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Abstract: Ground and aerial-based high throughput phenotyping platforms (HTPPs) to evaluate
chlorophyll-related traits have been utilized to predict grain yield in crops including wheat (Triticum
aestivum L.). This study evaluated chlorophyll-related and other physiological and yield traits in a
panel of 318 Nepali spring wheat genotypes, termed the Nepali Wheat Diversity Panel (NWDP). Field
experiments were conducted using an alpha-lattice design in Nepal and Canada. Chlorophyll-related
traits were evaluated with a Soil Plant Analysis Development (SPAD) meter and the normalized
difference vegetation index (NDVI) using a handheld GreenSeeker and an Unmanned Aerial Vehicle
(UAV). Relative leaf epicuticular waxiness was recorded using visual assessments. There was a
significant positive association (p < 0.001) between waxiness and SPAD-based chlorophyll estimates,
and both of these traits displayed a significant positive relationship with grain yield. However,
unexpectedly, NDVI derived from both GreenSeeker and UAV was negatively associated with
waxiness and grain yield. The results obtained after segregating the trait means into groups based on
waxiness scores and breeding history of genotypes indicated that waxiness along with precipitation
could be affecting the multispectral reflectance. These results suggest that caution should be taken
when evaluating a large and diverse wheat population for leaf chlorophyll using high-throughput
NDVI methods.
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1. Introduction

Wheat (Triticum aestivum L.) is the source of ~20% of global calories [1], demonstrating
its importance for global food security. As the world’s population is approaching ~10 billion
in the next 30 years [2], wheat breeders have a tremendous challenge ahead to develop high
yielding wheat varieties at a greater pace. However, as a consequence of climate change,
factors such as drought can hinder or reverse progress in improving wheat grain yield [3].
The intensity, frequency, and duration of drought [4] along with the growth stage at which
the drought events occur [5] are responsible for losses in grain yield. Globally, ~37% of
wheat is grown in semi-arid regions with limited soil moisture [6,7]. Understanding the
physiological traits associated with stress tolerance plays a critical role in generating new
high-yielding, climate-resilient wheat varieties [7–9].

Photosynthesis promotes growth and development [10,11]. Although significant
yield improvement in crops in the past few decades has been achieved without improved
photosynthesis, improving photosynthesis is expected to contribute significantly to further
increases in crop productivity [10]. Drought, among other environmental factors, limits
photosynthesis [12,13]; photosynthetic efficiency is considered one of the key indicators of
the plant response to water stress and other physiological stresses [9,14]. Different abiotic
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stresses including drought adversely affect the photosystem II reaction center by disrupting
electron transport, which results in reduced CO2 assimilation [15,16]. Developing crop
varieties with higher photosynthetic potential can improve crop yield and resistance to
drought and other abiotic factors.

Chlorophyll has been used to characterize photosynthetic potential and responses
to biotic and abiotic stresses [17–20]. Changes in the photosynthetic capacity usually
parallel changes in chlorophyll content [21]. Compared to measurements of gas exchange,
measurements of chlorophyll and chlorophyll parameters have been found to be more
practical when assessing photosynthetic responses in plants [22,23]. Therefore, chlorophyll
parameters such as chlorophyll content [23], Normalized Difference Vegetative Index
(NDVI) [24], and chlorophyll fluorescence [22] have been used to appraise the contribution
of chlorophyll to improved photosynthetic efficiency.

At present, many plant phenotyping methods and facilities have been established
globally. With the advancements in high throughput phenotyping platforms (HTPPs),
characterization of a large number of genotypes for chlorophyll-related parameters using
non-destructive, reflectance, and transmittance based methods have become feasible [9,25,
26]. Chlorophyll content, as estimated using the Soil-Plant Analysis Development (SPAD)
meter, has been widely used in wheat [23,25]. Studies have shown that SPAD estimates are
positively associated with increased photosynthesis [23], resulting in a positive association
with grain yield [27]. Similarly, evaluation of wheat genotypes for variation in NDVI
has been commonly used to assess the efficiency of photosynthetic parameters and grain
yield [28]. NDVI has also been used for water stress assessment at different growth stages
of various crops [29]. In a research context, NDVI is often measured using handheld or
tractor-mounted equipment such as GreenSeeker; more recently, Unmanned Aerial Vehicles
(UAVs) are becoming popular [24,30]. Many studies reveal a close positive association
between NDVI and photosynthetic parameters such as chlorophyll content index and also
grain yield [23,24,26].

Apart from these chlorophyll related traits, shoot waxiness is another physiological
trait that is regarded as important for abiotic stress tolerance and grain yield [31]. Deposi-
tion of wax on the cuticle gives a light bluish-gray or bluish-white color to plant tissues
and it is one of the distinct cuticular properties of some plant species including wheat [32].
Although cuticular wax deposition may not be the sole factor, increased waxiness de-
creases water loss through transpiration, contributing to drought tolerance [33–38]. A
study reported significantly higher epicuticular wax in a recombinant inbred line (RIL)
population when grown under moisture deficit conditions [36]. Leaf waxes may reduce
leaf temperatures, resulting in cooler canopies [38]. Many studies in the past have shown
a positive association between cuticular wax and grain yield in different crops including
wheat [36,39–41].

To investigate the above traits, a diversity panel of Nepali spring wheat genotypes,
termed the Nepali Wheat Diversity Panel (NWDP), was assembled including landraces,
released varieties, and advanced breeding lines [42]. Wheat is a very important crop for
food security in Nepal: it is the third most important cereal crop in Nepal in terms of area
and production with almost 22% of the total acreage under production [43]. Moisture
stress is a common problem for wheat cultivation in Nepal [44] because ~42% of the crop is
grown under rain-fed conditions [43] and during the dry season which receives less than
10% of the annual rainfall [45]. Climatic predictions suggest that drought is one of the
key challenges to improving wheat production in most of the wheat-growing areas in the
country [44–46]. Therefore, assessment of the NWDP for traits related to drought tolerance
is relevant. The results obtained from these analyses can potentially provide information
on genetic variation for target traits for further utilization in breeding programs.

This study was conducted to evaluate 318 accessions from the NWDP for: (i) variation
in the above physiological traits and grain yield; and (ii) the association among these
physiological traits and also with grain yield. This study focuses on one unexpected result,
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namely a negative association between NDVI and leaf wax, which has implications for the
use of NDVI for measuring leaf chlorophyll in wheat diversity panels.

2. Materials and Methods
2.1. Plant Materials

A diversity panel of 320 spring wheat genotypes, the Nepali Wheat Diversity Panel
(NWDP) (Supplementary Materials Table S1), was assembled for the study [42]. The panel
includes 167 Nepali landraces, 116 CIMMYT (International Maize and Wheat Improvement
Center) advanced breeding lines, and 34 commercially released Nepali wheat varieties.
The landraces in the diversity panel represented 29 districts of Nepal, and these were
collected during different germplasm expeditions during the 1970s to 1990s. The seeds of
the landraces were provided by National Agriculture Genetic Resource Centre (NAGRC),
a body under Nepal Agricultural Research Council (NARC), Kathmandu, Nepal. Similarly,
seeds of the Nepali released varieties were provided by the National Wheat Research
Program (NWRP), NARC, Nepal, and the advanced breeding lines were provided by
CIMMYT, El Batan, Mexico. These three seed sources also correspond to the breeding
history of the genotypes included in the NWDP. Three high-latitude spring wheat varieties
were also included in the panel as the two major field experiments were conducted in the
Canadian environment; these were: Norwell, a bread wheat cultivar developed in Eastern
Canada; Pasteur, a high yielding cultivar developed in the Netherlands and grown in
Canada; and AC Carberry [47], a high-quality bread wheat developed in Western Canada,
obtained from the wheat breeding laboratory, University of Guelph, Guelph, Canada.

2.2. Field Trials

Four field trials were conducted to evaluate the diversity panel. In the 2016 growing
season, field trials were conducted at the University of Guelph Research Station at Elora,
Ontario (43◦38′23.0” N 80◦24′11.0” W). The trial was planted on May 11 and harvested on
September 5. Similarly, the second field trial was conducted during the 2017 growing season
at the same research station (43◦38′10.4” N 80◦24′07.6” W). During this season, planting was
done on May 16 and the plots were harvested on August 29. The remaining two field trials
were conducted in Nepal during the 2016 and 2017 wheat growing seasons at the Nepal
Agriculture Research Council (NARC) Research Station located at Khumaltar, Lalitpur,
Nepal (27◦39′12.3” N 85◦19′33.7” E) and the National Wheat Research Program (NWRP)
station located at Bhairahawa, Rupandehi, Nepal (27◦31′53.5” N 83◦27′32.2” E). The field
experiment at Khumaltar, Lalitpur, Nepal was a collaboration with the Agricultural Botany
Division (ABD) of NARC, while NWRP, NARC supported the field experiment at NWRP,
Bhairahawa. The planting and harvesting dates for the trial at the NARC station in
Khumaltar were 23 November 2016, and 5 May 2017. Similarly, seed planting in NWRP,
Bhairahawa, was done on 30 November 2016, while the plots were harvested on 19 April
2017. The experiments were conducted using an alpha lattice design [48] with two complete
blocks and 20 incomplete blocks with 32 accessions (two accessions were excluded from
the analysis due to a high level of seed mixture observed in the field trials). At the Elora
Research Station, each of the experimental plots was a six-row plot (1 m × 3 m) with
17.8 cm row spacing, and the plot to plot distance was maintained at 0.5 m, with 1 m
between the ranges. At the Nepal sites, due to limitations in the availability of seed, 2 m
long 2-row plots with 20 cm row-to-row spacing were used.

2.3. Field Data Collection

Phenotyping of chlorophyll parameters was done using both reflectance- and
transmittance-based methods. At the Elora Research Station, data on chlorophyll pa-
rameters were collected using handheld machines for both 2016 and 2017 field trials and
UAV only in the 2017 trial. The SPAD estimates were recorded using a SPAD 502Plus
Chlorophyll Meter (Spectrum Technologies, Plainfield, IL, USA) in all the four field ex-
periments. The operation of the SPAD meters is based on the illuminating system which
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has diodes emitting red (650 nm) and infrared (940 nm) radiation that passes through a
leaf to a photodiode receptor. The SPAD values were measured in the central part of three
randomly selected representative flag leaves in each plot: the three readings were averaged
into one reading. The first data was recorded when the genotypes reached Zadoks stage 31
once a week until three weeks prior to maturity (for most of the genotypes) at the Elora
Research Station with a major focus on vegetative and reproductive growth stages. In the
NARC Research Station at Khumaltar, Nepal, two reading were taken 10 days apart at
the vegetative stage (Zadoks stage 37 and 45 approximately), and one reading during the
reproductive phase (Zadoks stage 50), while at NWRP Research Station at Bhairahawa, one
reading was taken during the vegetative stage (Zadoks stage 39). The area under the SPAD
curve (AUSC) was generated for three experiments (excluded NWRP which had only one
reading) using the following formula:

AUSC =
n=1

∑
i=1

[(S(i+1) + Si

2

)](
T(i+1) − Ti

)
(1)

where Si = SPAD value estimate on the ith date; Ti = ith day; n = number of dates of
recording the SPAD value.

NDVI was computed using the handheld GreenSeekerTM (NTech Industries, Inc. Boul-
der, CO, USA), a reflectance-based multispectral sensor unit that measures the reflectance
of red and infrared radiation from the plot. The reading was taken by holding the device
at ~1.5 m from the ground level from the middle of the plot. NDVI has values between 0
and 1.0, and is calculated as the difference in infrared and red reflectance, divided by their
sum [49]:

NDVI =
RNIR − RR

RNIR + RR
(2)

where NDVI = Normalized difference vegetative index; RNIR = Near-infrared radiation; RR
= Visible red spectrum.

A total of five readings were taken until three weeks before maturity at one-week
intervals at the Elora Research Station in both the 2016 and 2017 growing seasons. The
NDVI readings were taken the day following the SPAD readings. Four NDVI readings,
two before anthesis (at an approximate average of Zadoks stages 37 and 45) and two after
anthesis (at an approximate average of Zadoks stages 50 and 58) were taken at the NARC
Research Station at Khumaltar, while three readings, two before (Zadoks stages 37 and
45) and one after anthesis (Zadoks stage 50) were taken at the NWRP Research Station at
Bhairahawa. The area under the NDVI curve (AUNC) was generated using the following
formula:

AUNC =
n=1

∑
i=1

[(N(i+1) + Ni

2

)](
T(i+1) − Ti

)
(3)

where Ni = NDVI estimate on the ith date; Ti = ith day; N = number of dates of recording
the NDVI value.

Deveron UAS (Toronto, ON, Canada) performed an unmanned aerial vehicle (UAV)
flight on 26 July 2017, over the experiment at the Elora Research Station using the platform
DJI Matrice 100 (DJI, Shenzhen, China). The maturity of the trial was between Zadoks
stages 50 and 58. The UAV flight was at an altitude of 30 m to capture the spectral reflectance
by a RedEdgeTM narrow-band multispectral camera (MicaSense, Washington, WA, USA).
The multispectral camera captured five bands including blue (480 nm), green (560 nm),
red (670 nm), red edge (720 nm), and near-infrared (840 nm). Pix4d software (Pix4d,
Lausanne, Switzerland) was used to process the images from each of the wavelengths, and
five geo-referenced ortho-mosaics of the flight for each wavelength was generated. An
image of a calibration panel with a known reflectance (blue 0.70, green 0.71, red 0.71, near-
infrared 0.66, and red edge 0.70) was taken before the UAV flight to adjust the variation in
light conditions. ArcGIS (Esri, CA, USA) software was used to generate the NDVI map
by using the Map Algebra Tool in ArcGIS. Similarly, to avoid the reflectance generated
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by the background soil, a threshold of >0.3 was used. The Python code as described by
Haghighattalab et al. (2016) [50] was used to generate shapefiles for extracting the plot-level
data. To ensure better plot coverage, the shapefiles were manually curated after importing
them into ArcGIS software. NDVI sum values were extracted for each unit plot using Zonal
Statistic which involves the following formula:

NDVIdr =
N

∑
i=1

NDVIi (4)

where in, the NDVIdr (NDVI measured using a UAV/drone) indicates the sum of all NDVI
values from the pixels in each experimental unit that exceeded the threshold value 0.3, and
this value represents the greenness of the vegetation within each experimental unit.

Data on waxiness was recorded by visual assessment using the CIMMYT protocol [51]
after all genotypes reached Zadoks stage 50. Wax deposition on the plants (leaves, stems,
and spikes) was observed on the whole plot. To train the eyes, plots with the highest and
least waxiness were identified. Based on this observation, individual plots were rated using
a scale from 0 (none) to 10 (total cover), thus providing a relative scale for each site and
season. Data could not be collected from the NWRP site in Nepal due to technical reasons.

At the Elora Research Station, harvesting was done using a Wintersteiger plot combine
harvester (Wintersteiger AG; Ried im Innkreis, Austria). The grain yield data were recorded
at the harvest time with a HarvestMaster Grain Gage (Juniper Systems, Inc., Logan, UT,
USA) fixed on the combine. The grains were dried and the grain weight was taken again
to confirm the quality of the data taken from the combine. In the Nepal field trials, plots
were harvested and threshed manually. The grain was dried, and the yield per plot was
recorded. In all field experiments, grain yield was recorded as kg/plot and later converted
into kg/ha.

2.4. Phenotypic Data Analysis

The phenotypic data collected from the field were analyzed using PROC MIXED in
SAS version 9.4 (SAS Institute, Cary, NC, USA). The Shapiro–Wilk test was conducted
in PROC UNIVARIATE to test the normality of the residuals. To ensure that all the data
points were independent and random, PROC SGPLOT was used to construct studentized-
residuals by predictor plots. The studentized residuals produced by genotype x treatment
combinations were considered outliers when > 3.5 and <−3.5. These outliers were removed
from the dataset after confirming that they were true outliers. Least-square (LS) means
were generated for each genotype. Analysis of variance and correlation were analyzed
using PROC ANOVA and PROC CORR commands, respectively. The correlation plots
were generated using the R platform and Minitab 19 trial version.

3. Results
3.1. The Response of Traits to Different Growing Environments

The combined ANOVA analysis showed a significant difference (p ≤ 0.0001) among
the genotypes in the NWDP for AUNC, NDVIdr, AUSC, waxiness, and grain yield (Sup-
plementary Materials Table S2). The interaction effect of genotype by environment (G × E)
was significant for all of the above traits except for NDVIdr, which was recorded only
at the Elora Research Station during the 2017 season. These results demonstrated that
the genotypes in the study performed differently in the four environments in which the
experiments were conducted.

3.2. Correlation of Chlorophyll-Related Traits with Waxiness and Grain Yield

Correlation analysis was performed for each trait using trait means calculated using
the data from all four field experiments. The results showed a significant positive associa-
tion between grain yield (p ≤ 0.0001) and AUSC (r = 0.40), and grain yield and waxiness
(r = 0.49) (Figure 1). However, a significant negative association (p ≤ 0.05) was observed
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between grain yield and AUNC, and waxiness and AUNC, which was unexpected. Simi-
larly, NDVIdr showed a significant negative association with AUSC (p ≤ 0.001), grain yield
(p ≤ 0.05), and waxiness (p ≤ 0.001), which was also not expected.
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Figure 1. Pearson correlation values for pairs of phenotypic traits evaluated using the trait means
calculated from all four field experiments conducted in 2016 and 2017. For each pair of traits indicated,
the panel at the lower left intersection is the raw data, while the panel at the upper left intersection is
the Pearson correlation value. The panel with the trait label indicates the distribution of the data.
Significance: * p ≤ 0.05, ** p ≤ 0.001, *** p ≤ 0.0001. Abbreviations: AUNC = Area under NDVI curve,
AUSC = Area under SPAD curve, GY = Grain yield, NDVIdr = NDVI derived from UAV/drone data.

3.3. Principal Component Analysis

Principal component analysis (PCA) was performed using the data on chlorophyll-
related traits, waxiness, and grain yield recorded for all field experiments to assess the
association among these traits. It was found that the first two principal components
accounted for 44.73% of the variation (Figure 2). The bi-plot generated using these first two
principal components showed that component 1, which explained 34.18% of the variation,
was positively associated with grain yield, AUSC, and waxiness. In contrast to this, AUNC
(except AUNC for Elora 2017) was negatively correlated with component 1. This result
supports the results from correlation analysis related to the unexpected negative association
of AUNC with grain yield and waxiness, and the negative association of NDVIdr with
grain yield, AUSC, and waxiness. The bi-plot also shows that there was little overlap of
landraces and the modern varieties/advanced lines with the CIMMYT lines: the released
cultivars were more associated with high grain yield, while the majority of the landraces
occupied space in the lower yielding area of the biplot (Figure 2).
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Figure 2. A biplot generated for grain yield, waxiness, and chlorophyll-related traits evaluated in four field experiments
in 2016 and 2017. Abbreviations: AUNC = Area under NDVI curve, AUSC = Area under SPAD curve, NDVIdr = NDVI
derived from UAV/drone data, WAX = Waxiness, GY = Grain yield, EL = Elora, NW = National Wheat Research Program
(NARC, Nepal), AB = Agricultural Botany Division (NARC, Nepal). The numbers 16 and 17 correspond to the year of
experimentation, CIMMYT = International Maize and Wheat Improvement Center.

3.4. Within Trial Correlation Analysis

Due to the high G x E interaction observed, correlation analysis was performed sepa-
rately for each individual field experiment (Table 1). Positive correlations were observed
for waxiness and AUSC, and waxiness and grain yield, across all three sites where waxiness
ratings were performed (no data was available for waxiness at the NWRP, Nepal site). The
2016 Elora Research Station (ERS) results showed a negative correlation between AUNC
and grain yield, and between AUNC and waxiness. Whereas waxiness and AUNC were
positively correlated in 2017 at the Elora Research Station, there was no significant correla-
tion between AUNC and grain yield. Surprisingly, NDVIdr was negatively correlated with
AUNC, AUSC, and waxiness (Table 1).
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Table 1. Pearson correlation measurements for pairs of phenotypic traits evaluated in four field
experiments conducted in 2016 and 2017.

Traits

Location AUNC AUSC GY WAX

Elora 2016
AUSC 0.06

GY −0.21 *** 0.33 ***
WAX −0.18 ** 0.66 *** 0.34 ***

Elora 2017

AUSC 0.57 ***
GY 0.03 0.06

WAX 0.42 *** 0.74 *** 0.12 *
NDVIdr −0.18 ** −0.31 *** −0.03 −0.21 ***

ABD 2017
AUSC −0.14 *

GY 0.25 *** 0.20 **
WAX −0.21 ** 0.48 *** 0.44 ***

NWRP 2017 GY 0.05
Significance: * p ≤ 0.05, ** p ≤ 0.001, *** p ≤ 0.0001; Abbreviations: AUNC = Area under NDVI curve, AUSC =
Area under SPAD curve, GY = Grain yield.

In the case of the data obtained from the ABD (Nepal) site, a significant positive
association of AUNC with grain yield was observed, but again, the correlation between
AUNC and waxiness was negative. For the NWRP (Nepal) site, grain yield did not show
any association with AUNC (Table 1); specifically, the association of AUNC with grain yield
(Figure 3), and the association of waxiness with AUNC and AUSC (Figure 4), indicated the
need for further analysis.
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Due to the confounding results observed, further detailed correlation analysis was
performed for the data from the two experiments at the Elora Research Station. The data
from the ABD (Nepal) and NWRP (Nepal) sites were excluded from this analysis due to
fewer NDVI measurements and lack of waxiness data from the NWRP (Nepal) site. For this
analysis, the data were segregated into three groups based on waxiness scores as follows:
group 1 (no or low waxiness with scores <2; group 2 (medium waxiness) with scores ≥2
and <5; group 3 (high waxiness) with scores above ≥5 (Tables 2 and 3). The low waxiness
group 1 was composed mainly of landraces: in 2016, 82 of 88 genotypes were landraces; in
2017, 60 of 69 genotypes were landraces. In contrast, CIMMYT lines dominated the high
waxiness group 3; in this group, there were only 28 landraces out of 130 genotypes for
the 2016 trial, and 38 landraces out of 144 genotypes in the 2017 trial. The results from
the 2016 data analysis showed no association of AUNC with grain yield or waxiness in
groups 1 and 3, but AUNC had a negative correlation with grain yield and waxiness for
group 2 (Table 2), which contains a mixture of genotypes from all three breeding history
groups. Using the 2017 data, no association was observed between AUNC with grain yield
or waxiness or NDVIdr with grain yield or waxiness (Table 3).
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Table 2. Pearson correlations between pairs of phenotypic traits evaluated in field experiments conducted at the Elora
Research Station (Canada) in 2016 (a dry year), after segregating the data based on waxiness scores and breeding histories.

Traits Groups Based on Waxiness Scores Groups Based on Breeding History

Group 1—Low wax (N = 88)
GY (kg/ha) (mean ± SEM) = 2720.1 ± 69.97

WAX (mean ± SE) = 1.2 ± 0.05

Landraces (N = 166)
GY (kg/ha) (mean ± SEM) = 2705.7 ± 48.43

WAX (mean ± SE) = 2.3 ± 0.10

AUNC AUSC GY AUNC AUSC GY

AUSC 0.23 * 0.15
GY −0.16 0.19 −0.24 * 0.11

WAX 0.19 0.22 * −0.23 * −0.23 * 0.47 *** 0.11

Group 2—Medium wax (N = 100)
GY (kg/ha) (mean ± SEM) = 3037.3 ± 78.38

WAX (mean ± SE) = 2.9 ± 0.04

Commercial varieties (N = 34)
GY (kg/ha) (mean ± SEM) = 3608.3 ± 108.12

WAX (mean ± SE) = 2.9 ± 0.19

AUSC 0.10 0.61 ***
GY −0.34 ** 0.11 0.48 * 0.14

WAX −0.22 * 0.35 ** 0.22 * 0.18 0.38 * (check) 0.12

Group 3—Highest wax (N = 130)
GY (kg/ha) (mean ± SEM) = 3413.3 ± 54.53

WAX (mean ± SE) = 5.2 ± 0.11

CIMMYT lines (N = 115)
GY (kg/ha) (mean ± SEM) = 3474.7 ± 53.89

WAX (mean ± SE) = 4.9 ± 0.15

AUSC 0.45 *** 0.30 **
GY 0.14 0.15 0.09 0.06

WAX 0.17 0.46 *** 0.03 0.18 0.45 *** 0.00

Significance: * p ≤ 0.05, ** p ≤ 0.001, *** p ≤ 0.0001; Abbreviations: AUNC = Area under NDVI curve, AUSC = Area under SPAD curve, GY
= Grain yield, CIMMYT = International Maize and Wheat Improvement Center.

Table 3. Pearson correlations between pairs of phenotypic traits evaluated in field experiments conducted at the Elora
Research Station (Canada) in 2017 (a wet year), after segregating the data based on waxiness scores and breeding histories.

Traits Groups Based on Waxiness Scores Groups Based on Breeding History

Group 1—Low wax (N = 69),
GY (kg/ha) (mean ± SEM) = 1917.9 ± 87.31

WAX (mean ± SE) = 1.3 ± 0.05

Landraces (N = 166)
GY (kg/ha) (mean ± SEM) = 1987.3 ± 53.07

WAX (mean ± SE) = 2.9 ± 0.13

AUNC AUSC GY WAX AUNC AUSC GY WAX

AUSC 0.50 *** 0.51 ***
GY −0.13 −0.24 −0.03 −0.01

WAX −0.14 0.04 −0.28 * −0.30 *** 0.67 *** 0.03
NDVIdr −0.30* −0.37 * 0.16 0.21 0.19 * −0.42 *** −0.01 −0.25 **

Group 2—Medium wax (N = 105)
GY (kg/ha) (mean ± SEM) = 1977.6 ± 61.45

WAX (mean ± SE) = 2.9± 0.05

Commercial varieties (N = 34)
GY (kg/ha) (mean ± SEM) = 2240.3 ± 120.29

WAX (mean ± SE) = 4.1 ± 0.25

AUSC 0.41 *** 0.55 **
GY −0.12 −0.10 − 0.10 −0.09

WAX 0.17 0.43 *** 0.01 0.22 0.74 *** 0.24
NDVIdr 0.07 −0.24* −0.09 −0.18 −0.13 −0.10 0.10 −0.11

Group 3—Highest wax (N = 144)
GY (kg/ha) (mean ± SEM) = 2126.8 ± 63.58

WAX (mean ± SE) = 5.6 ± 0.09

CIMMYT lines (N = 115)
GY (kg/ha) (mean ± SEM) = 3474.7 ± 53.89

WAX (mean ± SE) = 5.1 ± 0.15

AUSC 0.35 *** 0.33 **
GY 0.09 0.12 0.08 0.15

WAX 0.10 0.39 *** 0.08 0.28 * 0.64 *** 0.20 *
NDVIdr −0.16 −0.17* −0.01 −0.02 −0.16 −0.20 * −0.06 −0.17

Significance: * p ≤ 0.05, ** p ≤ 0.001, *** p ≤ 0.0001; Abbreviations: AUNC = Area under NDVI curve, AUSC = Area under SPAD curve, GY
= Grain yield, NDVIdr = NDVI derived from UAV/drone data, CIMMYT = International Maize and Wheat Improvement Center.
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As an alternative approach, the data from two field experiments at the Elora Research
Station were segregated into three groups based on the breeding history (3 Canadian
varieties excluded): landraces, commercial varieties, and CIMMYT lines. The results from
the 2016 data showed a negative association between grain yield and waxiness in the
landrace group, while no association was observed in the other two groups (Table 2). In
the landrace group, a negative association between waxiness with AUNC and NDVIdr
was observed from the results of the 2017 experiment (Table 3). There was no association
between AUNC or NDVIdr with grain yield and waxiness in the commercial variety and
CIMMYT groups except for a positive association between AUNC and waxiness for the
CIMMYT lines. These results suggest that the confounding effect may be coming from
the landraces which consist of a large number of genotypes with no or low waxiness and
relatively low yield.

In addition, a positive association between waxiness and AUSC was consistently
observed both for the combined analysis or when the data were analyzed by site or
stratified by waxiness scores or breeding history (Tables 1–3). Grain yield was found to
positively correlate with AUSC in three of the four test environments.

4. Discussion

Though the original purpose of this study was simply to characterize the NWDP
for physiological traits to help future breeding efforts, there was an unexpected finding
pertaining to the relationship between wax and NDVI as a measure of leaf chlorophyll.
Based on the literature, it was expected that leaf wax and chlorophyll would positively
correlate across the Nepali Wheat Diversity Panel. Epicuticular wax has been shown to
protect the photosynthetic apparatus (photosystem II/chlorophyll) from high radiation and
high temperature damage [33,34,37,38,52,53]. Indeed, consistent with this expectation, leaf
chlorophyll as measured using SPAD (AUSC) was positively and consistently associated
with waxiness across all the field trials. This association between waxiness and SPAD
was consistent even when the panel was grouped by waxiness score or by breeding
history. The relationship between AUNC and waxiness varied between environments,
showing a weakly negative correlation in Elora 2016 and ABD2017, but a weakly positive
correlation in Elora 2017. Within the sub-groups for waxiness or breeding history, the
relationship was not any more consistent. In Elora 2017, where the overall correlation
between waxiness and AUNC was positive, no significant correlation was found within
the waxiness sub-groupings, and a negative relationship in the Landrace sub-group and a
positive relationship in the CIMMYT lines sub-group. In 2016, where the overall correlation
between waxiness and AUNC was negative, a similar trend to that of 2017 was seen within
the sub-groupings; however, only the correlation in the Landrace group was statistically
significant. Could cuticular wax confound the NDVI measurements in at least a subset of
wheat genotypes?

4.1. Does Wax Interfere with NDVI?

Plants absorb ~70% of the solar radiation that they receive [54]. The radiation reflected
is affected by various leaf properties such as pubescence and epicuticular waxiness, leaf
angle, and leaf moisture content along with other optical and biochemical properties [55,56].
According to Holmes et al. (2002) [57], leaves with higher waxiness reflected more UV
and longer wavelength radiation as compared to less waxy counterparts in a study that
included a range of species. Another study conducted on forty-four plant species reported
that plant leaf epicuticular properties and different environmental stress factors affect
reflectance [58]. Since NDVI is based on reflectance, epicuticular wax and other traits
may be confounding. The other factors that potentially complicate NDVI measurements
are calibration, atmospheric transmission, and canopy architecture [59]; differences in
types of genotypes and growth stages [60]; water regimes and nitrogen fertilization [60,61];
leaf properties such as the age of leaf [56], side of the leaf [62] and timing of NDVI
measurements [28,30]. The limitation of this current study is that the other environmental
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factors were not assessed except for the weather records at each study site. The findings
of this study suggest that waxiness scores may be affecting the NDVI reading although
it was not possible to quantify the size of the effect. Similar to this result, a previous
study on winter wheat also suggested that epicuticular wax could be one of the genotype-
specific characters that potentially affect spectral reflectance, resulting in unexpected NDVI
scores [63].

Wheat grain yield was previously shown to be positively associated with waxi-
ness [36,39–41], NDVI [28], and SPAD measurements [18,23,27], and the expectation was
that similar results would be observed in the current study. Here, although waxiness and
AUSC had significant positive associations with grain yield in both field experiments dur-
ing 2016 and 2017 seasons at the Elora Research Station, negative and positive associations
between waxiness and AUNC during the 2016 and 2017 seasons, respectively, demanded
further analysis. The other question raised was, why did the association between waxiness
and NDVI vary between years? One possible explanation is related to moisture since mois-
ture availability affects wax deposition [36,41]. Wax deposition is usually highest during
drought-stress, contributing to improved water conservation by reducing the heat load on
plant leaves [64]. There was a severe summer drought in the 2016 summer season which
extended until the beginning of the reproductive stage [65] (Supplementary Materials Table
S3 (weather data)), perhaps resulting in more wax deposition in “waxy genotypes.” By
contrast, in 2017, Elora received a high amount of precipitation (uniform throughout the
season), which perhaps decreased epicuticular wax on all genotypes including the “waxy
genotypes.” Foley et al. (2006) [66] revealed that the near infra-red (NIR) wavelength
was affected immediately by small changes in leaf water content, in a study where they
examined the foliar spectra (350–2500 nm) of five tree species. While moisture availability
affects spectral reflectance, the differential deposition of wax suggested in this study in
response to moisture stress appears to be further complicating the relationship.

Both NDVI (AUNC) and SPAD (AUSC) are proxies for chlorophyll content. Therefore,
the extent to which epicuticular wax may be interfering with NDVI was further validated by
calculating the discrepancy in the association between waxiness and AUNC, and waxiness
and AUSC (Table 4). The lowest discrepancy was in the low wax group 1 compared to
the higher wax groups 2 and 3, consistent with wax interfering with NDVI measurements.
However, the discrepancy was highest among landraces compared to commercial and
CIMMYT lines in both years (Table 4). This observation is consistent with Morgounov
et al. (2014) [60] who stated that differences in types of genotypes in a diversity panel
may affect NDVI measurements; indeed, the landrace group was more genetically diverse
than the other groups as evaluated using a molecular marker based population structure
analysis of the NWDP [67]. It is hypothesized that waxiness, along with other associated
factors such as seasonal precipitation and diversity of the genetic resources, confounded
the correlations in this study.
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Table 4. Discrepancy observed between the correlations for waxiness with AUNC, and waxiness
with AUSC.

Elora 2016

Traits Groups based on waxiness scores Groups based on breeding history

Group 1—Low wax (N = 88) Landraces (N = 166)

AUNC AUSC * Discrepancy AUNC AUSC * Discrepancy

WAX 0.19 0.22 * 0.03 −0.23 * 0.47 *** 0.70

Group 2—Medium wax (N = 100) Commercial varieties (N = 34)

WAX −0.22 * 0.35 ** 0.57 0.18 0.38 * 0.20

Group 3—Highest wax (N = 130) CIMMYT lines (N = 115)

WAX 0.17 0.46 *** 0.29 0.18 0.45 *** 0.27

Elora 2017

Traits Groups based on waxiness scores Groups based on breeding history

Group 1 (N = 69) Landraces (N = 166)

AUNC AUSC Discrepancy AUNC AUSC Discrepancy

WAX −0.14 0.04 0.18 −0.30 *** 0.67 *** 0.97

Group 2 (N = 105) Commercial varieties (N = 34)

WAX 0.17 0.43 *** 0.26 0.22 0.74 *** 0.52

Group 3 (N = 144) CIMMYT lines (N = 115)

WAX 0.10 0.39 *** 0.29 0.28 * 0.64 *** 0.36
Significance: * p ≤ 0.05, ** p ≤ 0.001, *** p ≤ 0.0001; * The discrepancy was calculated as r (WAX with AUSC)–r
(WAX with AUNC). Abbreviations: AUNC = Area under NDVI curve, AUSC = Area under SPAD curve, WAX =
Waxiness, CIMMYT = International Maize and Wheat Improvement Center.

4.2. UAV versus NDVI Measurements

In the Elora 2017 experiment, AUNC and NDVIdr exhibited a negative association,
even though these are similar reflectance measurements but taken by different instruments.
The expectation was to observe a positive association between these two readings. It
has been shown that the positive correlation between NDVI and grain yield becomes
stronger when UAVs are used compared to ground-based platforms such as Greenseeker
NDVI [25,68] and that UAVs are more precise [69,70]. The advantage of using UAVs over
ground-based platforms may be that they overcome the confounding effects of short term
environmental variation (since handheld NDVI measurements take time for many plots),
while UAVs allow measurements from many plots in a short span of time [25,50]. Although
the UAV data in this study was scant, it did not noticeably improve the correlation with
grain yield compared to handheld NDVI data. Earlier studies have shown that plant
growth stage and time of NDVI measurement may affect the correlation between NDVI
and grain yield [28,30]. Specifically, in wheat, the sensitivity of ground-based sensors such
as in GreenSeeker has been found to be higher at early growth stages and at the senescence
stage, while the sensitivity of UAV-based platforms has not been appraised [25]. In this
study, NDVI was recorded 5 times during the crop season beginning at an early vegetative
stage while the UAV was flown over the field only once after all the genotypes had begun
heading. When NDVI readings from each of the five measurements using GreenSeeker
were correlated with NDVIdr data, a significant negative association was observed between
NDVIdr and the last three readings, including the final handheld NDVI reading which
was taken only two days after the UAV flight (Supplementary Material Tables S4 and S5).
This needs further evaluation to explain the unexpected association between NDVIdr and
ground-based NDVI measurement using the GreenSeeker.
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4.3. Grain Yield and its Association with Physiological Traits

Chlorophyll related traits are measured when characterizing germplasm to identify
potential genotypes for breeding programs since chlorophyll has been shown to positively
correlate with rates of photosynthesis and grain yield [10,71]. SPAD values are used to
estimate chlorophyll content, and a positive association between SPAD (AUSC) and grain
yield has been reported in many studies [18,23,72,73]. Here, chlorophyll measurements us-
ing SPAD (AUSC) were positively correlated with grain yield across two field experiments
(Elora 2016 and ABD (Nepal) sites) but no correlation was observed at Elora 2017. The key
factor confounding this association at Elora 2017 may have been the high Fusarium head
blight (FHB) disease pressure during that year compared to 2016 (data is not shown), likely
since 2017 was a wetter year which is more conducive to this disease. FHB directly reduces
yield and tends to affect the wheat heads only without impact on the leaf tissue where the
SPAD measurements were taken.

Waxiness is an important trait that protects plants from different biotic and abiotic
stresses. Waxiness particularly contributes to drought stress tolerance by minimizing
water loss through transpiration [33,34,36–38]. Many studies in the past have shown a
positive association between epicuticular waxiness and grain yield [32,37]. A significant
positive correlation between waxiness and grain yield was observed in the present study
as expected.

NDVI is considered a reliable tool for estimating crop biomass and grain yield by
assessing photosynthetically active radiation at the crop canopy level [25,27,68,74–76].
Therefore, the significant negative association observed between NDVI (AUNC) and grain
yield at Elora 2016 was unexpected. To ensure the validity of this result, correlations
between grain yield and NDVI values from individual time points were calculated (Sup-
plementary Material Table S6). The results showed that four time points across both years
showed a significant negative association, with only two that were positive (and weak).
This individualized data is consistent with the overall and surprising conclusion of the neg-
ative association of these two traits. NDVIdr measurements taken with a UAV at Elora 2017
also did not show any significant association with grain yield (Supplementary Material
Table S4). These results are incongruous with many earlier studies which reported NDVI
to be positively correlated with grain yield [25,30,75,77]. However, some studies have also
reported a negative association between NDVI and wheat grain yield, consistent with the
current study [60,68,78]. When the study population was segregated into three groups
based on waxiness scores and seed source (breeding history), the correlation between NDVI
and grain yield was not significant except for the medium wax group (group 2) in 2016
(where a negative association was observed). Since wax groups positively correlated with
grain yield, the argument here is also that epicuticular wax along with other environmental
factors affected the NDVI readings.

4.4. Should NDVI Be Used in Future Diversity Studies for Wheat Grain Yield?

Many studies have shown the superiority of NDVI and other vegetative indices over
SPAD in terms of wheat grain yield predictions especially under stressed conditions [68,79].
Despite this, positive associations of vegetative indices such as NDVI with SPAD values
have been reported [68]. Therefore, based on the availability of machines/tools, SPAD or
NDVI measurements are both common when evaluating a set of germplasm. However,
the results in the present study suggest that NDVI may not be always superior to SPAD
in terms of its ability to predict grain yield in wheat. Prasad et al. (2009) [80] also indi-
cated that vegetation based NDVI may not be an effective breeding tool to identify higher
biomass producing wheat genotypes compared to other spectral reflectance indices such
as water-based indices and pigment-based indices. Furthermore, NDVI may not be ap-
propriate for screening genotypes under extreme environmental conditions. For example,
despite observing a strong positive association between NDVI and wheat grain yield under
favorable conditions, the association was poor under severe drought conditions [81]. The
NDVI platforms may differ in their sensitivity and capacity to discriminate between diverse
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wheat genotypes [82]. Samborski et al. (2015) [63] suggested that developing correction
coefficients may not be very helpful for individual genotypes considering the practical
challenges. A shortage of quality hyperspectral data can hinder accurate assessment and
prediction of yield or any other important traits [76]. Combined, the literature and the
current findings suggest caution should be used when using NDVI to predict wheat grain
yield when a diverse genetic population is involved and when the environmental condi-
tions are highly variable. On the other hand, while NDVI still is a commonly used tool to
identify improved yield with a narrower genetic base, such as a breeding population, use of
other vegetative indices such as Normalized Difference Red Edge (NDRE) may be another
option. The performance of NDRE has been found to be better than NDVI considering its
limitations associated with absorption of NDVI by the upper canopy and also its saturation
at its maximum value during latter growth stages of the crop [83].

5. Conclusions

Chlorophyll-related parameters such as SPAD readings and spectral reflectance indices
such as NDVI are commonly used to predict grain yield, appraise fertilizer requirements,
and also to evaluate germplasm in breeding programs for abiotic stress tolerance. The
findings from this study suggest that NDVI may not always be an effective predictor of
wheat grain yield and that caution should be used when using this trait to evaluate diversity
panels. Waxiness, high genetic diversity in the study panel, and environmental factors such
as differential precipitation may confound NDVI measurements, raising valid questions as
to the reliability of NDVI for predicting grain yield under these circumstances. It is already
accepted that leaf epicuticular properties like waxiness affect reflectance measurements,
although the extent of the effect is not clearly understood. This should be an area of
further investigation, particularly since selection for higher waxiness in wheat has become
common considering its advantages in abiotic stress tolerance and grain yield. Segregating
the genotypes in a breeding population based on maturity, plant architecture, traits such as
waxiness, and the target environment may help to identify and reduce confounding effects.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
395/11/3/486/s1, Table S1: List of the genotypes in the Nepali Wheat Diversity Panel included in
this study, Table S2: Analysis of variance for 318 genotypes belonging to the NWDP for phenotypic
traits evaluated at four different field experiments conducted in 2016 and 2017, Table S3: Summary of
weather data for the four field experiments conducted in Nepal and Canada during 2016 and 2017
wheat growing seasons, Table S4: Pearson correlation of NDVI values and AUNC with grain yield,
Table S5: Detailed time course NDVI data from 2016 and 2017, Elora, Canada, Table S6: Correlation
between grain yield and NDVI-related traits in separate analysis using data from 2016 and 2017 field
season at the Elora Research Station, Canada.
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on canopy reflectance: Implications for using NDVI for in-season nitrogen topdressing recommendations. Agron. J. 2015, 107,
2097–2106. [CrossRef]

64. Sreeman, S.M.; Vijayaraghavareddy, P.; Sreevathsa, R.; Rajendrareddy, S.; Arakesh, S.; Bharti, P.; Dharmappa, P.; Soola-
nayakanahally, R. Introgression of physiological traits for a comprehensive improvement of drought adaptation in crop plants.
Front. Chem. 2018, 6, 92. [CrossRef]

65. Perdeaux, S. Climate Change Adaptation ‘Stories’ of Ontario: A Collection of Five Adaptation Initiatives from across Ontario; Ontario
Centre for Climate Impacts and Adaptation Resources (OCCIAR); Laurentian University: Greater Sudbury, ON, Canada, 2017.

66. Foley, S.; Rivard, B.; Sanchezazofeifa, G.; Calvo, J. Foliar spectral properties following leaf clipping and implications for handling
techniques. Remote Sens. Environ. 2006, 103, 265–275. [CrossRef]

67. Khadka, K. Genotypic and Phenotypic Analysis of a Nepali Spring Wheat (Triticum aestivum L.) Population. Ph.D. Thesis,
University of Guelph, Guelph, ON, Canada, 2020.

68. Kyratzis, A.C.; Skarlatos, D.P.; Menexes, G.C.; Vamvakousis, V.F.; Katsiotis, A. Assessment of Vegetation Indices Derived by UAV
Imagery for Durum Wheat Phenotyping under a Water Limited and Heat Stressed Mediterranean Environment. Front. Plant Sci.
2017, 8, 1114. [CrossRef]

69. Shi, Y.; Thomasson, J.A.; Murray, S.C.; Pugh, N.A.; Rooney, W.L.; Shafian, S.; Rajan, N.; Rouze, G.; Morgan, C.L.S.; Neely, H.L.;
et al. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research. PLoS ONE 2016, 11, e0159781.
[CrossRef]

70. Tattaris, M.; Reynolds, M.P.; Chapman, S.C. A direct comparison of remote sensing approaches for high-throughput pheno-typing
in plant breeding. Front. Plant Sci. 2016, 7, 1131. [CrossRef]

71. Hollington, P. Technological breakthroughs in creening/breeding wheat varieties for salt toleracne. In Proceedings of the
Na-tional Conference on “Salinity Management in Agriculture”, Karnal, India, 2 December 1998; p. 36.

72. Zhang, Y.; Wang, Z.; Fan, Z.; Li, J.; Gao, X.; Zhang, H.; Zhao, Q.; Wang, Z.; Liu, Z. Phenotyping and evaluation of CIMMYT
WPHYSGP nursery lines and local wheat varieties under two irrigation regimes. Breed. Sci. 2019, 69, 55–67. [CrossRef]

73. Islam, M.R.; Haque, K.M.S.; Akter, N.; Karim, M.A. Leaf chlorophyll dynamics in wheat based on SPAD meter reading and its
relationship with grain yield. Sci. Agric. 2014, 4, 4–9.

http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.1186/s13007-016-0134-6
http://www.ncbi.nlm.nih.gov/pubmed/27347001
http://doi.org/10.3389/fpls.2016.01809
http://www.ncbi.nlm.nih.gov/pubmed/27965701
http://doi.org/10.1016/j.sajb.2017.03.033
http://doi.org/10.1364/AO.4.000011
http://doi.org/10.3390/rs11070873
http://doi.org/10.1046/j.1365-3040.2002.00779.x
http://doi.org/10.1155/2017/1353691
http://doi.org/10.3906/tar-1312-90
http://doi.org/10.1093/jxb/ery109
http://doi.org/10.2134/agronj14.0323
http://doi.org/10.3389/fchem.2018.00092
http://doi.org/10.1016/j.rse.2005.06.014
http://doi.org/10.3389/fpls.2017.01114
http://doi.org/10.1371/journal.pone.0159781
http://doi.org/10.3389/fpls.2016.01131
http://doi.org/10.1270/jsbbs.18104


Agronomy 2021, 11, 486 19 of 19

74. Sultana, S.R.; Ali, A.; Ahmad, A.; Mubeen, M.; Zia-Ul-Haq, M.; Ahmad, S.; Ercisli, S.; Jaafar, H.Z.E. Normalized difference
vegetation index as a tool for wheat yield estimation: A case study from Faisalabad, Pakistan. Sci. World J. 2014, 2014, 1–8.
[CrossRef] [PubMed]

75. Rebetzke, G.J.; Jimenez-Berni, J.A.; Bovill, W.D.; Deery, D.M.; James, R.A. High-throughput phenotyping technologies allow
accurate selection of stay-green. J. Exp. Bot. 2016, 67, 4919–4924. [CrossRef]

76. Tan, C.; Wang, D.; Zhou, J.; Du, Y.; Luo, M.; Zhang, Y.; Guo, W. Remotely Assessing Fraction of Photosynthetically Active
Radiation (FPAR) for Wheat Canopies Based on Hyperspectral Vegetation Indexes. Front. Plant Sci. 2018, 9, 776. [CrossRef]
[PubMed]

77. Zhang, K.; Wang, J.; Qin, H.; Wei, Z.; Hang, L.; Zhang, P.; Reynolds, M.; Wang, D. Assessment of the individual and combined
effects of Rht8 and Ppd-D1a on plant height, time to heading and yield traits in common wheat. Crop. J. 2019, 7, 845–856.
[CrossRef]

78. Rutkoski, J.; Poland, J.A.; Mondal, S.; Autrique, E.; Pérez, L.G.; Crossa, J.; Reynolds, M.; Singh, R. Canopy Temperature and
Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in
Wheat. G3 Genes Genomes Genet. 2016, 6, 2799–2808. [CrossRef] [PubMed]

79. Lopes, M.S.; Reynolds, M.P. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized
difference vegetation index) independently from phenology. J. Exp. Bot. 2012, 63, 3789–3798. [CrossRef]

80. Prasad, B.; Babar, M.A.; Carver, B.F.; Raun, W.R.; Klatt, A.R. Association of biomass production and canopy spectral reflec-tance
indices in winter wheat. Can. J. Plant Sci. 2009, 89, 485–496. [CrossRef]

81. Thapa, S.; Rudd, J.C.; Xue, Q.; Bhandari, M.; Reddy, S.K.; Jessup, K.E.; Liu, S.; Devkota, R.N.; Baker, J.; Baker, S. Use of NDVI for
characterizing winter wheat response to water stress in a semi-arid environment. J. Crop. Improv. 2019, 33, 633–648. [CrossRef]

82. Christopher, J.T.; Christopher, M.J.; Borrell, A.K.; Fletcher, S.; Chenu, K. Stay-green traits to improve wheat adaptation in
well-watered and water-limited environments. J. Exp. Bot. 2016, 67, 5159–5172. [CrossRef]

83. Fu, Z.; Jiang, J.; Gao, Y.; Krienke, B.; Wang, M.; Zhong, K.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Wheat Growth Monitoring and
Yield Estimation based on Multi-Rotor Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 508. [CrossRef]

http://doi.org/10.1155/2014/725326
http://www.ncbi.nlm.nih.gov/pubmed/25045744
http://doi.org/10.1093/jxb/erw301
http://doi.org/10.3389/fpls.2018.00776
http://www.ncbi.nlm.nih.gov/pubmed/29930568
http://doi.org/10.1016/j.cj.2019.06.008
http://doi.org/10.1534/g3.116.032888
http://www.ncbi.nlm.nih.gov/pubmed/27402362
http://doi.org/10.1093/jxb/ers071
http://doi.org/10.4141/CJPS08137
http://doi.org/10.1080/15427528.2019.1648348
http://doi.org/10.1093/jxb/erw276
http://doi.org/10.3390/rs12030508

	Introduction 
	Materials and Methods 
	Plant Materials 
	Field Trials 
	Field Data Collection 
	Phenotypic Data Analysis 

	Results 
	The Response of Traits to Different Growing Environments 
	Correlation of Chlorophyll-Related Traits with Waxiness and Grain Yield 
	Principal Component Analysis 
	Within Trial Correlation Analysis 

	Discussion 
	Does Wax Interfere with NDVI? 
	UAV versus NDVI Measurements 
	Grain Yield and its Association with Physiological Traits 
	Should NDVI Be Used in Future Diversity Studies for Wheat Grain Yield? 

	Conclusions 
	References

