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Abstract: To produce high-quality broccoli microgreens, suitable light intensity for growth and
phytochemical contents of broccoli microgreens in an artificial light plant factory were studied.
Broccoli microgreens were irradiated under different photosynthetic photon flux density (PPFD):
30, 50, 70 and 90 µmol·m−2·s−1 with red: green: blue = 1:1:1 light-emitting diodes (LEDs). The
broccoli microgreens grown under 50 µmol·m−2·s−1 had the highest fresh weight, dry weight, and
moisture content, while the phytochemical contents were the lowest. With increasing light intensity,
the chlorophyll content increased, whereas the carotenoid content decreased. The contents of soluble
protein, soluble sugar, free amino acid, flavonoid, vitamin C, and glucosinolates except for progoitrin
in broccoli microgreens were higher under 70 µmol·m−2·s−1. Overall, 50 µmol·m−2·s−1 was the
optimal light intensity for enhancement of growth of broccoli microgreens, while 70 µmol·m−2·s−1

was more feasible for improving the phytochemicals of broccoli microgreens in an artificial light
plant factory.

Keywords: light intensity; broccoli microgreens; growth; phytochemicals

1. Introduction

Microgreens are a kind of vegetable emerging in recent years for their higher contents
of phytochemicals such as vitamin C, carotenoid, and flavonoid, than their mature stages [1].
Among these, broccoli (Brassica oleracea L. var. italica) microgreens are one of the most
popular vegetables for their rich phytochemicals, especially glucosinolates [2,3]. Broccoli
exhibited the highest total glucosinolates content in seeds (110.76 µmol·g−1) and sprouts
(162.19 µmol·g−1) compared to some Brassica species, including cauliflower, cabbage,
radish, baemuchae, pakchoi, Chinese cabbage, leaf mustard, and kale [3]. Glucosinolates
are classified into aliphatic, indolic, and aromatic glucosinolates according to the side-chain
structures. The defensive function of broccoli in many cancers is due to the hydrolysis of
glucosinolates, isothiocyanates. Sulforaphane, a product of the hydrolysis of glucoraphanin
(GRA), is known to be the most promising anticancer agent. Vitamin C, carotenoid, and
flavonoid are also health-promoting phytochemicals with antioxidant, antibacterial, and
anti-inflammatory effects [4].

Light intensity plays a crucial role in plant growth and development, including phyto-
chemicals synthesis [5]. Artificial lighting conditions allow using varying light intensity to
regulate plant growth and phytochemicals accumulation, which is a kind of environmentally
friendly and effective method to produce high-quality products. Light-emitting diodes
(LEDs) are one of the promising lighting technologies for plants, which can adjust light
intensity to affect the growth and the phytochemical contents of the plant [6,7]. In tatsoi,
100 and 200 µmol·m−2·s−1 were most beneficial to enhance total protein content [8]. In leaf
lettuce, anthocyanin content was observed to be the highest under 290 µmol·m−2·s−1 and
the lowest under 200 µmol·m−2·s−1 [9]. The effects of light intensity on the growth and
phytochemicals of microgreens have been often reported. In hypocotyl length, red pak choi
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and kohlrabi microgreens grown under 110 µmol·m−2·s−1 had longer hypocotyl length than
those grown under 220–545 µmol·m−2·s−1, and hypocotyl length of two microgreens grown
under 220–545 µmol·m−2·s−1 had insignificant difference [10]. In phytochemical contents,
higher vitamin C content of red pak choi and tatsoi was observed under lower light intensity
(110 µmol·m−2·s−1), while higher phenols content was found under higher light intensity
(440 µmol·m−2·s−1) [10]. Total carotenoid content in microgreens of red pak choi and
tatsoi was higher grown under 330–440 µmol·m−2·s−1 and in mustard microgreens under
110–220 µmol·m−2·s−1 [11]. The ferric reducing antioxidant power (FRAP) in microgreens
of red amaranth and leafy vegetable amaranth enhanced with the increased light intensity
(130, 180, 230, 280 µmol·m−2·s−1), and anthocyanin content in red amaranth microgreens
significantly increased under the highest light intensity of 280 µmol·m−2·s−1 [12].

The light intensities from 100 to 300 µmol·m−2·s−1 photosynthetic photon flux density
(PPFD) often used for microgreens production in the literature. Few studies on minimum
PPFD for microgreens have been conducted [6]. Low light intensity can potentially decrease
electrical energy cost of growing microgreens in a plant factory. With dimming option
available for LED fixtures, power consumption can be lowered by decreasing the light
intensity provided to microgreens. Lower electrical energy costs can increase profits.
However, limited information is available on the effects of low light intensity on growth
and phytochemical concentration of broccoli microgreens. The purpose of this study was to
investigate the effects of light intensity (lower than 100 µmol·m−2·s−1 PPFD) on the growth
and phytochemicals accumulation of broccoli microgreens and to provide information for
the high-quality production of broccoli microgreens in the emerging microgreen industry.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

The experiment was conducted in an artificial light plant factory, South China Agri-
cultural University. Seeds of broccoli (Brassica oleracea var. italica cv. Lvhua) were sterilized
with 5% sodium hypochlorite solution for 10 min and then washed with purified water
(pH = 7.0, EC = 20 µS·cm−1, R.O = 0.6 µS·cm−1). Then seeds were soaked in purified water
for 5 h. The seeds of broccoli were sprayed evenly into the seedling plate (39 cm × 39 cm)
with two layers of gauze, purified water was added to the plate, and the water at the
bottom of the seedling plate was renewed every two days. About 20.0 g broccoli seeds were
sowed for each treatment with three replications using a seeding density of 3 seeds·cm−2.
The seedling plates were placed on the bench equipped with blue/red/green LED tubes.
The microgreens were cultivated at 22 ± 2 ◦C and 60 ± 5% of relative humidity. The plates
were arranged randomly and manually rotated every day to uniform illumination. The
experimental bench is shown in Figure 1.
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2.2. Experimental Treatments

After sowing, the seeds were placed in the dark for 4 days, then cultivated underneath
the LED tubes for 4 days (12 h / 12 h, light / dark). Four different total light intensities
(photosynthetic photon flux density, PPFD) were set: 30, 50, 70, 90 µmol·m−2·s−1. Light
spectra were measured by a spectral analyzer (Lighting Passport ALP-01, AsenseTek,
Taiwan), and the light spectra of each treatment is shown in Figure 2. At 4 days after light
treatment, samples were collected for the growth parameters determination, frozen rapidly
with liquid nitrogen, and stored at −40 ◦C for the phytochemical determination.
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Figure 2. Light spectra of light treatment.

2.3. Growth Parameters Determination

Fresh weight (FW) and hypocotyl length, the growth parameters of broccoli micro-
greens, were determined by an electronic analytical balance and a ruler, respectively. Fresh
microgreens dried at 75 ◦C for 72 h to obtain the dry weight (DW). Fifteen broccoli mi-
crogreens were randomly sampled from each treatment. The moisture content of fresh
broccoli microgreens was calculated: Moisture content (%) = (FW − DW)/FW × 100%.

2.4. Phytochemical Determination
2.4.1. Chlorophylls (Chls) and Carotenoid Contents

Fresh samples of cotyledon of broccoli microgreens (0.2 g) were soaked in 6.0 mL
of acetone ethanol mixture (acetone: ethanol = 1:1, v: v) and incubated at 25 ◦C in dark
for 24 h. The extract solution absorbance was determined with UV-spectrophotometer
(Shimadzu UV-16A, Shimadzu, Corporation, Kyoto, Japan) at 663 nm (A663), 645 nm (A645)
and 440 nm (A440). The pigments contents were calculated according to Gratani [13] as
follows: Chl a content (mg/g FW) = (12.70 × A663 − 2.69 × A645) × 6 mL/(1000 × 0.2 g);
Chl b content (mg/g FW) = (22.90 × A645 − 4.86 × A663) × 6 mL/(1000 × 0.2 g); Chl a+
Chl b content (mg/g FW) = (8.02 × A663 + 20.20 × A645) × 6 mL/(1000 × 0.2 g); carotenoid
content (mg/g FW) = (4.70 × A440 − 2.17 × A663 − 5.45 × A645) × 6 mL/(1000 × 0.2 g).

2.4.2. Soluble Protein Content

Soluble protein content was determined by Coomassie blue staining [14]. Fresh frozen
tissue (0.5 g) was mixed with 4.0 mL deionized water and then centrifuged at 3000 rpm
for 10 min. The supernatant (0.2 mL) was diluted in the 0.8 mL deionized water and well
mixed with 5.0 mL Coomassie brilliant blue G-250 (Solarbio, Beijing, China) solution. 5 min
later, the absorbance of the mixture was measured at 595 nm by UV-spectrophotometer
(Shimadzu UV-16A, Shimadzu, Corporation, Kyoto, Japan), using deionized water as a
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blank. Bovine serum albumin (Solarbio, Beijing, China) was used as a reference substance
and the results were expressed in mg/g FW.

2.4.3. Soluble Sugar Content

Soluble sugar content was determined by anthrone colorimetry [15]. Fresh frozen
tissue (1.0 g) was mixed with 10.0 mL deionized water, sealed with a plastic film, and
boiled in a 100 ◦C-water bath for 30 min. Again, deionized water (10.0 mL) was added,
boiled in a 100 ◦C-water bath for 30 min, and filtered by a funnel with double filter
papers. The filtered solution was collected into a 25-mL measuring flask and cooled to
25 ◦C, then added deionized water to 25 mL. Later, the filtered solution (0.2 mL) and
deionized water (0.8 mL) were mixed in a 20-mL test tube. 0.5 mL anthrone ethyl acetate
reagent (Sinophaem, Beijing, China) and 5.0 mL concentrated sulfuric acid were added,
mixed with vortex, and then placed in a boiling water bath for 10 min. After cooling to
ambient temperature, the solution was measured at 625 nm by UV-spectrophotometer
(Shimadzu UV-16A, Shimadzu, Corporation, Kyoto, Japan), using deionized water as a
blank. Sucrose (Guangzhou Chemical Reagent Factory, Guangzhou, China) was used as a
reference substance and the results were expressed in mg/g FW.

2.4.4. Free Amino Acid Content

Free amino acid content was determined according to the method described by
Yao et al. [10]. The ground samples (0.5 g) were extracted by 50 mL hot deionized water for
10 min. Then, the solution was filtered, and whose supernatant (1.0 mL) was mixed with
0.5 mL phosphate buffer solution (pH 8.0) and 0.5 mL 2% ninhydrin solutions containing
0.8 mg/mL of tin chloride in 25-mL volumetric flask. The mixture was heated for 15 min in
the boiling water bath and cooled to ambient temperature. It was then diluted to 25 mL
with deionized water and laid aside for 15 min. The absorbance of the solution was deter-
mined at 570 nm by UV-spectrophotometer (Shimadzu UV-16A, Shimadzu, Corporation,
Kyoto, Japan), using deionized water as a blank. Leucine (Biosharp, Guangzhou, China)
was used as a reference substance and the results were expressed in mg/g FW.

2.4.5. Flavonoid Content

The flavonoid content was determined by an aluminum nitrate method [16]. Fresh
frozen tissue (0.5 g) was extracted by 8.0 mL absolute ethanol. 1.0 mL broccoli microgreens
extract was mixed with 0.7 mL 5% sodium nitrite solution in a 10 mL test tube for 5 min.
Then, 0.7 mL 5% aluminum nitrate was added to the mixture for 6 min. 5.0 mL 5%
sodium hydroxide solution was added and reacted at 25 ◦C. The absorption at 510 nm was
measured by UV-spectrophotometer (Shimadzu UV-16A, Shimadzu, Corporation, Kyoto,
Japan), absolute ethyl alcohol as a blank. Rutin (Sinophaem, Beijing, China) was used as a
reference substance and the results were expressed in mg/g FW.

2.4.6. Vitamin C Content

Vitamin C content was determined by molybdenum blue spectrophotometry [17].
Fresh frozen tissue (0.5 g) was homogenized with 25 mL of oxalic acid ethylene diamine
tetraacetic acid solution (w/v) in a volumetric flask. Then, the solution was filtered by
a funnel with double filter papers. 10.0 mL supernatant was mixed with 1.0 mL partial
phosphoric acid-acetic acid solution (w/v) and 2.0 mL 5% sulfuric acid solution (v/v) and
4.0 mL 5% ammonium molybdate solution (w/v). The supernatants were mixed well and set
still for 15 min, then measured at 705 nm by a UV-spectrophotometer (Shimadzu UV-16A,
Shimadzu, Corporation, Kyoto, Japan), using oxalic acid-ethylene diamine tetraacetic acid
as a blank. L-ascorbic acid (Guangzhou Chemical Reagent Factory, Guangzhou, China)
was used as a reference substance and the results were expressed in mg/g FW.
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2.4.7. Glucosinolates Contents Determination

Glucosinolates were extracted and analyzed as previously described [18]. The frozen-
dried sample was extracted with methanol and then the extracts were purified and desul-
furized with the ion-exchange method. The glucosinolates were separated and identified
by high-performance liquid chromatography (HPLC, Waters Alliance e2695). A 5 µm C18
column (Waters, 250 mm length, 4.6 mm diameter) was used for glucosinolate separation.
Elution was performed with mobile phase A (water, 18.2 MΩ·cm resistance) and mobile phase
B (acetonitrile). The optimum column temperature was 30 ◦C. At a flow rate of 1.0 mL/min,
the gradient conditions were set as follows: solvent A volume at 100% for 0 to 32 min, 80%
for 32 to 38 min, and solvent B volume at 100% for 38 to 40 min. 42–50 min was the time for
elution. The detector monitored glucosinolates at 229 nm. The individual glucosinolates were
identified according to their HPLC retention times and our database, and quantified with
sinigrin (Sigma-Aldrich, St. Louis, MO, USA) was used as an internal reference substance
with their HPLC area and relative response factors (ISO 9167-1,1992) [19]. The results were
expressed as µmol/g DW.

2.5. Statistical Analysis

Unless mentioned otherwise, all data were showed as means ± standard error (SE)
of three replications, and they were assessed for analysis of variance (ANOVA) using
Duncan’s test at p < 0.05 with SPSS 26.0 software (Chicago, IL, USA). Line charts were
constructed with Origin 2018 software (Origin Lab, Northampton, MA, USA). The heatmap
function of TBtools software [20] was used to study the overall data. We calculated the
Euclidean distance among samples and used the complete clustering method.

3. Results
3.1. Effects of Light Intensity on Growth of Broccoli Microgreens

Light intensity markedly affected the growth of broccoli microgreens (Figure 3). At har-
vest, the highest FW and DW of broccoli microgreens were observed under 50 µmol·m−2·s−1

(54.33 mg/plant and 2.97 mg/plant, respectively), while moisture content and hypocotyl
length were markedly reduced as light intensity increased (from 30 to 90 µmol·m−2·s−1),
the lowest moisture content and hypocotyl length were found under 90 µmol·m−2·s−1,
and the reductions were up to 0.82% and 24%, respectively, compared to those under
30 µmol·m−2·s−1. These results implied that 50 µmol·m−2·s−1 was the suitable light
intensity for broccoli microgreens growth.

3.2. Effects of Light Intensity on Chls Contents in Broccoli Microgreens

The contents changes of Chl a, Chl b, and Chl a + Chl b were consistent among all
light treatments. The contents of Chl a, Chl b, and Chl a + Chl b in broccoli microgreens
increased as light intensity increased from 30 to 90 µmol·m–2·s–1 (Figure 4A–C). As the
light intensity increased from 30 to 90 µmol·m–2·s–1, the contents of Chl a, Chl b, and Chl a
+ Chl b increased by 15.3%, 24.0%, and 17.3% respectively, while Chl a / Chl b ratio was not
affected by light intensity (Figure 4D). Hence, higher light intensity was beneficial to the
accumulation of Chl a, Chl b, and Chl a + Chl b.

3.3. Effects of Light Intensity on Phytochemical Contents in Broccoli Microgreens

Light intensity affected the contents of soluble protein, soluble sugar, free amino
acid, flavonoid, vitamin C, as well as carotenoid in broccoli microgreens (Figure 5). The
soluble protein content in broccoli microgreens significantly responded to the changes
in light intensity. The soluble protein content in broccoli microgreens grown under 30,
50 and 70 µmol·m−2·s−1 was significantly higher than those under the irradiance of
90 µmol·m−2·s−1 (Figure 5A). The lowest soluble sugar content (5.44 mg/g) was ob-
served in broccoli microgreens grown under the irradiance of 50 µmol·m−2·s−1, which
was significantly lower than that in broccoli microgreens under the irradiance of 70 and
90 µmol·m−2·s−1 (Figure 5B). The content of free amino acids in broccoli microgreens
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grown under the irradiance of 30 µmol·m−2·s−1 was significantly higher than those grown
under the irradiance of 50 and 90 µmol·m−2·s−1 (Figure 5C). The content of flavonoid
decreased, then increased with the increase of light intensity (Figure 5D). The lowest and
the highest content of flavonoid were respectively found in broccoli microgreens grown
under the irradiance of 50 and 90 µmol·m−2·s−1, and they were 0.79 mg/g and 1.13 mg/g.
The vitamin C content in broccoli microgreens grown under 50 µmol·m−2·s−1 was sig-
nificantly lower (−6% to −14%) than those in broccoli microgreens grown under other
light intensities (Figure 5E). With increasing light intensity (from 30 to 90 µmol·m−2·s−1),
the carotenoid content decreased (from 0.09 to 0.07 mg/g FW) (Figure 5F). These results
indicated that 70 µmol·m−2·s−1 was better for the accumulation of phytochemicals in
broccoli microgreens.
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3.4. Effects of Light Intensity on Glucosinolates Profile and Contents in Broccoli Microgreens

Glucosinolates in broccoli microgreens were analyzed using HPLC. 9 glucosinolates
were identified in broccoli microgreens (Figure 6), including 5 aliphatic glucosinolates
(progoitrin, glucoraphanin, sinigrin, glucobrassicanapin, and glucoerucin) and 4 indolic
glucosinolates (4-hydroxy-glucobrassicin, glucobrassicin, 4-methoxy-glucobrassicin, and
neoglucobrassicin). The contents of glucobrassicin (GBS), total aliphatic glucosinolates,
and total glucosinolates all increased with the enhancement of light intensity (Table 1), but
there were no significant differences in the contents of them in broccoli microgreens under



Agronomy 2021, 11, 537 8 of 14

between 70 µmol·m−2·s−1 and 90 µmol·m−2·s−1. However, 4-hydroxy-glucobrassicin
(4-HGBS) content decreased significantly with increasing light intensity. Progoitrin (PRO)
content was lower in broccoli microgreens under the irradiation of 50 and 70 µmol·m−2·s−1,
while glucoraphanin (GRA) content in broccoli microgreens at the irradiation of 50, 70 and
90 µmol·m−2·s−1 was significantly higher than that at the irradiation of 30 µmol·m−2·s−1.
Glucobrassicanapin (GBN) content was the highest in broccoli microgreens grown under
50 µmol·m−2·s−1 and was significantly higher than that grown under other light intensities.
Meanwhile, the contents of glucoerucin (GER), 4-methoxy-glucobrassicin (4-MGBS), and
neoglucobrassicin (NGBS) were the lowest in broccoli microgreens grown at the irradi-
ation of 50 µmol·m−2·s−1. These results showed that different light intensity affected
glucosinolates contents to various extent.

Agronomy 2021, 11, x FOR PEER REVIEW 9 of 15 
 

 

 
Retention time (min) 

Figure 6. HPLC chromatogram of glucosinolates. 1: progoitrin (PRO); 2: glucoraphanin (GRA); 3: sinigrin (SIN); 4: 4-hy-
droxy-glucobrassicin (4-HGBS); 5: glucobrassicanapin (GBN); 6: glucoerucin (GER); 7: glucobrassicin (GBS); 8: 4-methoxy-
glucobrassicin (4-MGBS); 9: neoglucobrassicin (NGBS). 

Table 1. Effects of different light intensity on glucosinolates contents in broccoli microgreens. 

Glucosinolates Content  
(μmol·g−1 DW) 

Light Intensity (μmol·m−2·s−1) 
30 50 70 90 

PRO 3.69 ± 0.11 a 2.82 ± 0.03 b 2.94 ± 0.03 b 3.46 ± 0.14 a 
GRA 18.70 ± 0.57 b 24.42 ± 0.16 a 25.22 ± 0.46 a 24.20 ± 0.68 a 
SIN 0.88 ± 0.04 a 0.79 ± 0.01 a 0.87 ± 0.06 a 0.98 ± 0.10 a 

GBN 5.45 ± 0.08 b 6.12 ± 0.18 a 5.46 ± 0.19 b 5.24 ± 0.19 b 
GER 36.72 ± 1.12 b 34.72 ± 0.63 b 37.91 ± 0.75 ab 40.14 ± 1.19 a 

TAGSL 65.44 ± 1.02 c 68.87 ± 0.73 b 72.40 ± 0.67 a 74.01 ± 0.86 a 
4-HGBS 0.81 ± 0.01 a 0.67 ± 0.00 b 0.61 ± 0.03 b 0.42 ± 0.02 c 

GBS 1.18 ± 0.06 c 2.10 ± 0.04 b 2.82 ± 0.08 a 2.96 ± 0.05 a 
4-MGBS 2.64 ± 0.13 bc 2.41 ± 0.07 c 3.91 ± 0.20 a 3.01 ± 0.17 b 
NGBS 2.04 ± 0.06 c 1.21 ± 0.04 d 2.40 ± 0.14 b 3.05 ± 0.13 a 
TIGSL 6.66 ± 0.15 b 6.39 ± 0.06 b 9.75 ± 0.19 a 9.45 ± 0.33 a 
TGSL 72.10 ± 1.16 b 75.25 ± 0.80 b 82.15 ± 0.83 a 83.46 ± 1.08 a 

Note: Different lowercase letters in the same row show significant differences (p < 0.05). The data were showed as means 
± SE (n = 3). TAGSL, total aliphatic glucosinolate; TIGSL, total indolic glucosinolate; TGSL, total glucosinolate. 

3.5. Heatmap Analysis 
A heatmap integrating the response of the measured parameters showed a compre-

hensive view of the effects of light intensity on the growth and the contents of phytochem-
icals in broccoli microgreens (Figure 7). In terms of measured parameters responses, the 
30 and the 50 μmol·m−2·s−1 clusters are the closest to each other, while the 70 and the 90 
μmol·m−2·s−1 clusters are the closest to each other. Lower light intensities (30 and 50 
μmol·m−2·s−1) and higher ones (70 and 90 μmol·m−2·s−1) showed opposite responses in most 
of the measured parameters. The 30 and the 50 μmol·m−2·s−1 clusters both showed higher 
fresh and DW, moisture content as well as hypocotyl length than the 70 and the 90 
μmol·m−2·s−1 clusters. Meanwhile, the 70 and the 90 μmol·m−2·s−1 clusters showed a similar 
response of most of the phytochemical parameters, such as the contents of flavonoid, 

Figure 6. HPLC chromatogram of glucosinolates. 1: progoitrin (PRO); 2: glucoraphanin (GRA); 3: sinigrin (SIN); 4:
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methoxy-glucobrassicin (4-MGBS); 9: neoglucobrassicin (NGBS).

Table 1. Effects of different light intensity on glucosinolates contents in broccoli microgreens.

Glucosinolates Content
(µmol·g−1 DW)

Light Intensity (µmol·m−2·s−1)

30 50 70 90

PRO 3.69 ± 0.11 a 2.82 ± 0.03 b 2.94 ± 0.03 b 3.46 ± 0.14 a
GRA 18.70 ± 0.57 b 24.42 ± 0.16 a 25.22 ± 0.46 a 24.20 ± 0.68 a
SIN 0.88 ± 0.04 a 0.79 ± 0.01 a 0.87 ± 0.06 a 0.98 ± 0.10 a

GBN 5.45 ± 0.08 b 6.12 ± 0.18 a 5.46 ± 0.19 b 5.24 ± 0.19 b
GER 36.72 ± 1.12 b 34.72 ± 0.63 b 37.91 ± 0.75 ab 40.14 ± 1.19 a

TAGSL 65.44 ± 1.02 c 68.87 ± 0.73 b 72.40 ± 0.67 a 74.01 ± 0.86 a
4-HGBS 0.81 ± 0.01 a 0.67 ± 0.00 b 0.61 ± 0.03 b 0.42 ± 0.02 c

GBS 1.18 ± 0.06 c 2.10 ± 0.04 b 2.82 ± 0.08 a 2.96 ± 0.05 a
4-MGBS 2.64 ± 0.13 bc 2.41 ± 0.07 c 3.91 ± 0.20 a 3.01 ± 0.17 b
NGBS 2.04 ± 0.06 c 1.21 ± 0.04 d 2.40 ± 0.14 b 3.05 ± 0.13 a
TIGSL 6.66 ± 0.15 b 6.39 ± 0.06 b 9.75 ± 0.19 a 9.45 ± 0.33 a
TGSL 72.10 ± 1.16 b 75.25 ± 0.80 b 82.15 ± 0.83 a 83.46 ± 1.08 a

Note: Different lowercase letters in the same row show significant differences (p < 0.05). The data were showed
as means ± SE (n = 3). TAGSL, total aliphatic glucosinolate; TIGSL, total indolic glucosinolate; TGSL, total
glucosinolate.
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3.5. Heatmap Analysis

A heatmap integrating the response of the measured parameters showed a compre-
hensive view of the effects of light intensity on the growth and the contents of phytochemi-
cals in broccoli microgreens (Figure 7). In terms of measured parameters responses, the
30 and the 50 µmol·m−2·s−1 clusters are the closest to each other, while the 70 and the
90 µmol·m−2·s−1 clusters are the closest to each other. Lower light intensities (30 and
50 µmol·m−2·s−1) and higher ones (70 and 90 µmol·m−2·s−1) showed opposite responses
in most of the measured parameters. The 30 and the 50 µmol·m−2·s−1 clusters both showed
higher fresh and dry weight, moisture content as well as hypocotyl length than the 70
and the 90 µmol·m−2·s−1 clusters. Meanwhile, the 70 and the 90 µmol·m−2·s−1 clusters
showed a similar response of most of the phytochemical parameters, such as the contents
of flavonoid, TGSL, 4-MGBS, TIGSL, and so on. Clusters 70 and 90 µmol·m−2·s−1 led
to higher contents of Chls, soluble sugar, flavonoid, vitamin C, GER, GBS, 4-MGBS, and
NGBS in broccoli microgreens. Besides, cluster 70 µmol·m−2·s−1 elicited more phytochem-
icals than the other three clusters. Compared to those under 90 µmol·m−2·s−1, under the
irradiation of 70 µmol·m−2·s−1, the content of PRO was lower, and the contents of soluble
protein, free amino acid, 4-HGBS as well as hypocotyl length were higher.
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4. Discussion
4.1. Effects of Light Intensity on Growth of Broccoli Microgreens

Less than 100 µmol·m−2·s−1 is good enough for microgreens growth in an artificial
light environment [6]. In this study, under irradiation of lower than 90 µmol·m−2·s−1 (30,
50 and 70 µmol·m−2·s−1) treatment had a promoting effect on the growth of broccoli micro-
greens, increasing in FW and hypocotyl length, compared to those under 90 µmol·m−2·s−1

(Figure 3A,D). Increasing blue light intensity suppressed hypocotyl elongation in six veg-
etable sprouts included broccoli sprouts [21]. Although no direct comparisons could be
made owing to different growing conditions, it was worth mentioning that the inhibition
of hypocotyl elongation might be mainly due to the increase of blue light intensity in
this study (Figure 3D). However, lower light intensity (<90 µmol·m−2·s−1) treatment led
to reducing Chls contents (Figure 4A–C). The light intensity of 130−280 µmol·m−2·s−1

could not affect chlorophylls contents of amaranth microgreens, which might be due to the
intensity was too low for amaranth microgreens [12]. However, for broccoli microgreens,
90 µmol·m−2·s−1 might be high enough to enhance the biosynthesis of the contents of Chls,
which might vary with plant species. Previous studies indicated that at the de-yellowing
stage, low light intensity promoted hypocotyl growth and inhibited chlorophyll accumula-
tion for the sake of reaching more light [22,23]. It appears that low light intensity promotion
on elongation growth might be a common phenomenon, which could be beneficial to mi-
crogreens production. The lowest light intensity (30 µmol·m−2·s−1) had the lowest DW
(2.63 mg/plant). These were in accordance with the report that low irradiance decreased
the leaf DW of lettuce [24]. Perhaps, under lower light intensity, photosynthesis produced
fewer carbohydrates, which therefore produces less DW.

4.2. Effects of Light Intensity on Phytochemical Contents in Broccoli Microgreens

Light intensity plays a vital role in the accumulation of soluble protein, soluble
sugar and free amino acid. In broccoli microgreens, the soluble protein content was
higher under the irradiation of 30, 50 and 70 µmol·m−2·s−1 but decreased sharply under
the irradiation of 90 µmol·m−2·s−1 (Figure 5A). Similarly, the lowest protein content in
tatsoi was observed under the higher light intensities (400 and 500 µmol·m−2·s−1) [8].
These suggested that higher light intensity could reduce soluble protein content, and the
mechanism needs further research. The highest FW and the lowest soluble sugar content
were found under 50 µmol·m−2·s−1 in this study (Figures 3A and 5B). This might be due to
broccoli microgreens under 50 µmol·m−2·s−1 had the highest FW (54.33 mg/plant) diluting
soluble sugar content. In tatsoi, higher contents of free amino acids including glutamate,
asparagine, and aspartate were determined under low (100 µmol·m−2·s−1) or high light
(500 µmol·m−2·s−1), which might be due to the stressful light conditions [8]. It might be
due to stress from high light that the lowest free amino acid content in broccoli microgreens
was found under the highest irradiation (90 µmol·m−2·s−1) (Figure 5C).

Flavonoid, vitamin C, and carotenoid are antioxidants that could reduce or clear reactive
oxygen species (ROS) formed under high light intensity in some plant species [11,25–27].
Higher light intensity seemed to promote antioxidants contents, which were similar to those
found in Brassica microgreens [10] and lettuce [26]. The total flavonoid in ferns species
Matteuccia struthiopteris (L.) Todaro and Brassica campestris L. increased with the increasing
light intensity [28,29]. This might be that light energy of high light intensity was more than
which could be used up for the fixation of CO2 in the Calvin cycle [25], and this excess
energy could induce ROS which could damage photosystems [30]. In broccoli microgreens,
over the light intensity of 70 µmol·m−2·s−1 irradiation, flavonoid content increased while
carotenoid content reduced (Figure 5D,F). The flavonoid as an antioxidant might increase
in leaves to retain the survival of plants exposed to high light intensity when other ROS
anti-toxifying systems had already been damaged [31]. The photoprotective action of some
antioxidants was coordinated with their capacity of interacting with the polar phospholipid
head at the water-lipid interface of the membranes, reducing the risk of oxidant-induced
damage [32]. The content of vitamin C in broccoli microgreens under the irradiation of 30,
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70 and 90 µmol·m−2·s−1 were higher than those under the irradiation of 50 µmol·m−2·s−1

(Figure 5E). This might be a “diluted effect” due to the highest FW in broccoli microgreens
under the irradiation of 50 µmol·m−2·s−1 (Figure 3A).

Glucosinolate profile is largely affected by genetic and environmental factor [33], and
vary from species and cultivars [3]. 7 glucosinolates were identified in broccoli sprouts
(cv. Waltham 29) [34]. In this study, 9 glucosinolates were identified in broccoli micro-
greens (cv. Lvhua) (Figure 6). In one-leafed seedlings of choy sum, more than 80% of the
total glucosinolates were aliphatic glucosinolates [33]. Aliphatic glucosinolates were the
major glucosinolates in broccoli microgreens (about 90% of the total glucosinolates) even
under different light intensity, followed by indolic glucosinolates (Table 1), which was
similar to Brassica oleracea leaves grown at 300 µmol·m−2·s−1 [35]. Glucosinolates content
in broccoli microgreens varied under different light intensity (Table 1). It was reported
that light could regulate genes of glucosinolates biosynthesis controlled by the LONG
HYPOCOTYL5 (HY5) transcription regulator [36]. In broccoli microgreens, the contents of
total glucosinolates, aliphatic glucosinolates, and indolic glucosinolates increased (16%,
13%, and 53%, respectively) when light intensity increased from 30 to 90 µmol·m–2·s–1

(Table 1). However, total glucosinolates content in Brassica oleracea decreased with in-
creasing light intensity (from 200 to 400 µmol·m–2·s–1) [35]. Among 9 glucosinolates in
broccoli microgreens, the content of glucoerucin (GER, an aliphatic glucosinolate) was the
highest, followed by glucoraphanin (GRA, an aliphatic glucosinolate), which accounted for
about 50% and 30% of total glucosinolate, respectively (Table 1). Side-chain modification
of GER led to GRA synthesis [37]. Significantly higher GER content in all treatments
might lead to the relatively inefficient conversion of GER to GRA [35]. Interestingly, in
broccoli microgreens, the accumulation of different glucosinolates was induced by different
light intensity ranges. The accumulations of GRA and GBS were probably stimulated
by higher light intensity (over 30 µmol·m−2·s−1). The highest content of GRA occurred
under 70 µmol·m−2·s−1. The contents of PRO, SIN, GBN, GER, and NGBS decreased
significantly when light intensity increased from 30 to 50 µmol·m−2·s−1 but increased as
light intensity increased from 50 to 90 µmol·m−2·s−1 (Table 1). It is known that GRA and
GBS are beneficial glucosinolates [38,39], while SIN and PRO are not only detrimental to
human health but also contribute to bitter flavor [40–42]. It has been previously reported
that 194 µmol of goitrin (PRO degradation product) could inhibit radioiodine uptake to the
thyroid, but 77 µmol of goitrin could not [43]. Therefore, excessive consumption of Brassica
crops (broccoli, Chinese cabbage, kale, etc.) should be avoided. Therefore, from a human
health standpoint, it might be desirable to enhance the contents of GRA and GBS, and
to reduce the contents of SIN and PRO in broccoli microgreens. Blue light promoted the
biosynthesis of glucosinolates in broccoli sprouts [44], which indicated the light intensity
of blue light might be the main reason for affecting glucosinolates accumulation in this
study. Above, 70 µmol·m−2·s−1 was feasible for increasing desired glucosinolates content
and decreasing undesired glucosinolates content.

4.3. Relationship between Growth and Phytochemicals of Broccoli Microgreens at Different Light
Intensity

The heatmap carried out in this study exhibits a broad view of growth parameters
and phytochemicals of broccoli microgreens under different light intensity (Figure 7).
The heatmap analysis showed a net separation between the high light intensity (70 and
90 µmol·m−2·s−1) and low light intensity (30 and 50 µmol·m−2·s−1) clusters, suggesting
an opposite response of them in terms of growth characteristics and phytochemical con-
tents. The light intensity of 100 µmol·m−2·s−1 was considered to be low light stress for
some field crops (i.e., rice, maize, wheat) and some horticultural crops (i.e., cucumber,
pepper, tomato, leafy vegetables) [45–47]. However, the microgreens could suffer lower
light intensity. It might be that the light intensity between 50 and 70 µmol·m−2·s−1 had a
critical light intensity that significantly changed the biosynthesis and accumulation of some
phytochemicals or their precursor in broccoli microgreens. In Chrysanthemum, higher light
intensity (>100 µmol·m−2·s−1) was beneficial for biomass accumulation, including fresh
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and dry weight [48]. However, for broccoli microgreens growth without supplying nutrient
solution in this study, the highest fresh and dry weight were found under 50 µmol·m−2·s−1,
and the biomass gradually reduced over 50 µmol·m−2·s−1, these might suffer high light
intensity over 50 µmol·m−2·s−1. Moreover, the higher light intensity (> 90 µmol·m−2·s−1)
may reduce biomass of and contents of soluble protein, free amino acid, GBN, 4-HGBS, and
4-MGBS in broccoli microgreens. However, the contents of PRO and NGBS may increase,
which needs further research. It seemed that more biomass tended to relate to lower
phytochemical contents, including glucosinolates (PRO and NGBS) in this study. One
possible reason might be that they were mediated by growth-induced dilution effects [49].
Another possible reason might be that plants regulate the balance between growth and
defense via a change in the allocation of resources and would allocate the limited resources
to growth processes over differentiation [50]. Since glucosinolates use a kind of soluble
sugar—glucose as a carbon skeleton, the glucosinolate (GBN and 4-MGBS) synthesis might
have depleted the carbon source (e.g., soluble sugar) allocation in this study. Transcriptomic
analysis showed that plant hormone signal transduction, starch and sucrose metabolism,
phenylpropanoid biosynthesis, peroxisome, and photosynthesis—antenna proteins path-
ways potentially related to response to the low light intensity of 80 µmol·m−2·s−1 for
zucchini [51]. Furthermore, these results indicate the complex relationships between light
intensity and glucosinolates biosynthesis.

5. Conclusions

The effects of various light intensities (30, 50, 70, and 90 µmol·m−2·s−1) on the growth
and phytochemical contents of broccoli microgreens were investigated. The broccoli mi-
crogreens under 50 µmol·m−2·s−1 had the largest fresh and dry weight. The contents
of soluble protein, soluble sugar, free amino acid, flavonoid, and vitamin C were higher
under irradiations of 70 µmol·m−2·s−1. The beneficial glucosinolate (GRA) content was the
highest and detrimental glucosinolate (PRO) content was lower under 70 µmol·m−2·s−1.
Therefore, 50 µmol·m−2·s−1 PPFD LED (red: green: blue = 1:1:1) might be the optimal light
intensity for growth and 70 µmol·m−2·s−1 was good for the accumulation of phytochemi-
cals in broccoli microgreens production. The light intensity between 50–70 µmol·m−2·s−1

might take account of growth and phytochemicals concentration.
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