possibly relatable to climate change. All the above mentioned phenological metrics were
consequently compared along the explored 19 years and fitted by a first order polynomial
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regressive model (ordinary least squares). Gain values of the calibrated model and the
correspondent significance level (α = 0.05) were assessed to test if any of the considered
PM showed climate-induced significant variations [65].

2.3.5. Altitudinal Effects on PM Trends

A further assessment was done to refine deductions about natural (Forests) and semi-
natural (Pastures) vegetation. These 2 classes were split in 4 sub-classes each, according to
the 4 defined AZs. Investigation concerned only the MaxNDVI metric, that the previous
step indicated as the most significant one from the time trend point of view. Again, a first
order polynomial linear regression was used to test strength and significance of trends.
The approach is coherent with other similar works where NDVI-based vegetation changes
and their responses to climate change over mountain system exploring different time
range [29,66,67].

The adopted approach is the common slope test that is based on gain significance
analysis [68,69] testing the hypothesis that two gain values are statistically different. It
is worth to remind that gain value only defines the rate of increase/decrease of metric
trends; therefore, to quantify the total variation that the considered PM suffered from
in the reference period (2001–2019), the Percent Total Variation of MaxNDVI (TV%) was
calculated according to Equation (1).

TV% = G· t19 − t1

G·t1 + O
·100 (1)

where G is the gain value of MaxNDVI linear regression model, O is the offset value and t1
and t19 are the first and the last observation respectively (2001, 2019). A final comparison
to test dependency of TV% from AZs was performed by scatter plot analysis.

3. Results and Discussions
3.1. Reference Classes and Patches Selection

To map unchanged CLC classes during the period 2001–2019 a polygon layer intersec-
tion step was achieved with reference to the four CLC available maps. Statistics concerning
focus classes (Non-irrigated arable land, Vineyards, Forests, and Pastures) are shown in
Table 5.

Table 5. CLC class area computed for 2000, 2006, 2012, and 2018 years according to the correspondent
CLC Land use/Land cover maps.

CLC Class 2000 Area
(km2)

2006 Area
(km2)

2012 Area
(km2)

2018 Area
(km2)

Non-irrigated arable land 4167.12 4157.23 4102.28 4102.46
Vineyards 659.26 639.27 630.04 629.81

Forests 7658.59 7614.78 7534.96 7518.00
Pastures 2257.60 2203.15 681.90 681.69

It can be noted that size of all the considered CLC classes showed a decreasing trend
over time. In particular, pastures decreased of 1521 km2 between 2006 and 2012, corre-
spondent to about 70% of its value. Similar results were found by Rusu et al. in Romania
for natural/semi natural areas related to deforestation and urbanization processes [70].
Future investigations could be relevant to discover the nature of this significant change in
this particular area. Conversely, other classes remained almost unchanged along the entire
period as also observed in other works [70]. As previously mentioned, forest and pasture
classes were further divided into four sub-classes depending on AZs, whose dimension is
reported in Table 6.
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Table 6. Forests and Pastures CLC classes that did not change between 2001 and 2019, divided into
the considered altitudinal zones.

Altitudinal Class Area (km2) Area (%)

Forests AZ1 4733.52 67.37
Forests AZ2 1495.48 21.29
Forests AZ3 710.66 10.11
Forests AZ4 86.23 1.23

Pastures AZ1 2.60 0.39
Pastures AZ2 41.49 6.26
Pastures AZ3 377.61 57.01
Pastures AZ4 240.64 36.33

Table 6 shows that forests cover prevail at lower altitudes and decreases while altitude
increases. More than 88% of forests class is, in fact, located between 0 and 1200 m a.s.l.
Pasture class, differently, prevails at the higher altitudes (AZ4 > 2000 m a.s.l.).

3.2. Temperature Trend Assessment

Table 7 shows gain values of linear regression trends according to CLC and AZs classes.

Table 7. Gain values of linear regression trends modelling daily average temperature between 2001 and 2019 for CLC and
AZs classes used in this work.

Linear Trend’s
Coefficients

CLC Classes Azs
Non-Irrigated
Arable Land Vineyards Forests Pastures AZ1 AZ2 AZ3 AZ4

Gain 0.00027 0.00017 0.00018 0.00016 0.00013 0.00016 0.00019 0.00018
p-value (of G) 2.91 × 10−10 2.94 × 10−5 1.26 × 10−6 2.38 × 10−6 2.33 × 10−3 4.70 × 10−5 1.63 × 10−7 1.47 × 10−7

Offset 1.5845 5.9237 2.7023 −0.7670 7.7237 5.5583 −1.1894 −5.2374

All trends were significantly increased during the 2000–2019 period, suggesting the
presence of climate change within AOI. Similar increasing trends were reported in litera-
ture [71,72], suggesting a key role of temperature in phenological development. Therefore
authors used PM to assess the effects of such temperature increase (see Section 3.3).

3.3. Phenological Trend Assessment
3.3.1. Class Effects on PM Trends

Table 8 shows gain values computed for all PM and CLC classes. In particular, not for
all classes, the most significant PM was MaxNDVI. This metric seems to be more sensitive
to vegetation changes along time series as proved by some works [61,73] that, similarly,
adopted low geometrical resolution satellite imagery. Other PMs did not show significant
trends for any CLC class. The same finding was also reported in literature [56,74–76],
in particular Tao [74] founds that MaxNDVI had a positive trend in croplands, forests
and grasslands, more significant than LOS. This phenomenon could be related to two
main factors: one related to the adopted product (MOD13Q1); one related to the PM itself.
As far as the first one is concerned, it is worth to remind that MOD13Q1 product is a
collection made of composited images, where pixel values refer to different dates, within a
16 days period. This, considerably, determines a significant uncertainty in SOS, EOS, and
LOS estimation. As far as the second factor is concerned, PMs other than MaxNDVI are
estimated looking for a single specific event along the analyzed NTS (e.g., the day of the end
of season). Frequent harvests (or mowing) of crops, ordinarily performed in an agriculture
context, certainly affect EOS/LOS estimates, especially when moderate resolution images
are used, making them particularly uncertain. Among tested trends, only those related
to Forests (natural) and Vineyards (agricultural with no water management) resulted
significant. This suggests that human practices can mitigate effects of climate changes over
vegetation; in fact, irrigated and fertilized agricultural classes did not show significant
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trend. Pastures is ordinarily considered a semi-natural system, but, unexpectedly, they did
not show any significant trend; this is possibly due to their intensive management that
is performed in Piemonte, especially in lowland areas. Similar results were obtained by
Tang et al. [56] and Menzel et al. [56,71], specifically both studies showed that the effects
of climate change on vegetation identified by PM changed in relation to the land cover.
In particular, they noted that the agricultural class was poorly affected by climate change,
while the forest one was the most susceptible to the climate effects.

Table 8. Gain values of linear regression trends modelling PMs between 2001 and 2019 for the
CLC classes used in this work. *significance level with p-value < 0.05; ** significance level with
p-value < 0.01.

Gain Values for CLC Classes Analyzed

PM Non-Irrigated Arable Land Vineyards Forests Pastures

SOS −1.740 −0.673 −0.729 0.252
EOS −1.094 −1.038 −0.392 −0.533
LOS 0.645 −0.365 0.336 −0.785

MaxNDVI 11.285 34.333 ** 10.500 * 16.496
Doy_MaxNDVI 0.785 −0.842 1.122 −0.589

3.3.2. Altitudinal Effects on PM Trends

MaxNDVI resulted the only PM showing a detectable and significant trend along
time at the MOD13Q1 temporal and spatial scale. Consequently, a further analysis was
performed to explore the dependence of its trends from altitude. Only natural and semi-
natural vegetation were considered at this point. Similarly, as previously done, first order
polynomial trends were tested with reference to the eight classes of Table 6. Results are
reported in Table 9 and Figure 4.

Table 9. First order polynomial coefficients of modeled trends computed for different altitudi-
nal classes (AZs, see Table 4) of Forests and Pastures. Maximum Annual Normalized Difference
Vegetation Index (MaxNDVI) values are ×10,000.

Forests
AZ1

Forests
AZ2

Forests
AZ3

Forests
AZ4

Pastures
AZ1

Pastures
AZ2

Pastures
AZ3

Pastures
AZ4

r 0.390 0.500 0.432 0.410 0.700 0.480 0.330 0.290
Gain 5.891 11.831 16.076 17.594 32.666 19.173 18.235 13.246

p-value
(of G) 0.090 0.020 0.060 0.080 0.001 0.030 0.170 0.220

Offset 8365 8406 7901 7536 6951 7686 7125 6939

Table 10 reports p-values resulting from the common gain test performed for all the
AZs of forest and pasture classes. In general, results indicate that no significant differences
exist between gains of AZs trends for both forests and pastures. Nevertheless, according to
Table 9, such trends show a positive value. These results suggest that climate change effects
on MaxNDVI, i.e., vegetation vigor, is constant and latent in all the altitudinal classes.
Nevertheless, this latent climatic-induced trend could vary in terms of relative strength if
the vigor total variation (TV%, Equation (1)) is computed and compared with the initial
MaxNDVI value.
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Table 10. F-statistic (blue) and p-value (orange) resulting from common slope test for Forests and
Pastures CLC classes.

F (Blue)
p-Value (Orange) AZ1 AZ2 AZ3 AZ4

Forests

AZ1 0.32 0.25 0.25
AZ2 1.003 0.65 0.59
AZ3 1.348 0.199 0.9
AZ4 1.35 0.289 0.014

Pastures

AZ1 0.25 0.34 0.14
AZ2 1.358 0.95 0.66
AZ3 0.923 0.003 0.76
AZ4 2.177 0.193 0.091

TV% is reported against AZs in Figure 5 for both forests and pastures. Forests showed
an increasing TV% gradient with AZs. Specifically, lower TV% (about 1%) correspond to
forests placed at lower altitudes, suggesting that climate change determine stronger effects
on forests located at higher altitudes (about 4%). Results seem to be consistent with a recent
studies [74,77–79] that found that vegetation greening and climate warming effects trends
were stronger at higher altitudes, thus supporting the idea that an altitudinal gradient
effect operates in determining forests vigor level and changes.
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Conversely, pastures showed a negative altitudinal TV% gradient. Pastures located at
lower altitudes were more affected by climate changes than high altitude pastures. This
probably relies on the fact that pastures, in lowlands, are commonly more intensively
managed (irrigations and fertilizations) than in mountain. In this, human management
could increase vigor and productivity of low altitude grass systems while grass systems in
alpine zone (i.e., high AZs) are generally characterized by low biomass and often alternate
with bare soil [80,81]; this factor certainly affects ANTS determining a minor sensitivity
of phenology to climate changes. The same phenomenon was reported in Li [82] where
a significant NDVI increase was primarily associated with forests, while a weak NDVI
increase was observed for pastures at altitudes > 2000 m. Results are also in agreement
with [83] findings that proved that main vegetation climate-related changes occur at lower
altitudes for alpine pastures.

4. Conclusions

In this work, the increasing trend of temperature probably related to climate change
in AOI was proved analyzing regional meteorological stations data. Therefore effects on
vegetation phenology was expected. To prove such phenomenon a trend analysis of climate
change effects on Piemonte Region vegetation was performed using MOD13Q1 imagery
in the period 2001–2019. In particular, agricultural and natural land cover classes (as
reported by CLC maps) were explored by analyzing correspondent ANTS. Some PMs were
computed with reference to the yearly class ANTS, but only MaxNDVI showed significant
trends possibly related to climate change for some classes at regional level. In particular,
agriculture classes did not show any significant MaxNDVI trend (G = 11.285, p > 0.05);
differently, forests and vineyards presented a significant positive trend (G = 10.500, p < 0.05
and G = 34.333, p < 0.01 respectively). A further analysis was conducted to assess if altitude
could condition trends of natural and semi-natural classes. The common gain test proved
that no significant difference exists between trends of forests classes placed at different
altitudes. Similarly, for pastures. Nevertheless, while relating the absolute difference of
MaxNDVI totally occurred along the entire period (2001–2019) with its initial value at 2001
(by TV%), it was observed that high altitude forests presented a higher value of TV% (4%)
than low altitude ones (1%). Conversely, pastures showed higher TV% at lower (7.7%)
than at higher altitudes (3.3%). In conclusion, MOD13Q1 data proved to be an effective
product to monitor vegetation over time and to derived some PMs. Unfortunately, not
all of them, at the temporal and spatial scale of MOD13Q1 and at the regional level of
class aggregation proved to be sensitive to the ongoing climate change. Only MaxNDVI
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showed significant trends, at regional level, for forests and vineyards making evident that,
absolutely speaking, it operated similarly at different altitude zones within the same class.
Nevertheless, we showed that same absolute difference in MaxNDVI meant a different
effect (measured by TV%) at different altitudes, depending on its initial value.
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