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Abstract: Castor (Ricinus communis L.), known as castor oil plant or castor bean, is a non-edible
oilseed crop. In the present study, the genetic diversity among 54 samples (3 wild and 51 cultivated)
collected worldwide was evaluated using inter-simple sequence repeats (ISSRs) and random am-
plified polymorphic DNA (RAPD) markers. A total of 9 ISSR primers produced 83 high-resolution
bands with 61 (74.53%) as polymorphic. The percentage of polymorphic bands per primer and the
genetic similarity coefficient ranged from 54.55% (UBC-836) to 100% (UBC-808) and from 0.74 to
0.96, respectively. A total of 11 out of 20 RAPD primers amplified unique polymorphic products
with an average percentage of polymorphic bands of 60.98% (56 polymorphic bands out of a total of
90 bands obtained). The percentage of polymorphic bands per primer ranged from 25% (OPA-02 and
B7) to 90.91% (B21) with the genetic similarity coefficient ranging from 0.73 to 0.98. The unweighted
pair group method with arithmetic averages (UPGMA) dendrogram using two molecular markers
divided 54 castor genotypes into three groups. Furthermore, based on morphological data, all
54 castor varieties were grouped into three main clusters. The genetic diversity analysis based on
two molecular makers showed that most varieties from China were closely related to each other
with three varieties (GUANGDONGwild, ZHEJIANGWild, and HANNANWild) belonging to a wild
group separated from most of the cultivated castor samples from China, India, France, and Jordan.
These results suggested that the cultivated castor contains a narrow genetic base. Accordingly, we
recommend that wild castor genetic resources be introduced for breeding novel castor varieties.
Furthermore, the Vietnam, Malaysia, Indonesia, and Nigeria accessions were clustered into the
same group. The results of principal coordinate analysis (PCoA) and UPGMA cluster analysis were
consistent with each other. The findings of this study are important for future breeding studies
of castor.

Keywords: Ricinus communis L.; genetic diversity; inter simple sequence repeat (ISSR); random
amplified polymorphic DNA (RAPD)

1. Introduction

Castor (Ricinus communis L.) is an annual or perennial plant in Euphorbiaceae and is
indigenous to the southeastern Mediterranean basin, East Africa, and India [1]. The castor
is known to be highly tolerant in drought [2,3] and its leaves can be used as the food of
silkworm. In addition, castor bean with an oil content of 45–55% in the seeds is considered
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as one of the top 10 oil crops worldwide [4,5]. Castor oil is the non-drying oil with high
viscosity and is not easily clogged even under a low temperature of −56 ◦C [6]. Therefore,
castor oil can be used for the production of biofuel in the chemical industry [7,8]. The
demand for castor products such as castor oil and its derivatives has increased worldwide
since 1991 [9–11]. After 2014, the import rate of castor raw materials in China has increased
over 90% [10,12]. To date, many methods or techniques have already been used to improve
breeding and productivity of castor [13–16].

Analyses of genetic diversity are very important for the development of genetic
resources and new varieties of castor. In the past, genetic diversity studies based on mor-
phological and biochemical characteristics have been conducted in many animal and plant
varieties [17,18]. In particular, morphological traits are important phenotypic indicators in
the development of sustainable crop breeding [19]. However, the study of genetic diversity
based only on the morphological and geographical characteristics is ineffective, due to the
strong influence of environmental complexity and genetic responses of plants. To date,
many stable and efficient molecular markers have been developed. For example, studies of
genetic diversity using molecular markers, such as simple sequence repeat (SSR), amplified
fragment length polymorphism (AFLP), restriction fragment length polymorphism (RFLP),
and single nucleotide polymorphisms (SNPs) have been widely applied in castor [20,21].
However, these methods have shown some disadvantages such as the high cost of AFLP
and radioactive labeling of RFLP [22,23]. In recent years, developing SSR markers through
mining SSR motifs in the whole genome has reduced the cost greatly, but has shown
somewhat lower congruence with dominant marker data [24,25]. Both random amplified
polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSRs) have been used
to study the genetic diversity and evaluate the genetic mutations of many plants [26,27].
ISSR technologies were found to be reproducible and effective to uncover polymorphism
and obtain more composite marker patterns [28,29]. In contrast, RAPD has low rate of
replicability, but is very efficient in analyzing genetic diversity because it does not need
sequence data to design molecular primers [30,31].

Generally, both ISSR and RAPD markers are used in combination to improve their
resolving power for genetic analysis of many plants [32]. In the past decade, combined mor-
phological and molecular analyses have been widely used to investigate genetic diversity
and phylogenetic relationships. For example, morphological characters and RAPD were
demonstrated useful for reconstructing a Citrus phylogeny [33] and morphological traits
and both RAPD and ISSR markers were evaluated to discriminate 15 potato cultivars [34]
and to establish unique identification profiles in 26 sorghum varieties [35].

To obtain data of high quality, the study of genetic diversity based on both morpholog-
ical characters and molecular markers (i.e., RAPD and ISSRs) is very important for castor
breeding and production. To date, there are only a few studies available on analyzing
the genetic variation by using combined RAPD and ISSR markers and morphometric
characters. In this study, we aim to resolve the relationship between wild and cultivated
varieties of caster from different accessions collected worldwide. These results provide the
basic information for cultivating new varieties of caster and contribute to the selection and
verification of novel varieties and the preservation of castor germplasms.

2. Materials and Methods
2.1. Plant Materials

The seeds of 54 castor varieties from different regions of the world were provided by
the Inner Mongolia Key Laboratory of Castor Breeding, China. During the experiment, four
quantitative traits (seed length (mm), width (mm), thickness (mm), and weight (g)) were
measured on ten random samples. Detailed information on these 54 accessions is showed
in Table 1 and Figure 1. Seed coat colors were scored by comparison with standards by
multiple observers.
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Table 1. List of the castor beans (R. communis L.) included in the work.

No. Variety Location Length (mm) Width (mm) L/W Ratio Thickness
(mm) Weight (g)

1 GUANGDONGWild Guangdong
(China) 10.24 ± 0.52 f 6.60 ± 0.19 de 1.55 ± 0.04 bc 4.96 ± 0.18 de 0.19 ± 0.02 de

2 ZHEJIANGWild Zhejiang (China) 10.44 ± 0.33 f 6.46 ± 0.17 e 1.62 ± 0.03 b 4.97 ± 0.19 de 0.16 ± 0.01 de

3 HAINANWild Hainan (China) 9.85 ± 0.15 g 5.97 ± 0.03 e 1.65 ± 0.03 ab 4.26 ± 0.09 e 0.13 ± 0.01 e

4 Lubri India 13.12 ± 0.78 cd 8.32 ± 0.53 c 1.58 ± 0.11 bc 6.08 ± 0.29 bc 0.36 ± 0.05 cd

5 SANGRAM9 India 13.15 ± 0.51 cd 8.25 ± 0.26 c 1.59 ± 0.55 bc 6.13 ± 0.26 bc 0.35 ± 0.03 cd

6 HYCASTOR India 12.56 ± 0.28 cd 8.76 ± 0.08 bc 1.43 ± 0.02 d 6.34 ± 0.15 bc 0.37 ± 0.03 cd

7 CSR.181 France 14.10 ± 0.21 c 8.17 ± 0.32 c 1.73 ± 0.03 a 6.38 ± 0.31 bc 0.35 ± 0.02 cd

8 CSR.63 France 12.32 ± 0.28 d 8.29 ± 0.17 c 1.49 ± 0.03 cd 5.99 ± 0.16 c 0.32 ± 0.03 d

9 Middle East Castor Jordan 14.53 ± 0.57 bc 8.83 ± 0.26 bc 1.65 ± 0.03 ab 6.53 ± 0.11 b 0.39 ± 0.02 cd

10 A063 CAOF 12.13 ± 0.28 d 8.09 ± 0.15 c 1.50 ± 0.02 c 5.83 ± 0.09 c 0.25 ± 0.04 d

11 YUNbima5 Yunnan (China) 14.21 ± 0.58 c 9.32 ± 0.69 bc 1.52 ± 0.15 c 6.49 ± 0.30 bc 0.45 ± 0.02 c

12 YUNbima4 Yunnan (China) 14.99 ± 0.72 bc 10.49 ± 0.31 b 1.43 ± 0.10 d 6.99 ± 0.28 b 0.55 ± 0.02 b

13 SHANXIbima Shanxi (China) 14.31 ± 0.34 c 9.08 ± 0.27 bc 1.58 ± 0.01 bc 6.65 ± 0.10 b 0.42 ± 0.07 c

14 zhebima3 Tongliao (China) 12.20 ± 0.46 d 7.96 ± 0.39 cd 1.53 ± 0.05 c 5.91 ± 0.30 c 0.30 ± 0.04 d

15 zhebima4 Tongliao (China) 12.42 ± 0.51 d 8.20 ± 0.09 c 1.51 ± 0.05 c 6.78 ± 0.28 b 0.31 ± 0.03 d

16 Tongbima5 Tongliao (China) 13.13 ± 0.76 cd 8.12 ± 0.91 c 1.62 ± 0.26 b 6.16 ± 0.52 bc 0.32 ± 0.04 d

17 Tongbima5 Tongliao (China) 11.60 ± 0.42 e 7.88 ± 0.31 cd 1.47 ± 0.04 cd 5.73 ± 0.33 c 0.27 ± 0.03 d

18 Tongbima8 Tongliao (China) 12.84 ± 0.56 cd 8.46 ± 0.37 c 1.52 ± 0.10 c 6.47 ± 0.25 bc 0.34 ± 0.06 cd

19 Tongbima9 Tongliao 13.23 ± 0.58 cd 8.09 ± 0.49 c 1.64 ± 0.04 b 6.13 ± 0.26 bc 0.32 ± 0.06 d

20 Tongbima10 Tongliao (China) 12.31 ± 0.37 d 8.59 ± 0.29 bc 1.43 ± 0.02 d 6.29 ± 0.25 bc 0.33 ± 0.04 d

21 ZHE10 Shanxi (China) 14.14 ± 0.34 c 8.80 ± 0.41 bc 1.61 ± 0.10 b 6.07 ± 0.21 bc 0.36 ± 0.04 cd

22 SL42-30 Shanxi (China) 12.47 ± 0.34 d 8.83 ± 0.16 bc 1.41 ± 0.04 d 6.20 ± 0.25 bc 0.36 ± 0.02 cd

23 SL17-5 Shanxi (China) 13.22 ± 0.28 c 8.85 ± 0.27 bc 1.49 ± 0.03 cd 5.99 ± 0.13 c 0.37 ± 0.03 cd

24 SYUN10-18 Shanxi (China) 13.24 ± 0.19 c 8.88 ± 0.25 bc 1.49 ± 0.03 cd 6.03 ± 0.12 bc 0.38 ± 0.01 cd

25 SYUN10-24 Shanxi (China) 14.43 ± 0.30 c 9.40 ± 0.10 bc 1.54 ± 0.04 c 6.14 ± 0.05 bc 0.43 ± 0.02 c

26 20111116 Tongliao (China) 12.55 ± 0.43 cd 8.60 ± 0.10 bc 1.46 ± 0.04 cd 6.55 ± 0.09 b 0.34 ± 0.04 cd

27 20082227 Tongliao (China) 12.49 ± 0.54 d 8.38 ± 0.44 c 1.49 ± 0.05 cd 6.21 ± 0.33 bc 0.27 ± 0.06 d

28 20102189 Tongliao (China) 12.25 ± 0.52 d 8.83 ± 0.17 bc 1.39 ± 0.05 de 6.38 ± 0.34 bc 0.32 ± 0.06 d

29 20111064 Tongliao (China) 13.19 ± 0.12 cd 9.07 ± 0.10 bc 1.45 ± 0.02 cd 6.83 ± 0.26 b 0.29 ± 0.06 d

30 20111066 Tongliao (China) 12.23 ± 0.65 d 8.68 ± 0.14 bc 1.41 ± 0.05 d 6.33 ± 0.22 bc 0.29 ± 0.04 d

31 CSR181 France 9.72 ± 0.40 g 7.98 ± 0.15 cd 1.22 ± 0.02 f 6.17 ± 0.16 bc 0.28 ± 0.06 d

32 20111149 Tongliao (China) 12.90 ± 0.74 cd 8.19 ± 0.26 c 1.58 ± 0.10 bc 6.08 ± 0.09 bc 0.27 ± 0.15 d

33 20071113 Tongliao (China) 10.91 ± 0.48 ef 8.17 ± 0.29 c 1.34 ± 0.06 e 6.08 ± 0.19 bc 0.20 ± 0.04 de

34 20091078 Tongliao (China) 14.27 ± 0.21 c 8.71 ± 0.15 bc 1.64 ± 0.05 b 6.87 ± 0.14 b 0.33 ± 0.03 d

35 almAB1 Tongliao (China) 11.22 ± 0.13 e 8.51 ± 0.17 bc 1.32 ± 0.04 e 6.51 ± 0.27 b 0.30 ± 0.02 d

36 almAB2 Tongliao (China) 11.47 ± 0.05 e 7.87 ± 0.16 cd 1.46 ± 0.03 cd 6.75 ± 0.19 b 0.30 ± 0.03 d

37 almAB3 Tongliao (China) 11.86 ± 0.34 de 8.40 ± 0.53 c 1.41 ± 0.10 d 6.41 ± 0.30 bc 0.22 ± 0.03 de

38 almAB4 Tongliao (China) 11.24 ± 0.48 e 8.37 ± 0.17 c 1.34 ± 0.06 e 6.11 ± 0.08 bc 0.28 ± 0.06 d

39 Red Caster 1 Zibo (China) 12.68 ± 0.08 cd 8.21 ± 0.05 c 1.54 ± 0.02 c 6.94 ± 0.01 b 0.34 ± 0.01 cd

40 Red Caster 2 Zibo (China) 13.97 ± 0.09 c 8.88 ± 0.12 bc 1.57 ± 0.06 bc 6.41 ± 0.09 bc 0.35 ± 0.03 cd

41 Red Caster 3 Zibo (China) 12.83 ± 0.08 cd 8.41 ± 0.14 c 1.53 ± 0.02 c 5.85 ± 0.12 c 0.30 ± 0.01 d

42 Yellow Caster 1 Zibo (China) 12.53 ± 0.07 cd 8.16 ± 0.25 c 1.54 ± 0.03 c 5.82 ± 0.15 c 0.30 ± 0.02 d

43 Yellow Caster 2 Zibo (China) 13.77 ± 0.08 c 9.04 ± 0.33 bc 1.52 ± 0.04 c 6.52 ± 0.08 b 0.38 ± 0.01 cd

44 Hongwuci Shaanxi (China) 12.87 ± 0.04 cd 8.95 ± 0.34 bc 1.44 ± 0.03 d 6.50 ± 0.22 b 0.37 ± 0.02 cd

45 T5 Zibo (China) 11.52 ± 0.05 de 7.82 ± 0.23 cd 1.47 ± 0.02 cd 6.64 ± 0.24 b 0.23 ± 0.01 de

46 Vietnam Castor Vietnam 15.58 ± 0.24 b 9.34 ± 0.31 bc 1.69 ± 0.10 ab 6.55 ± 0.19 b 0.44 ± 0.03 c

47 Gua1 Pakistan 13.58 ± 0.14 c 8.63 ± 0.14 bc 1.57 ± 0.02 bc 6.12 ± 0.15 bc 0.39 ± 0.02 cd

48 Gua2 Pakistan 12.03 ± 0.09 d 7.63 ± 0.18 cd 1.58 ± 0.02 bc 5.71 ± 0.14 c 0.28 ± 0.08 d

49 Paraguay Castor Paraguay 15.59 ± 0.33 b 9.54 ± 0.27 b 1.63 ± 0.03 b 6.68 ± 0.31 b 0.48 ± 0.04 bc

50 Malaysia Castor Malaysia 11.18 ± 0.12 e 6.56 ± 0.09 de 1.70 ± 0.10 a 4.80 ± 0.11 d 0.18 ± 0.03 de
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Table 1. Cont.

No. Variety Location Length (mm) Width (mm) L/W Ratio Thickness
(mm) Weight (g)

51 Ethiopia Castor Ethiopia 18.24 ± 0.21 a 15.11 ± 0.24 a 1.21 ± 0.01 f 7.83 ± 0.22 a 1.06 ± 0.02 a

52 Indonesia Castor Indonesia 15.80 ± 0.18 b 8.97 ± 0.18 bc 1.76 ± 0.03 a 6.08 ± 0.18 bc 0.43 ± 0.03 c

53 Indonesia Castor Indonesia 10.19 ± 0.09 f 6.57 ± 0.27 de 1.55 ± 0.02 bc 4.95 ± 0.09 d 0.18 ± 0.01 de

54 Nigeria Castor Nigeria 12.55 ± 0.17 cd 7.91 ± 0.38 cd 1.59 ± 0.05 bc 5.57 ± 0.14 c 0.23 ± 0.02 de

Each value represents the mean ± standard error (n = 10). The different superscript letters a-d indicate the significant difference based on
Duncan’s Multiple Range Test (p ≤ 0.05).
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2.2. DNA Extraction

The castor seeds were first peeled and split in half, then were put into plastic bags
and kept frozen in the temperature of –80 ◦C. DNA was extracted from seed tissue (~0.1 g)
ground in liquid nitrogen by using Plant Genomic DNA kit (EP309, Beijing Zoman Biotech-
nology Co., Ltd., Beijing, China).

The extracted DNA was examined through electrophoresis on 1.0% agarose gel and
quantified by a spectrophotometer (BioRad, Germany). Then, the DNA samples were
diluted into 50 ng/µL and stored at –20 ◦C for PCR amplification.

2.3. PCR Amplification of ISSR Marker

A total of 100 ISSR primers (University of British Columbia, Vancouver, BC, Canada)
were tested with nine (UBC #808, #824, #827, #836, #841, #842, #847, #857, and #873) showing
high reproducibility and accuracy selected for PCR amplification. The PCR reaction was
performed as described in literature with a minor modification [36]. The optimal reaction
condition of ISSR-PCR amplification contained 2.5 µL template DNA, 2 µL 10× PCR buffer,
1.5 µL dNTPs, 0.2 µL Taq polymerase, 0.5 µL primer, 13.3 µL ddH2O to make the total
volume of 20 µL.

The cycling conditions were as follows: 4 min at 94 ◦C for an initiation step, followed
by 40 cycles of 30 s at 94 ◦C, 30 s at a primer-appropriate temperature, and 2 min at
72 ◦C, and finalized at a final cycle of 10 min at 72 ◦C. PCR products were detected by
electrophoresis on a 2.0% agarose gel stained with 0.1 µL/mL of DNAgreen (UV) (Tiandz,
China) and run in 1× TAE buffer at 100 V for 40 min. PCR products were photographed by
the Bio-image System (BioRad, Germany). Each PCR reaction was repeated three times.

2.4. PCR Amplification of RAPD Marker

The RAPD analysis was performed using nine primers as previously described by
Powell et al. [37]. The composition of the PCR reaction mixture contained 2.2 µL of DNA
template, 2 µL 10×PCR Buffer, 1.5 µL dNTPs, 0.2 µL Taq polymerase, 0.5 µL Primer, and
13.6 µL ddH2O. The cycling conditions were as follows: 4 min at 94 ◦C for an initiation
step, followed by 40 cycles of 30 s at 94 ◦C, 30 s at a primer-appropriate temperature, and
2 min at 72 ◦C, and a final cycle of 10 min at 72 ◦C. Amplified products were separated on
2% agarose gel in 1× TAE buffer by electrophoresis at 100 V for 40 min and photographed
by Bio-image System (BioRad, CA, USA).

2.5. Data Analysis

SPSS 19.0 was used for one-way analysis of variance (ANOVA) and differences be-
tween means were assessed by Duncan’s multiple range test (p≤ 0.05). Each band amplified
with ISSR and RAPD primers was manually scored as present (1) or absence (0). Only
clear and reproducible bands were counted (Table S1). The genetic relationship between
54 castor varieties were evaluated by UPGMA analyses [25]. The genetic similarity of the
castor varieties based on Jaccard’s index [38]. The principle coordinate analysis (PcoA)
was performed by NTSYS-pc version 2.10 software for three-dimensional distribution
analysis [39].

3. Results

Generally, morphological characters (such as seed size and seed coat color) are an
important factor in classification of castor varieties and evaluation of genetic diversity. In
Table 1, the 51-Eth variety was superior to other varieties in seed length, width, thickness,
and weight. The seed coat color pattern of the 54 varieties is given in Figure 1. Cluster
analysis was carried out based on the morphological characteristics of seed size and color.
Results showed that the 54 castor samples could be divided into three main groups (i.e.,
Clusters I, II, and III) with the genetic similarity coefficient ranging from 0.02 to 3.78 with
an average of 1.90 (Figure 2). There were a total of 6, 32, and 15 varieties grouped in
Clusers 1, 2, and 3, respectively, with variety 51-Eth in its own group. The genetic similarity
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coefficient of the 51-Eth variety was evidently different from those of Clusters I, II, and
III. Most of the seed color was brown or dark brown, and some varieties were red-brown
(9-Jor, 11-Yun, 24-Sha, 25-Sha, 30-Ton, 34-Ton, 35-Ton, 41-Zi, 43-Zi, 46-Vie, 47-Pak, 48-Pak,
49-Par, and 52-Indo), while three varieties (4-Ind, 6-Ind, and 37) were light brown, and two
varieties (8-Fra and 26-Ton) were yellow-brown.Agronomy 2021, 11, x FOR PEER REVIEW 7 of 16 
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Figure 2. Classification of 54 castor samples based on six morphological traits.

3.1. ISSR Analysis

A total of 9 out of 100 primers that produced clear and reproducible bands were
selected in the present study. Those primers produced 83 bands in total and the lengths of
the amplified fragments ranged from 200 bp to 2700 bp (Table 2).

Table 2. Amplification of ISSR markers in 54 samples of castor seeds.

Primer
Code

Sequence
(5′–3′)

Tm
(◦C) TNB NPB PPB (%) Range of the Band

Size (bp)

UBC-808 (AG)8-C 52 9 9 100.00 600~2500
UBC-827 (AC)8-G 52 9 5 55.55 450~2400
UBC-836 (AG)8-YA 50 11 6 54.55 250~2400
UBC-841 (GA)8-YC 52 7 6 85.71 300~1800
UBC-842 (GA)8-YG 52 12 9 75.00 200~2700
UBC-847 (CA)8-RC 52 5 4 80.00 2300~500
UBC-856 (AC)8-YA 50 10 7 70.00 400~2200
UBC-857 (AC)8-YG 52 10 9 90.00 550~2600
UBC-873 (GACA)4 50 10 6 60.00 450~2550

Mean 9.2 6.8 74.53
Note: TNB, total number of bands; NPB, number of polymorphic bands; PPB (%), percentage of polymorphic
bands; R represents either A or G and Y represents either C or T.

The percentage of polymorphic bands per primer ranged from 54.55% (UBC-836) to
100% (UBC-808) with an average of 74.53%. As a representative, the ISSR profile of 54 castor
samples using UBC-842 primer was shown in Figure 3.
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Two varieties (14-Ton and 16-Ton) showed the highest similarity coefficient (0.97).
Clusters I and II included most of the 54 varieties, and Clusters III includes 46-Vie, 52-Indo,
53-Indo and 54-Nig varieties. However, variety 9-Jor was obviously different from those of
Cluster I and II, III.

The results of the three-dimensional plot based on the PCoA analysis (Figure 5) were
largely consistent with those revealed on the UPGMA clustering (Figure 4).
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3.2. RAPD Analysis

Genetic diversity analysis was performed on 11 out of 20 RAPD primers that were
reproducible and provided a unique polymorphism products. These 11 primers produced
a total of 90 bands with the lengths of the amplified fragments ranging from 250 bp to
3000 bp (Table 3).

Table 3. Amplification of 11 RAPD markers in 54 castor seed samples.

Primer
Code

Sequence
(5′–3′)

Tm
(◦C) TNB NPB PPB (%) Range of the

Bang Size (bp)

B2 ACAGGGCTCT 52 6 2 33.33 500~2500
B7 ATCCTGCCTG 52 4 1 25 650~1400
B9 ATCGGGTCGA 50 10 8 80 250~3000

B17 CCGGCCTTAG 52 9 7 77.78 500~2450
B19 CCGGCCTTCC 52 11 6 54.55 250~2350
B21 CCGGGGAAAC 52 11 10 90.91 250~2350
B23 CCGGGGTTTG 50 12 8 75 350~2700
F3 CCTGGGCTGG 52 7 4 5714 450~2400
F4 CCTGGGCTAT 50 6 5 83.33 750~2700

OPA-02 TGCCGAGCTG 50 8 2 25 450~1950
OPA-10 GTGATCGCAG 50 6 2 33.33 500~2400
Mean 8.2 5 60.98

Note: TNB, total number of bands; NPB, number of polymorphic bands; PPB (%), percentage of polymorphic
bands.

The percentage of polymorphic bands per primer ranged from 25% (B7 and OPA-02)
to 90.91% (B21) with an average of 60.98%. As a representative, the RAPD profile of 54
castor varieties using B21 primer was shown in Figure 6.
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The 13-Sha and 14-Ton as well as 19-Ton and 20-Ton showed the highest similarity
coefficient (0.95), while the lowest similarity coefficient (0.75) was revealed between 4-Ind
and 46-Vie. UPGMA cluster analysis based on RAPD data grouped 54 samples into three
major Clusters. Like the ISSR analysis, Cluster 1 contained most varieties, while Cluster II
comprised 2-Zhe, 30-Ton, 34-Ton, 40-Zi, 41-Zi, 42-Zi, 31-Fra, 32-Ton, 33-Ton, 39-Zi, 35-Ton,
37-Ton and 38-Ton. Cluster III contained ten varieties (i.e., 43-Zi, 44-Sha, 45-Zi, 49-Par,
52-Indo, 51-Eth, 47-Pak, 48-Pak, 50-Mal and 53-Indo). The results of PCoA were comparable
to those of cluster analysis with insignificant deviations (Figure 8).
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4. Discussion

Castor bean seeds were used by people dating from about 4000 BC and were thought
to have originated in Eastern Africa, particularly Ethiopia [40]. The application of castor in
India, Saudi Arabia, Greece, and Rome has been documented as having anti-inflammatory,
antiasthmatic, and cathartic effects [41]. Castor seeds have also been used in China for
centuries as a traditional medicine [42]. It is reasonable to assume that castor might have
been introduced to China many centuries ago. However, genetic diversity of varieties
cultivated in China has not been systematically studied.

In this study, the analysis of genetic diversity of 54 castor samples collected in India,
Jordan, France, Vietnam, Pakistan, Paraguay, Malaysia, Ethiopia, Indonesia, Nigeria, and
China was carried out based on morphological characters of the castor seed and two
molecular markers (RAPD and ISSRs). For a long time, genetic diversity analysis has
been done based on the morphological characteristics. Morphological traits display a
continuous phenotypic range, and as quantitative traits, they are dominantly controlled by
multi genes [43]. Qualitative traits are reported as equally effective in diversity assessment
compared with molecular markers in plants [44]. In particular, the size and weight of seeds
contribute to the oil content of seeds and are important morphological indicators. The
length-to-width ratio of the castor seeds in different varieties ranged from 1.76 (52-Ind) to
1.21 (51-Eth) with an average of 1.51. This ratio was not significantly different from the
ratio reported in previous studies [45]. The 54 castor seeds were divided into five groups
(brown, light brown, dark brown, red-brown, and yellow-brown) based on stripe color
and background color. The stripe pattern of seed is an important factor in characterizing
genetic diversity, but it was difficult to investigate this trait due to its great variability. The
54 castor varieties were clustered into three groups according to six morphological charac-
teristics. This result was different from that of the clustering analysis based on molecular
markers. Similar results have been reported in previous studies, indicating that genetic
diversity analysis based on combined RAPD and ISSR markers may be a more useful tool
for the identification of Brahmi than morphological characters [46]. Morphological and



Agronomy 2021, 11, 457 11 of 14

geographical patterns may also reflect genetic characteristics due to the environmental
influences during the stages of plant development and reproduction. In contrast, both
RAPD and ISSR technology are useful tools for the classification and genetic analysis of
plant varieties compared to morphological analysis [47,48]. Both RAPD and ISSR markers
show high polymorphism and are simple and cheap to generate. Therefore, they are widely
used for the preservation studies of varieties and phylogenetic analysis [49,50].

Results of the genetic diversity of 54 castor varieties demonstrated that the ISSR
and RAPD markers showed high polymorphism with an average of 74.59% and 60.98%,
respectively. These values are comparable with 68.08% and 80.2% but much higher than 38%
and 54% as previously reported by Gajera et al. [51] and Kallamadi et al. [5], respectively.
Our results show that the genetic diversity among the 54 varieties of castor collected in
different regions in the world is quite large. These results are similar to those reported
in the previous studies showing the ample diversity among the castor genotypes [52].
Some different topological arrangements of these 54 varieties were revealed in the UPGMA
dendrograms based on ISSR and RAPD markers. For example, the variety 9-Jor was
revealed in its own group in the ISSR dendrogram but grouped into cluster I in the RAPD
dendrogram. Furthermore, the variety 54-Nig was grouped in Clusters III and II in ISSR and
RAPD dendrograms, respectively. These differences shown in UPGMA dendrograms are
probably due to the polymorphism in the different regions of the castor genome. By using
two molecular markers, the genetic background of 54 castor samples can be identified. The
numbers of bands amplified by primers of ISSR and RAPD markers are different, ranging
from the minimum of 4 or 5 to the maximum of 10 to 12. The different DNA amplification
bands revealed in different varieties reflect the differences in genetic background.

Worldwide, Parzies et al. (2008) have categorized varieties of castor into two groups
with Group a containing varieties collected from Asian countries (i.e., India, China, Pak-
istan, Indonesia, Jordan, and Paraguay), while Group b contains varieties collected from
Americas (i.e., USA, Brazil, Cuba, and Argentina) [24]. In our study, out of 54 genotypes,
17 varieties were collected from areas outside China and 37 were distributed in China.
Cluster I contains a large number of cultivars collected from China closely related to three
wild accessions (1-Gua, 2-Zhe, and 3-Hai), indicating that these wild germplasms could be
the putative progenitors of the cultivars of Cluster I (Figures 4 and 7). Furthermore, vari-
eties collected from Vietnam, Indonesia, and Nigeria were identified in Cluster III (Figure
4), together with varieties collected from Vietnam, Malaysia, Pakistan, Paraguay, Ethiopia,
and Indonesia (Figure 7), indicating that these varieties share similar genetic backgrounds.
The studies of Kallamadi et al. [5], based on the combined data of the three-marker system,
showed similar results with these accessions classified into three major clusters, while the
Indian and Nigerian accessions were clustered in two large groups, respectively. These
results indicated that gene flow occurred frequently worldwide, which may be attributed
to castor being either self-pollinated or cross-pollinated by wind, instead of using out-
crossing as a predominant mode of reproduction [53]. However, the alternative hypothesis
states that castor oil was not dispersed widely after its initial introduction. Therefore, the
dispersal pattern appears to be dependent on human introduction or physical transport,
owing to the heavy seeds [54].

The results of PCoA used to determine the spatial representation of genetic distances
among the castor varieties were consistent with the results of genetic differentiation based
on cluster analysis. The results of PCoA based on ISSR and RAPD markers differed slightly
from those of the UPGMA dendrogram. The results of genetic diversity analyses based
on both morphological and molecular data showed that three varieties (9-Jor, 46-Vie, and
51-Eth) showed larger genetic differences compared to other varieties. Therefore, the
larger genetic distance of these three varieties may provide rich genetic resources to satisfy
breeding requirements. Indeed, our results showed that we can effectively discriminate the
genetic difference and phylogenetic relationship among castor varieties based on ISSR and
RAPD markers. Furthermore, these results help establish the theoretical foundation for
selection, genetic preservation, and breeding of the castor varieties. Our results demonstrate
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the utility of wild germplasm to exploit the unique caster breeding resources. Moreover,
the castor resources in China showed a narrow genetic base. Therefore, we recommend
that more castor resources be introduced to China to enrich the local breeding materials.

5. Conclusions

In the present study, we combined ISSR and RAPD markers to assess the genetic
relationship of 54 R. communis samples collected worldwide (wild or cultivated varieties).
Cluster analysis based on morphological data (seed length, width, thickness, weight, length
to width ratio, and seed color) grouped all 54 castor samples into three main clusters. The
results of PCoA and UPGMA cluster analysis were consistent with each other. The present
study showed genetic divergence between the China elite local lines and foreign sources
but the overall genetic variation was not extremely large despite the geographical distance.
These results are important references for further resource exploitation and conservation of
the genetic resources of castor.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-439
5/11/3/457/s1, Figure S1: Global distribution of the 54 R. communis L. seed accessions used in this
study. The sample numbers are listed in Table 1, Table S1: Scoring of amplified bands of 54 samples
of castor seeds based on ISSR and RAPD markers.
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