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Abstract: In modern days, rapid urbanisation, climatic abnormalities, water scarcity and quality
degradation vis-à-vis the increasing demand for food to feed the growing population necessitate
a more efficient agriculture production system. In this context, farming with zeolites, hydrated
naturally occurring aluminosilicates found in sedimentary rocks, which are ubiquitous and environ-
ment friendly, has attracted attention in the recent past owing to multidisciplinary benefits accrued
from them in agricultural activities. The use of these minerals as soil ameliorants facilitates the
improvement of soil’s physical and chemical properties as well as alleviates heavy metal toxicity.
Additionally, natural and surface-modified zeolites have selectivity for major essential nutrients,
including ammonium (NH4

+), phosphate (PO4
2−), nitrate (NO3

−), potassium (K+) and sulphate
(SO4

2−), in their unique porous structure that reduces nutrient leaching. The slow-release nature
of zeolites is also beneficial to avail nutrients optimally throughout crop growth. These unique
characteristics of zeolites improve the fertilizer and water use efficiency and, subsequently, diminish
environmental pollution by reducing nitrate leaching and the emissions of nitrous oxides and am-
monia. The aforesaid characteristics significantly improve the growth, productivity and quality of
versatile crops, along with maximising resource use efficiency. This literature review highlights the
findings of previous studies as well as the prospects of zeolite application for achieving sustenance
in agriculture without negotiating the output.

Keywords: soil amelioration; resource use efficiency; water conservation; nutrient retention; heavy
metal toxicity

1. Introduction

The increasing pressure of the population leads to a higher food demand, and at least
50% more food production is required to meet the demand of people by 2050, without any
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scope of horizontal land diversification [1,2]. Therefore, intensive agricultural practices in
food and nutritional security force the use of irrational chemical inputs, water and heavy
machinery. More than two-thirds of the renewable water resources are exclusively used
by agricultural activities, resulting in uneven water sharing with the other sectors [2–4].
Furthermore, the consequences of intensive practices are the degradation of soil and water
qualities, such as depletion of soil organic carbon and inherent soil nutrient status, heavy
metal contamination and residual fertilizer and/or pesticide mixing with groundwater vis-
à-vis surface water resources, that dwindle crop productivity and ultimately the per capita
food grain availability [5]. Long-term intensive farming activities make the agricultural
land unproductive, resulting in low soil retention capacity. The most important element,
nitrogen, is widely used in agricultural systems, although its use efficiency in nitrogenous
fertilizers rarely exceeds 50% as it is mostly lost through denitrification, leaching and
volatilisation [6]. Moreover, irrational application of nitrogenous fertilizers facilitates easy
NO3

+ discharge from soil to groundwater, causing negative anthropogenic impacts on the
groundwater quality and public health hazards such as methemoglobinemia, cancer of
digestive organs, eutrophication in water bodies and production of greenhouse gases such
as nitrous oxide (N2O) through the denitrification process [7–10]. Phosphate (PO4

3+) is
another major nutrient in fertilizer, also responsible for eutrophication in water bodies [11].
Therefore, soil nutrient retention is a major concern in modern agriculture to account for
maximum nutrient use efficiency, improve the soil nutrient status and prevent groundwater
contamination [12–14]. Nutrient use efficiency and better plant growth are highly related
to soil’s physical and chemical properties. In this context, the application of soil amend-
ments, more particularly natural or organic amendments, has great importance for the
long-term reclamation of soil’s physicochemical properties [15–17]. Zeolites are naturally
occurring, alkaline-hydrated aluminosilicates with more than 50 different forms [18,19]
and a wide range of applications such as soil-binding agents and nutrient supplements for
animal and aquatic lives. Additionally, they can be used as heat storage materials and solar
refrigerators, both absorber and adsorber; ion-exchanging elements; molecular sieving
agents; and catalysing agents in various chemical reactions [20,21]. In agriculture, the
importance of zeolites has been realised to a greater extent with their varying applicability
(Figure 1) [20]. Natural zeolites are being considered as good soil ameliorating substances,
having good water and nutrient holding capacity (WHC); it improves infiltration rate,
saturated hydraulic conductivity, cation exchange capacity, and prevents water losses
from deep percolation [22–26]. Moreover, zeolites could be used as fertilizer and chelating
agent [27]. Zeolites minimize the rate of nutrient release from both organic and inorganic
fertilizers and enable better nutrient availability throughout the crop growth stages [27].
The improvement of the wide range of agronomic and horticultural crops in respect to
growth, yield and quality traits with the application of zeolites has been well reported
by various researchers [28–33]. Additionally, zeolite can effectively absorb heavy metals
such as cadmium (Cd), lead (Pb), nickel (Ni), anions like chromate (CrO4

2−) and arsenate
(AsO4

−3), and organic pollutants such as volatile organic compounds (VOCs) including
benzene, toluene, ethylbenzene, and xylene (BTEX) from soil or water body [34–36]. Ac-
knowledging all the aforesaid advantages, the applications of zeolites in the agricultural
research field have been widely gained importance since the last two decades (Figure 2),
evidenced by the chronological ascending trend of the publication rate accessed from “Sco-
pus” online database with the keywords of “zeolit”, “soil remediation”, “water retention”,
“nutrient retention”, “crop production” and “heavy metal toxicity”. Several earlier findings
reported the applicability of zeolites on soil properties along with water and nutrient
retention capacity, crop yield and heavy metal toxicity. Therefore, it is high time to give
importance to zeolites application in agricultural activities and this review article gives a
comprehensive assessment on the sources of zeolites, their structure and properties, and
wide application in agriculture with the special consideration of soil properties, resource
conservation, pest management, pollution control and crop productivity.
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Figure 2. The Trend of Annual Publications on Zeolite Applications in Agriculture for the Last Two
Decades. Source: Scopus Preview [37].

2. Origin, Structure and Properties of Zeolites

The word zeolites refer to ’boiling stones’ because of their ability to froth when
heated to about 200 ◦C. The first time, the mineral zeolites are identified by a Swedish
mineralogist Alex Fredrik Cronstedt in 1756 [38]. However, zeolites production was started
commercially in the 1960s [38]. China contributes ~75% market share of total zeolites
production, followed by Korea (8%), the United States (3%), and Turkey (2%) [39]. In
India, the maximum zeolitic enriched soil is found in the state of Maharashtra followed by
Karnataka, Gujrat, Andhra Pradesh and West Bengal (Figure 3).
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Structurally, zeolite is comprised of aluminosilicate (AlO4 and SiO4) tetrahedrons, joined
into three-dimensional frameworks and seems like a honeycomb structure (Figure 4) [41]. The
cages in the porous structure of zeolite are approximately 12 Å in diameter, interlinked
through the channels of 8 Å diameter, includes 12 tetrahedrons rings [42]. Depending
on the minerals, the pores are interlinked to form long wide channels which facilitate
easy molecular movement into and out of the zeolite structure. The negative charge of
aluminum ions in the zeolite structure is balanced by positively charged cations.
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The general empirical formula that refers to a zeolite structure is M2nO. Al2O3. xSiO2.
yH2O. M refers to any alkali or alkaline earth cation; the valence of the cation is indicated
by n, x ranges between 2 and 10, and y ranges between 2 and 7, with structural cations
comprising Si2+, Al3+ and Fe3+, and exchangeable cations K+, Na+ and Ca2+ [44]. The
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spacious porous structure with large channels in zeolite structure makes it unique in nature
as compared to other silicate minerals [45]. Natural zeolites are loaded with aforesaid
cations with various considerable properties such as higher cation exchange capacity (CEC)
than normal soil, ranges between 100 and 200 centimol (+) kg−1 [46], free water storage
within their structural channels, and also have a great ability of ion adsorption in large
surface area. Zeolites can adsorb or exchange various cations viz. strontium (Sr) and
cesium (Cs); heavy metals like zinc (Zn), cadmium (Cd), lead (Pb), manganese (Mn), nickel
(Ni), chrome (Cr), iron (Fe), and copper (Cu) [34]; anions such as chromate (CrO4

2+) and
arsenate (AsO4

3+) [35]; and numerous organic pollutants mentioned earlier [36]. Other
useful physical and chemical properties of zeolites include high void volume (~50%), low
density (2.1–2.2 g/cm3), excellent molecular sieving properties and high cation selectivity
exclusively for ammonium, potassium, and cesium ions [40]. Physical characteristics of
some naturally occurring zeolites are summarized in Table 1. In respect to pore diameter
Zeolites have been classified by Flanigen [47], viz. (i) Small-pore (0.3–0.45 nm diameter
with 8 rings), (ii) Medium-pore (0.45–0.6 nm diameter with 10 rings), (iii) Large-pore
(0.6–0.8 nm diameter with 12 rings), and (iv) Extra-large pore zeolites (0.8–1.0 nm diameter
with 14 rings).

Table 1. Physical Characteristics of Some Naturally Occurring Zeolites.

Zeolites Porosity
(%)

Channel
Dimensions

(Å)

Heat
Stability

Ion Exchange
Capacity

(meq g−1)

Specific
Gravity
(g cm−3)

Bulk
Density
(g cm−3)

References

Analcine Na10(Al16Si32O96)·16H2O 18 2.6 High 4.55 2.24–2.29 1.85 Sangeetha and
Baskar [42]

Chabezite(Na2Ca)6
(Al12Si24O72)·40H2O 47 3.7 × 4.2 High 3.85 2.50–2.10 1.45 IZA [43]

Clinoptilolite
(Na3K3)(Al6Si30O72)·24H2O 34 3.9 × 5.4 High 2.17 2.15–2.25 1.15 IZA [43]

Erionite (AlCaH60KNaO36Si2+3) 35 - High 3.12 2.02–2.08 1.51 Hemingway
and Robie [44]

Heulandite (Ca4)(Al8Si28O72)·24H2O 39 4.0 × 5.5 Low 2.90 2.18–2.20 1.69 Sangeetha and
Baskar [42]

Mordenite(Na8)(Al8Si40O96)·24H2O 28 2.9 × 5.7 High 4.30 2.12–2.15 1.70 Chmielewska
and Lensỳ [45]

Philipsite(NaK)5(Al5Si11O32)·20H2O 31 4.2 × 4.4 Moderate 3.32 2.15–2.20 1.58 Chmielewska
and Lensỳ [45]

Faujasite
(Na58)(Al58Si134O384)·240H2O 47 7.4 High 3.38 - - Hemingway

and Robie [44]

Laumonitte(Ca4)(Al8Si16O48)·16H2O 34 4.6 × 6.3 Low 4.25 - - Sangeetha and
Baskar [42]

Linde A(Na12)(Al12Si12O48)·27H2O 47 4.4 High 5.47 - - Sangeetha and
Baskar [42]

Linde X(Na86)(Al86Si106O384)·264H2O 50 7.4 High 4.72 - - Sangeetha and
Baskar [42]

3. Impacts of Zeolite Application in Agriculture
3.1. Improvement of Soil Physical Properties

Soil physical properties include bulk density, particle density, aeration, soil porosity,
water holding capacity in which bulk density is the basic soil property that influences the
total porosity and topsoil stability [48]. The application of zeolites in light texture soil
reduces the bulk density that modifies the water holding capacity and soil air porosity [49].
However, total porosity is not influenced significantly [49]. In a previous study, Xiubin
and Zhanbin [3] opined the natural zeolite mainly mordenite with less than 0.25 mm size
to the fine-grained calcareous loess which had low WHC. Result revealed that after 25 h
of water addition to treated and normal soils, the zeolites applied soil resulted in higher
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water content (Figure 5). They also reported that water holding capacity in zeolites treated
soil increased 0.4–1.8% in drought condition while 5–15% in normal situation as compared
to non-treated soil.
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Figure 5. Soil Water Content as Influenced by Zeolitic Soil. Modified from Xiubin and Zhanbin [3].

In another study, the effect of modified Ca+2 type zeolite on sand dune soil was
determined where irrigated was given with saline water. Sand dune soil samples were
treated with the three different rates of zeolite i.e., 5 kg m−2, 1 kg m−2 and no zeolite
(control) and irrigated with seawater diluted to electrical conductivity (EC) levels of 3 and
16 deciSiemens per metre (dSm−1). Results showed that soil with 5 kg zeolites m−2

enhanced soil water as well as salt content, accounting for 20 and 1.4% higher than no
application of zeolite [16]. The concentration of cations namely Ca2+, K+, Na+, Mg2+ is
increased with the increasing soil salinity. The findings were attributed to the fact that
zeolite increases the cation exchange capacity, and subsequent cations holding on the
surface soil, and release them at the expense of salts in the saline water [22]. Thus, the low
salt accumulation in subsurface soil facilitates low salt stress on plants and creates a better
environment for plant growth. Lowering of particle size with the application of zeolites in
sandy soil might be another reason for higher water holding capacity. Higher pore volumes
in zeolites facilitate greater water holding in their structures [49]. Such structures are not
damaged by water particles during surface evaporation and/or reabsorption. Zeolites
may be considered as the permanent water reservoir. Retention of soil moisture in longer
duration, particularly during dry periods helps to mitigate drought-induced abiotic stresses
and enable plants to withstand in dry spell; zeolites also facilitate to rapid rewetting and
the lateral water spreading throughout the root zone during the time of irrigation that
reduces the timing of water application [41]. Soil amelioration with zeolites increases the
water availability to plants by 50% [42]. Application of zeolite @ 10 g kg−1 soil could
maintain maximum water percentage (8.4%) at field capacity and delay in permanent
wilting point in sandy loam soils [50]. Al–Busaidi et al. [16] reported that the existence of
fine particles and micropores in zeolites slowed down the deep percolation of soil water.
The infiltration rate is inversely proportional to zeolites application (Figure 6) indicating
the higher soil water residence and subsequent restriction in nutrient and salt leaching.
Xiubin and Zhanbin [3] observed that the mixing of zeolites with fine grain calcareous
loess soil increased the infiltration rate by 7–30% and 50% in a gentle and steep slope
respectively. Furthermore, run-off and subsequent soil erosion were reduced with the
zeolites application and the sedimentation also found to be decreased by 85% and 50% in a
gentle and steep slope respectively. Interestingly, a combination of zeolites and selenium
application check the water deficit oxidative damages in plants [51]. Colombani et al. [52]
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quantified the changes in flow and transport parameters induced by the addition of zeolites
in a silty-clay soil and reported that NH4

+ enriched zeolites enhanced the capacity of
water retention in silty-clay soil, thus diminishing the water and solute losses. Maximum
irrigation water productivity (0.81 kg m−3) under limited irrigation supply was registered
with the supplemental application of zeolites (21% ww−1) along with urea, while the
minimum water productivity (0.48 kg m−3) was observed under full irrigation supply and
exclusive urea application [53]. Bernardi et al. [54] also observed that concentrated zeolites
as a sand-soil amendment increase at least 10% of soil-water retention and 15% of available
water to plants. Zeolite increases the periods between the starting of rainfall and runoff
occurrence. Rainfall intensity with 10 mm per hr. results in the beginning of runoff within
15 min in normal soil while in zeolites (20%) treated soil runoff starts after 30 min of rainfall
occurrence [55].
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Figure 6. Soil Infiltration Rate as Influenced by Different Rates of Zeolite Application. Modified from
Al-Busaidi et al. [16].

Zeolites help to improve the water-stable aggregates in soil. As per example, nano
zeolite with 30% concentration increased the mean weight diameter of water-stable ag-
gregates by 0.735 mm [56]. With the use of this property, Moritani et al. [57] reported
that the incorporation of 10% artificial zeolites in sodic soils resulted in improved wet
aggregate stability ranged between 22.4% and 59.4% depends on the soil textural classes.
Cario et al. [58] categorized the soil with average assessment ranking ‘good’ and ‘excellent’
in terms of water-stable aggregates and degree of soil aggregation in Vertisols and they
showed the application of zeolite along with chemical fertilizers or organic manure (Zeolite
@ 7.5 t h−1 + sugarcane filter cake @ 22.5 t h−1) improved the soil properties from good to
excellent. Sepaskhah and Yousefi [59] conducted an experiment to justify the effect of vari-
ous rate of calcium-potassium zeolite on the pore velocity of water in the soil they observed
higher pore water velocity (35 and 74%) with the application of 4 and 8 g zeolite kg−1 soil
respectively. Changes of soil physical properties with the Zeolite application in thin (heavy)
textured medium-thin textured, and medium coarse (light) textured soil was observed
by Gholizadeh-Sarabi and Sepaskhah [60] reported that in fine and medium texture soil,
zeolites application at the rate of 4 and 8 g kg−1 of soil at the low salinity level (0.5 and
1.5 dS m−1) and 16 g zeolites kg−1 soil at the high salinity level (3.0 and 5.0 dS m−1)
increased saturated hydraulic conductivity significantly while in coarse texture soil similar
rate of zeolites application reduced the saturated hydraulic conductivity considerably.
They also assumed that zeolites application in the heavy (clay loam) and medium-textured



Agronomy 2021, 11, 448 8 of 29

soil (loam) changed the shape and size of the soil pores and resulted in an improvement of
soil structure and the water movement in these soils. Zeolites application alleviates the
adverse effect of salinity on hydraulic conductivity and thus it would prevent waterlogging
in heavy and medium soil textures. In case of sandy soils, zeolites addition would be
appropriate to decrease the hydraulic conductivity and the transferability of water that
results in low deep percolation and loss of soil water. However, Razmi and Sepaskhah [61]
reported that the application of zeolite (8 g kg−1) in silty clay soils significantly improved
the hydraulic conductivity. They also established that the soil treated with zeolite resulted
in 50% less crack depth in dry puddled soil with pre-application of zeolites in comparison
to no zeolites application. A similar observation was also recorded after the first and second
irrigation in puddled condition (Figure 7).
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Sepaskhah [61].

Furthermore, the sorptivity of clay-loam soil was reduced with a higher rate of zeolites
application as reported by Gholizadeh-Sarabi and Sepaskhah [60]. However, a contrasting
result was observed in the case of sandy-loam and loamy soil. Proper use of water is
the immediate need in agriculture to ensure food security with available water resources;
hence, technologies that enhance water use efficiency are being widespread. The aforesaid
discussions indicate that zeolites addition positively influence the inter-particle porosity
as well as total porosity, bulk density, hydraulic conductivity, infiltration rate, and cation
exchange capacity of soil that ultimately accelerates the soil water content. Additionally,
the open pore network channels into zeolites structure mainly play the significant roles’
in water retention. The summarization of zeolitic impacts to the wide range of soils in
Table 2 indicates that the use of zeolites as a soil ameliorant would be a welcome strategy
in agriculture.
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Table 2. Physical Properties of Soils as Influenced by Zeolites Application.

Types of Zeolite Application Rate (ww−1) Soil Textural Classes
Changes in Soil Physical Properties

Water Content Infiltration Rate Hydraulic Conductivity References

Clinoptilolite 1–15% Clay, loamy sand, sand
• 20% increase at 10%

zeolite application rate in
sandy soil

• Infiltration rate reduction
with a higher rate of
application

• Decreased in sandy and
loamy soils; Increased in
clay soil

Mahabadi et al. [15]

Mordenite – Calcareous loess

• 0.4–1.8% and 5–15%
increase in drought
conditions and normal
conditions

• 7–30% increase with
gentle slopes >50%
increase with steep slope

– Xiubin and Zhanbin [3]

Non-specified natural
zeolite

0.4%, 0.8%, 1.6% and no
zeolitie

Sandy loam –
• Highest sorptivity at 0.4%

(0.5 dS m−1 salinity)
• Lowest sorptivity at 1.6%

• Decreased at 0.8 and 1.6%

Gholizadeh-Sarabi and
Sepaskhah [60]Loam –

• Highest sorptivity at 1.6%
(all salinity levels)

• Maximized at 1.6% and
0.4% at 3–5 dS m−1 and
0.5–1.5 salinity
respectively

Clay loam –
• Lowest sorptivity at 1.6%

and 0.8% at 0.5–3 and 5
dS m−1 salinity

• Maximized at 1.6% and
0.8% at 3–5 and 0.5–1.5 dS
m−1 salinity level

Synthetic zeolite
(Ca2+-type) 1% and 5% Sand dune soil • Increased at 5% level

• Reduction in infiltration
rate (more for higher
application rate)

Al-Busaidi et al. [16]

Stilbite 3.33, 6.67, and 10% Sandy soil

• 10%, 38% and 67%
increase with 3.33%,
6.67% and 10% level
respectively

– Bernardi et al. [54]

Clinolite and Ecolite 15.85% – – –
• Increase (More in Ecolite

over Clinolite) Githinji et al. [62]
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3.2. Nutrient Retention

Zeolites positively influence the physical, chemical, and biological properties of soil
directly or indirectly which in turns improves the nutrient dynamics as well as nutrient
retention capacity. Zeolitic minerals have high CEC which attributes to high NH4

+ sorption
selectivity as a consequence of the electrostatic attraction between positively charged
NH4

+ and negatively charged sites in zeolite structure [63,64]. The effective diffusion
coefficient was around 4–5 × 10–12 m2 s−1 for ammonium and sodium ions respectively
in clinoptilolite [65,66]. The adsorption capacity of zeolites for these ions is determined
by isotherms and kinetics and this adsorption property is used for various purposes
such as wastewater treatment, heavy metal removal. Clinoptilolite generally exhibits a
high selectivity for NH4

+ ion, having theoretical CEC of 2.16 cmol (+) kg−1 [67]. I on
adsorption efficiency of zeolites are mainly depends of the factors like mass, particle
size, initial concentration of cations of model solution, contact time, temperature and
pH [68,69]. Additionally, modification of zeolites surface with strong acids accelerates the
cation sorption capacity [70]. The modification of natural zeolites includes pretreatment by
grinding and sieving, mixing with sodium salt and finally, calcinations makes a change
in the pore size and surface area of zeolites, and thereby the ammonium ion uptake is
increased [71].Soil application of zeolites in combination with chemical fertilizers reduces
nitrogen leaching [72–74] and volatilization [75–77] slows down the mineralization process
and subsequent reduction in greenhouse gases (GHGs) emission [78], and retards the
nutrients release into soil solution [79,80]. In the incubation studies, researchers had clearly
seen the difference in the ammonia loss with chemical fertilizers and chemical fertilizers
with zeolite and reported low ammonia losses when fertilizer applied with zeolite [81,82].
Omar et al. [83] proved the significant improvement in soil exchangeable ammonium
retention by 40–50% in zeolite treated soil. The leaching reduction of NH4

+ and NO3
− from

different nitrogenous fertilizer with the application of zeolite is depicted in Table 3. The
zeourea and nano-zeourea contain 18.5% and 28% of N respectively and capable to release
N up to 34 and 48 days, respectively, while from conventional urea the N releases within 4
days after application [84]. The reason behind this may be the urease activity is significantly
reduced by zeolite application that lowers the nutrient release from fertilizer [85]. The
slow-released nature of fertilizer helps to release their nutrient contents gradually and to
coincide with the nutrient requirement of a plant [86].

Table 3. Leaching Reduction Percent of NH4
+ and NO3

− from Different Nitrogenous Fertilizer with the Application
of Zeolite.

Soil Type Zeolite Application Rate Source of N
N Dose
(kg h−1)

Leaching Reduction
References

NH4
+ NO3−

Sand-based
putting green 10% Ammonium Sulphate 293 99% 86% Huang and Petrovic [87]

Sandy soil 0.8% Ammonium Sulphate 32 >90% – Zwingmann et al. [88]

Loamy sand 5% Ammonium Sulphate 200 † 83% – Mackown and Tucker [89]

Sandy loam 9 * Urea 270 – 36% Golamhoseini et al. [90]

Silty loam 4% Wastewater 14.2 ‡ – 54.9% Taheri-Sodejani et al. [91]

* With the unit of t ha−1; † With the unit of mg kg−1; ‡ With the unit of mg L−1.

Urea saturated zeolite chips have also been developed elsewhere. Piñón-Villarreal et al. [92]
experimented to assess the leaching loss from urea ammonium nitrate solution (UAN32)
where 443 mg total N was present per liter of solution. They observed that 82% reduction
in leaching loss happened from the pure clinoptilolite zeolite loaded column in comparison
to the column of loamy sand. In a sorption experiment, Piñón-Villarreal et al. [92] reported
more than 90% NH4

+ absorption by zeolite incorporated soil in initial several minutes.
Very small particle size with a greater surface area of zeolitic minerals accelerates the
stabilization of exchange equilibrium in only a few hours. Zeolite minerals also protect the
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conversion of NH4
+ to NO3

+ through the nitrification process. The latter is more prone to
leach out into the soil and facilitates to groundwater contaminations [59]. The small pores
in zeolite crystal lattice structure (4–5 Å) in which cations like ammonium can easily adsorb,
do not give access to the nitrifying microorganisms into the pores [93]; thus, nitrification
does not take place easily in zeolites treated soil. One of the most usefulness of zeolite is
utilized in compost making a way to convert agricultural farm waste into valuable organic
amendments. However, a significant amount of N losses take place during the time of
composting [94]. In an experiment, Ramesh and Islam [95] confirmed that the application
of 14–21% zeolite in fresh manure resulted in low ammonium loss. Zeolite also could
absorb volatile substances such as acetic acid, butanoic acid, skatole and isovaleric acid
and also could effectively control the odor released during composting [96,97].

The extent of reduction in total nitrogen and even phosphorus losses with the appli-
cation of zeolite into organic manure was successfully reported by Murnane et al. [98].
The reason behind the low N losses from manure is the high specific selectivity of zeolites
to ammonium (NH4

+) that helps in holding this ion during volatilization. Moreover, the
existences of small internal channels protect NH4

+ from rapid nitrification by microbes [99].
Interestingly, zeolites not only help to protect the N loss but also reduces P leaching;
however, it helps in reducing NO3

− leaching greater than P leaching [53,100,101]. Being
alkaline in nature and the presence of negative charges, zeolite ameliorated soil improves
soil P availability through lowering of soil acidity, soil exchangeable Al, and Fe [101–103].
These help in less P fixation by metal oxyhydroxides. Moreover, zeolites supplementation
triggers more P uptake by enhancing the exchange- induced dissolution mechanisms as
follows [102]:

RP(rock phosphate) + NH+
4 + zeolite→ Ca− zeolite + NH+

4 + H2PO−4 (1)

In this reaction, released Ca is adsorbed on the zeolite surface due to high CEC and as
a result, more rock phosphate will be dissolved with lowering Ca2+ activity in the solution.
This system releases the NH4

+ and PO4
3− ions. The addition of clinoptilolite zeolites

with a 75% recommended rate of fertilizers showed comparable total and available P with
the existing recommended dose without any zeolite application [31]. In this experiment,
the addition of clinoptilolite zeolites also helped to reduce Al as well as soil acidity that
resulted in low P fixation to soil colloid. A similar trend of observation was recorded
by Zheng et al. [104], accounted for 14.1% higher available P with the application of
zeolite relative to non-zeolite treatment. Antoniadis et al. [105] also reported an increase
in P recovery efficiency of 4.02% due to zeolite application in acidic soil as compared to
no zeolite application. The slow-release nature of zeolite in P release was observed by
Bansiwal et al. [106] resulted in the continuous phosphate release even after 1080 h of
continuous percolation from zeolite loaded modified phosphorous surface, while within
only 264 h phosphate from potassium dihydrogen phosphate (KH2PO4) was exhausted.

Rather than N and P zeolites have strong selectivity on K+ than Na+, Ca2+, and Mg2+

that makes it difficult to remove K+ from exchange sites, facilitating greater absorption of
K+ by plant root hairs through the ion exchange within root and zeolite [107]. The losses
of K+ by surface runoff and groundwater leaching can be reduced by supplementing the
zeolites as slow-release fertilizer [108]. For example, the application of zeolites in municipal
compost to investigate the K+ release pattern resulted in six times less leaching loss from
the zeolitic compost as compared to normal compost [109]. Additionally, Williams and
Nelson [110] observed that in a soil-less medium K+ saturated clinoptilolite recorded 23%
less leaching of K+ over-controlled control substrate. Moraetis et al. [109] reported that
there was 18-fold increase in bioavailable K when zeolites were added through kinetic
experiment to the soil-compost mixture, suggesting high potassium affinity in the soil-
compost-zeolite mixture. Zeolite is considered as nano-enhanced green application as it
adsorbs molecules at relatively low pressure [111,112]. Zeolite coated fertilizers have higher
potential in water absorption and retention, and this coating materials retard the nutrient
release rate from soil applied fertilizers, especially in sandy and sandy loam soil [113].
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Similar nutrient retention ability of zeolites in secondary nutrients such as S was registered
by Li and Zhang [114] who revealed that after leaching with 50 pore volumes, 85% of
the pre-loaded SO4

2+ remained on the zeolite modified S fertilizer. Moreover, the initial
SO4

2+ concentration in the leachate of S-loaded surfaced modified zeolite was found to be
lowered, in comparison with the non-zeolitic sulfur sources. In addition to clinoptilolite,
nano-zeolite based S fertilizer is also comprised of epistilbite zeolite. The findings from
an experiment conducted by Thirunavukkarasu and Subramanian [115] exhibited that
SO4

2+ was available even after 912 h of continuous percolation from S loaded modified
nano-zeolite, while SO4

2+ from (NH4)2SO4 was depleted within 384 h. The presence of a
huge number of channels, pores, and cages in the structure of the zeolite which helps in
holding the SO4

2+ tightly might be the reason behind the slow release of this secondary
nutrient from surface modified nano-zeolite [115].

The increase in micronutrient use efficiency with zeolites supplementation was also
registered in previous literatures [33,116–118]. Sheta et al. [116] reported the ability of
five natural zeolites and bentonite minerals to adsorb and release of zinc and iron as
natural zeolites have a greater affinity to these micronutrients. Iskander et al. [117] found
74.7% and 84.63% are readily extractable by DTPA (diethylene-triamine pentaacetic acid)
extractant (0.005 M DTPA + 0.01 M CaCI2 + 0.1 M triethanolamine, adjusted to pH 7.30) after
three successive extractions of Zn and Mn, respectively and rest were retained by zeolite.
Yuvaraj and Subramaniannano [119] reported that nano-zeolite adsorbed more Zn and the
adsorption rate obtained with the nano-zeolite appeared to be efficient adsorbents for Zn.
They also observed that ZnSO4 released the Zn up to 200 hours whereas micronutrients
from nano-zeolite were releasing even after 800 h (Figure 8). The better availability of
micronutrients in soil with zeolite application ultimately facilitates to greater micronutrients
contents in plants. Ozbahce et al. [33] resulted in significantly higher Zn, Mn and Cu
content in bean leaves with the maximization of zeolite application up to 90 kg ha−1

(Figure 9). From the above-mentioned discussions, it can be concluded that the zeolite
application accelerates the availability of primary, secondary and micronutrients in soils
and subsequent plant uptake (Figure 10), and its application is most significant in arid and
semi-arid regions that suffer from high water and nutrient scarcity all-time.
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3.3. Environmental Impact

The addition of zeolites increases the C sequestration and subsequent soil C stock
as compared to untreated soil [120,121]. According to Aminiyan et al. [56], application of
zeolite (30%) along with crop residues (5%) to wheat could maintain the highest amount of
organic carbon in light and heavy fractions. Soil organic matter even in the light fraction is
highly correlated with N mineralization and subsequent soil management practices. The
light fraction of soil organic matter (SOM) is not only sensitive to changes in management
practices but also correlates well with the rate of N mineralization. Periodical measurements
of N2O and N2 emissions in fields from the applied cow urine or potassium nitrate (KNO3)
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each at 200 kg N ha−1 with and without the addition of zeolite (clinoptilonite) showed that
zeolite significantly lowered the total N2O emissions by 11% from urine treated soils.

Specific channel size enables zeolite to act as molecular gas sieves. Wang et al. [122]
recommended the use of zeolite as an amendment to reduce GHGs emission from duck
manure as they found almost 27% of GHG emissions reduction from zeolite treated soil than
no zeolite application. Additionally, low NO3

− and PO4
2− leaching from zeolite amended

soil helps to prevent groundwater pollution as well as surface water contamination and
subsequent eutrophication [59]. They claimed that the better retention of anions in zeolite
structure might be the reason for less leaching loss. Zeolite prevents rapid mineralization by
preventing the entry of nitrifying bacteria into its structure and thus reduces the emission
of N2O [99].

3.4. Slow Release of Herbicides

Being porous in nature along with a well-ordered structure, zeolites are considered
as potential substances for storage and release of organic guest molecules. The most
hydrophobic solid form of zeolite ‘ZSM 5’ adsorbs triazine group of herbicides in the
compartmentalized intra-crystalline void space and release them slowly [123]. Furthermore,
ZSM-5 was found to be restricted to the mobility of post-emergence herbicide such as
paraquat [124,125]. Humic acid zeolites act as a sorbent of the herbicides belongs to the
phenylurea group [126]. Clinoptilolitic turf has the potential to remove atrazine from soil
and water [127,128]. Application of 2, 4–D herbicide along with zeolites results in a gradual
temporal release pattern and keeps the active ingredient of herbicide in upper 0–5 cm of soil
layer [129,130]. This slow-release nature of herbicide when used with zeolites improves the
herbicide efficiency to control the weed floras and the prolonged effect of herbicide keeps
the weed-free crop field throughout the entire crop weed competition period. Zeolite-rich
nanocapsule is used as an herbicide carrier, adsorbent and retaining agent [130]. A longer
retention period of zeolite added herbicide on weed leaves helps in maximizing the efficacy
of the herbicidal mode of action. Interestingly, the synergistic effect between zeolite-loaded
catalysts with isoproturon accelerates the visible light absorption and moreover better
adsorption of recalcitrant molecules by the porous structure of zeolites [131].

3.5. Remediation of Contaminated Soil

Heavy metals induced soil pollution is one of the major concerns in modern agriculture.
The anthropogenic activities of human, rapid industrialization and injudicious use of
fertilizers without proper precaution make the soil toxic with heavy metal contamination.
The solubility of heavy metal in soil is depending on complex chemical degradation and
numerous factors. Among them, low soil pH is one of the major determining factors. In an
acidic environment, oxides of iron, aluminum and manganese are slowly solubilized, and
the primary and secondary minerals release the heavy metal into soil [132]. Soil sorption
capacity is another determining factor for the retention of heavy metal ions. The ongoing
concern in relation to the purity of the soil and the need to restore its original properties
forced us to seek new and alternative ways of soil cleansing. Zeolite additions increase the
soil pH significantly which facilitates to the heavy metal adsorption on its surface; thus, the
solubility and bioavailability of heavy metals are ultimately reduced [133]. Chen et al. [134]
observed that the cadmium and lead accumulation in wheat is significantly reduced with
soil application of zeolite in soil. Moreover, it has been well reported that the clinoptilolite
zeolite effectively controlled the heavy metal solubility including cadmium and lead up to
72% and 81% respectively [135,136]. However, this area of research needs extensive studies
to find out heavy metal-specific appropriate dose and methods of zeolite application [85].

3.6. Wastewater Treatment

Industrial development with fast urbanization produces large quantities of wastew-
ater that contains heavy metals, oils and organics that badly affect the aqueous environ-
ment [137]. Various efficient techniques such as solvent extraction, ion exchange and
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adsorption are often used to remove those contaminants. Among them, the use of zeolites
as adsorbents is most popular due to low-cost involvement, eco-friendly and poses good
selectivity for toxic cations [138]. It also prevents the generation of new waste materi-
als [139]. Furthermore, zeolites more specifically clinoptilolite could adsorb dyes, humic
acid, phenols and phenol derivatives from the water body [140–142]. The clinoptilolite is
mostly effective against metallic cations such as Al3+, Cd2+, Cu2+, Ni2+, Pb2+, and Zn2+

from copper mine wastewater [143]. The selectivity by clinoptilolite for heavy metals
following the order: Pb2+> Cd2+> Cu2+> Co2+> Cr3+> Zn2+> Ni2+ [144]. The most ad-
vantage of clinoptilolite use in wastewater treatment is it can adsorb the heavy metals at
a wide range of temperature (25–60 °C), pH (1–4) and different agitation speed (0, 100,
200, 400 rpm) [145]. The greater surface area along with high cation exchange capacity
makes zeolite as a good adsorbent of cations [142]. The ability of heavy metals uptake by
clinoptilolite zeolite was investigated by Baker et al. 2009 and opined the high selectivity
of zeolite for the discharge of Pb2+ (98%), followed by Cr3+, Cu2+ and Cd2+ with 96%
selectivity within 90 min. Morkou et al. (2015) [146] reported that wastewater nutrients
can be recycled and used for microalgal and cyanobacterial biomass production by using
zeolite as a medium.

3.7. Crop Management Practices

Zeolites have been used in a wide range of field crops production such as rice (Oryza
sativa L.), corn (Zea mays L.), wheat (Triticum aestivum L.), potato (Solanum tuberosum L.),
soybeans (Glycine max L.), and other upland crops in all types of soil to improve their
productivity, water, and nutrient use efficiency (NUE), also maintaining the soil ecology
and environment [83,147,148]. In an experiment, Chen et al. [29] estimated the effect of
different rates of zeolite in combination with different N levels on transplanted rice and
concluded that the highest yield was achieved consistently when rice plant was treated
with a maximum dose of N (157.50 kg ha−1) along with zeolite supplementation (15 t ha−1),
accounting 14.90% higher than the exclusive application of N. They also revealed that yield
attributing characters namely effective tillers per plant, number of grains per panicle, grain
filling percentage, and 1000-grain weight were positively influenced by the higher dose of N;
however, zeolite consistently increased the number of effective tillers (Figure 11). A possible
explanation of these results is the slow-release characteristics of zeolite amendment that
makes the essential plant nutrients available throughout the crop growth within 0–30 cm
soil depth. Furthermore, the supplementary application of zeolite significantly influenced
the quality traits like protein content and tasting score of rice but did not influence the
head rice recovery and chalkiness of rice grain [29].

Agronomy 2021, 11, 448 16 of 29 
 

 
Figure 11. Effect of Zeolite Application on Tillering Pattern of Rice. Modified from Chen et al. [29]. 

 
Figure 12. Effect of zeolite application on LAI, Tr, Sc and Chalkiness of rice. Tr: Transpiration rate 
(mmol m–2 s–1); Sc: Stomatal conductance (mol m–2 s–1); Z0: No Zeolite; Z15: Zeolite at 15 t ha−1. Mod-
ified from Zheng et al. [32]. 

 
Figure 13. Effect of zeolite application on grain and straw yield of rice (Z0: 0; Z8: 8; Z16: 16; Z24: 24 t 
ha−1). Modified from Kavoosi [150]. 

0

50

100

150

200

250

300

0 5 10 15

Ef
fe

ct
iv

e t
ill

er
s (

m
-2

)

Zeolite rate (t ha-1)

b

b

b

a

a

a

a

b

0

1

2

3

4

5

6

LAI Tr Sc Chalkiness (%)

V
al

ue
s

Parameters

Z0 Z15

b
a a ab

b

a a
a

0

1

2

3

4

5

Z0 Z1 Z2 Z3

Yi
eld

 (t
 h

a-1
)

Levels of Zeolite

Grain yield Straw yield

Figure 11. Effect of Zeolite Application on Tillering Pattern of Rice. Modified from Chen et al. [29].
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In another experiment, Zheng et al. [32] evaluated the effect of zeolite application on
rice under limited water condition and they confirmed that the zeolite treatment (15 t ha−1)
improved the LAI, transpiration rate and stomatal conductance (Figure 12). They observed
that chalky rice rate and chalkiness were decreased by 29.6% and 41.2% respectively in
zeolite treated plants as compared to the non-zeolite control. There was no significant
difference in zeolite application on the starch viscosity properties. As rice quality is thought
to be determined both genetically and environmentally, any improvements with zeolite
application may result from better nitrogen and water availability to plants. The better
crop performance and N partitioning in different parts of the rice plant with higher levels
of zeolite application were depicted by Wu et al. [149]. Kavoosi et al. [150] resulted in both
rice grain and straw yield increment with the application of zeolite at a certain level and
thereafter decreased (Figure 13).
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According to Wu et al. [151], the zeolites amendment significantly improved the root
characteristics in terms of root length, dry weight, root diameter and volume, total root
surface area, root bleeding intensity in rice plant over no zeolite application. Developed
root traits may enhance nutrient transportation from the root to the above-ground parts and
result in higher biomass and grain yield [152]. In previous studies, researchers confirmed
that additional zeolites supply maximized the leaf area index (LAI) as well as leaf SPAD
values and photosynthetic efficiency in rice plant, which might be attributed to its better
ammonium retention capacity and slow-release nature that increase the better N availability
to plants [53,72]. In a lowland rice production system, Sepaskhah and Barzegar [153]
established the positive correlation between zeolites application and N retention in the
upper soil profile. This higher availability favours better N uptake and subsequently
higher nitrogen use efficiency (Figure 14). Zeolites induced rice cultivation resulted in
greater apparent N recovery (65%) while 40% recovery was observed in exclusive N
fertilization [150,154].
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Zheng et al. [104] evaluated the consequence of zeolite and phosphorus applications
in rice under different irrigation regimes and resulted in 15.2% higher water use efficiency
(WUE) as well as greater leaf and stem P concentration by 20.3% and 32.7% respectively
than no-zeolite control. The better water use efficiency may be attributed to higher soil
water retention in the porous structure of zeolites and thus better water availability to
plant [3,53]. Additionally, restriction in deep percolation and leaching beyond the crop root
zone in zeolite loaded soil are major reasons for better water use efficiency [23,155].

The application of zeolite in maize cultivation was reported by Malekian et al. (2011) [156]
who opined that maize plants resulted in better response to zeolite when used as a fertilizer
carrier at the rate of 60 g kg−1 of soil. The application of clinoptilolite zeolite (CZ) with a
75% recommended dose of fertilizer resulted in significantly similar cobs yield in maize as
compared to the full recommended dose of fertilizer [31]. A similar trend of observation
was recorded regarding dry matter production and nutrient uptake, especially N and K
uptake. It is possible due to the higher cation exchange capacity and affinity of CZ to
NH4

+ and K+ ions. More specifically, reduced nitrification, prevention of leaching and
volatilization by inhibiting ureolytic activity of microorganisms in the presence of CZ
facilitate better nutrients availability [157]. Moreover, the cation selectivity of the CZ in
the order to K+> NH4

+> Na+> Ca2+> Mg2+ supports to the aforesaid observation [31,158].
Increased nitrogen-use efficiency with the application of zeolites and ensured good reten-
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tion of soil-exchangeable cations, available P and NO3
− within the soil have been found by

Rabai et al. [159] in maize cultivation. Low fertilizer requirement with zeolites application
not only gives a similar yield but also reduces the environmental pollution in respect to ni-
trous oxide emission, with maintaining the economic viability. Andronikashvilf et al. [147]
also suggested that the zeolite application facilitates a reduction in the recommended
dose of fertilizer by 25% and maintains a positive effect for 2–3 years in upland crops
production systems.

In high saline condition zeolite amendment in soil responded well in Barley crop and
it was reported that zeolite at 5% level produced taller plants; accumulated maximum
plant biomass and more grain yield over 1% and no zeolite application [16]. Similarly,
in alkaline condition soil application of zeolites for French bean (Phaseolus vulgaris L.)
cultivation maximized the nutrient accumulation in plant tissues. Additionally, better crop
performance as well as greater water use efficiency, water productivity and crop yield
were recorded from the zeolites treated plots [154]. Usually, the higher Na+ content in
alkaline and saline soils disturbs the soil nutritional balance and osmotic regulations in
plant tissues. Zeolite provides additional Ca2+ cations in the soil to reduce the Na+/Ca2+

ratio. The provision of Ca2+ from zeolite in the growing media would alleviate the toxic
Na+ ions accumulation and helps in the improvement of soil structure by aggregating the
soil particles [16].

Not only in cereals and pulses zeolites have significant importance in oilseed crops.
An additional supply of 10-ton zeolites ha−1 with recommended fertilizer significantly
increased the seed and oil yield in safflower, accounted for 2.7 and 9.38 t ha−1 respec-
tively [160]. Zahedi et al. [161] evaluated the effects of zeolite and selenium applications
on some agronomic traits of three Canola cultivars under drought stress. They opined
that stem diameter significantly decreased due to water stress, while the application of
zeolite along with selenium improved stem diameter may be attributed to better water
and nutrients availability from zeolites induced soil. They reported that 10 t zeolite ha−1

significantly improved the growth, yield attributes, and yield (Figure 15). They also ob-
served reduced N leaching along with higher water holding capacity and CEC in alkaline
soil when supplemented with 10 t zeolite as compared to normal soil. The oil yield and oil
qualities such as palmitic acid, Oleic acid, Linoleic acid, Linolenic acid and Erucic acid of
canola significantly improved with zeolite application (15 t ha−1) rather than no zeolite
use [28].
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From an experiment, the findings recorded by Ozbahce et al. [162] revealed that
application of 60 t zeolite ha−1 along with proper irrigation and nutrient management,
potato yielded (39.1 t ha−1) maximum tubers (Figure 16). They also recorded superior crop
performance even under limited water supply when treated with zeolite while non-zeolite
traditional practices sharply decreased the tuber yield. The interaction of zeolites and
irrigation regimes was found to be significant for tuber weight, tuber diameter and crude
protein percentage.
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Figure 16. Effect of Zeolite Rates Eighth Different Levels of Irrigation on Tuber Yield of Potato
(Z0: 0; Z30: 30; Z60: 60; Z90: 90; Z120: 120 t ha—1) Within treatments, different letters indicate
significant differences at p ≤ 0.05(otherwise statistically at par). (Adapted and modified from
Ozbahce et al. [163]).

The effectiveness of zeolite on Peppermint (Mentha piperita L.) cultivation was reported
by Ghanbari and Ariafar [30]. They opined that zeolite treatment significantly improved
the fresh and dry leaf weight of mint and the highest value of fresh dry leaf weight was
observed in 2.5 g zeolite application per kg of soil even under—water scare situation. They
also observed that drought intensity was decreased with increasing the zeolite application.
In 30% field capacity, zeolite application maximized the leaf dry weight from 18.54 to
32.76 g and fresh leaf weight from 41.7 to 67.14 g. Interestingly, zeolite helps to keep the
essential components of mint oil such as menthol, menthone, methyl acetal, menthofuran
and palegone [163,164]. Actually, these essential components are adversely affected by
drought and salinity stress whereas, zeolites consist of alkali and alkaline materials and
crystalline alumino—silicate which act as a water reservoir in their internal surface area
during drought situation [165,166].

Numerous scientific reports were also concluded that significant positive influence on
cocoa fruiting [167], eye numbers in potato tubers [160], pod and siliqua number in pulses
and oilseeds [33,168], and overall development of soybean, sweet potato, wheat, bean and
safflower with the application of soil—applied zeolites [160–171]. The use of Clinoptilolite—
rich tuff as soil conditioner was found to be effective to improve the productivity of wheat,
eggplant, carrots, and apples by 13–15%, 19–55%, 13–38% and 63% respectively [172]. Not
only in field crops or vegetables, zeolite induced soil significantly improved the production
as well as qualitative traits of mycelium mushroom [173]. The treatment with 30% zeolite +
70% urea resulted in a positive effect on the microbiological community in spring barley,
soybean and maize [174]. Andronikashvili et al. [175] opined that the introduction of
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clinoptilolite containing tuffs into soils enhanced the soil microbial population viz. bacteria,
fungi and actinomycetes.

Another interesting dimension of zeolite application was introduced by the National
Aeronautics and Space Administration (NASA), which developed a special type of clinop-
tilolite loaded plant growth media including synthetic apatite, dolomite, and several
essential trace nutrients mainly for vegetable production (10% higher than non—zeolite
application) in space missions, known as ‘zeoponic’ [176]. Life support system for regener-
ating and recycling the air, water and food are essentially required for the long duration
Mars mission and only the growing of plants could be fulfilled this aim. The ultimate
objective of zeoponic research is to develop a solid substrate that can supply all essential
macro and micronutrients slowly for a long duration in a space habitat. In an experiment,
Gruener et al. [176] resulted in higher biomass accumulation, root and leaf development
and nutrient uptake by radish when cultivated in zeoponic as compared to normal soil.
Rodriguez—Fuentes et al. [177] reported that root architecture, plant growth and yield
of different vegetables, spices and strawberries, were significantly improved by zeoponic
substrates without further fertilization. Researchers confirmed that the native clinoptilolite
in zeoponic acts as a good source of N and K as the clinoptilolite cations are exchanged for
NH4

+ and K+ ions [102]. Additionally, apatite and dolomite dissolution supplies Ca2+ into
soil solution. This Ca2+ rich solution removes the NH4

+ and K+ ions from zeolite exchange
complex and makes them more available to plants [176]. Sometimes, nitrifying bacteria are
supplemented to zeoponic substrates prior to plant growth to augment the nitrification
process [178]. Since most zeolites are advantageous in the growth and development of
crops, however, erionite (one type of zeolite) was found to be detrimental to the proper
growth of plants [179]. Therefore, the selection of an appropriate form of zeolites should
be taken into consideration.

3.8. Used as a Pesticide

Zeolites that contain silica gel and alumina silicate crystals have been successfully
tested against some stored grain pests such as lesser grain borers (Rhyzopertha dominica),
rice weevils (Sitophilus oryzae), and saw—toothed grain beetles (Oryzaephilus surina-
mensis) [180]. Natural zeolites application at the rate of 50 g kg−1 of maize grain were
also found to be effective against maize weevil (Sitophilus zeamais) in accordance with
Haryadi et al. [181]. Clinoptilolite was successfully investigated on organic oilseed rape
fields against the pollen beetle (Meligethes sp.). Daniel et al. [182] observed that under
dry and sunny weather condition, pollen beetles were significantly reduced by 50 to 80%
with zeolite application while in rainy weather zeolite did not perform against pollen
beetles. Zeolites loaded organophosphorus compound was used with success against
the Aedes aegyptii [183]. Clinoptilolite is gaining importance as possible sorbents because
it acts as a slow—release carrier and retard water contamination [184]. Clinoptilolite
riched metalaxyl application on turfgrass against Phythium sp. resulted that the active
ingredient of fungicide was prevented from groundwater contamination by clinoptilolite
zeolite [185]. Actually, the adsorption of pesticide molecules is happened due to polar
chemical bonds with the external surface of the microporous zeolitic minerals [108]. Addi-
tionally, the dusting of natural zeolites has been successfully tested to control the aphid
population in fruit orchard [186]. Moreover, in herbicide application, pest control and
in nano—sensing for pest detection, the nano—porous zeolites have been implicated as
nano—capsules [187–189]. Stadler et al. [190] examined the insecticidal effect of nanostruc-
tured zeolites on two stored—grain insect species, S. oryzae and R. dominica, and found
80–100% mortality rate within 14 days after application to wheat grain. In this regard,
natural zeolites may provide a cheap and reliable alternative to commercial insecticides in
pest management. The insecticidal efficacy of natural zeolite on different stored grain pests
is summarized in Table 4. Additional research is needed to investigate the mode of action,
non—target toxicity, and the potential use in integrated pest control strategies.
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Table 4. Efficacy of Natural Zeolites on Stored—Product Pests.

Tested Crop Type of the NZ Affecting Insects Reference

Rice

Minazel plus

Oryzaephilus mercator Eroglu et al. [191]

Wheat
Rhyzopertha dominica

Kljajic et al. [192]Sitophilus oryzae
Tribolium castaneum

Maize
Sitophilus zeamais Haryadi et al. [181]
Sitophilus oryzae

Chickpea Lasioderma serricorne Perez et al. [193]

Oilseed (Rapeseed) Klinofeed (dust) Meligethes sp. Daniel et al. [182]

3.9. Mycotoxin Control

The use of aluminosilicates such as zeolites has emerged as a mycotoxin—binding
agent in the feed and food industry to effectively adsorb mycotoxin [194]. Clinoptilolite
has the capacity to adsorb aflatoxins by chelating of the β—dicarbonylmoiety in afla-
toxin with uncoordinated metal ions [195]. There are some well—established criteria to
evaluate the function of any binding additive, such as low inclusion rate, stability over
a wide range of pH, huge capacity, and affinity to absorb various concentrations of my-
cotoxins [194]. The supplementation of mycotoxin binders in contaminated foods has
been suggested as the most advantageous dietary approach to lower the mycotoxins effi-
cacy [196]. Hydrated sodium calcium alumino—silicates—zeolite powder (HSCAS) has
been identified as “aflatoxin—selective clay”, but it does not adsorb other mycotoxins such
as cyclopiazonic acid which may coexist with aflatoxin [197] while responses seem to be
dose—dependent [198]. Parlat et al. [199] observed that clinoptilolite could successfully
minimize the effects of aflatoxin in quail. Natural zeolites with high clinoptilolite content
(over 80%) effectively adsorbed aflatoxin B1, aflatoxin B2, and aflatoxin G2 [200]. On the
contrary, surface modified zeolites with NH4

+ showed very well adsorption of ochratoxin
A, T—2 toxin, zearalenone and aflatoxin B1 [201]. According to Adamovic et al. [202], the
application of zeolites at 2 g kg−1 of silage accelerates the fermentation and reduction of
T—2 toxin, mould and zearalenone. Zeolites application as mycotoxin binder is impressive
against aflatoxicosis, however, their effectiveness against trichothecenes, zearalenone and
ochratoxin is restricted. At the same time, these compounds show high inclusion rates for
vitamins and minerals, which are considered as one of the major disadvantages [203].

4. Limitation of Zeolites

Rather than the huge applicability of zeolites in agriculture, it should be considered
that the zeolites are not without disadvantages. The fine—grained synthetic zeolites are
highly dispersive in nature which creates worrisome problems during their use. After
mining the usable form of natural zeolites is obtained via isolation procedures like crushing
and pellet generation while the application of the synthetic form of zeolites are limited
into hard, wear—resistant granular forms. The practical use of granular zeolites is not yet
discovered [204]. The distribution of the zeolites sources is very limited such asthezeolitic
soil is confined to only 1% of the total geographic area of India and more than 50% of
natural zeolites are produced in China among all over the world [40] that may increase the
price and the gap between demand and supply. Therefore, the uninterrupted availability
of zeolites for farming purposes in worldwide is another major constraint.

5. Future Scope

The significant application of zeolites in agricultural activities has been well estab-
lished by various researchers. However, systematic and comprehensive efforts are further
needed for future research, including (a) precision mapping of the available zeolite de-
posits in each country, (b) determination of the physical stability of zeolites in various
agro-climatic conditions, (c) economically viable organo-zeolitic manure or fertilizer devel-
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opment, (d) evaluation of the risk of leaching of a toxic surfactant that is loosely attached
to the zeolite surface, (e) assessment of the long-term impact of zeolite application on rhi-
zospheric microflora and fauna, (f) understanding of the mechanisms of zeolite-mediated
heavy metal stabilisation in contaminated soil and (h) development of zeolite-rich herbi-
cides to minimise the residual risk hazard.

6. Conclusions

In the situation of rapid urbanisation and over-increasing population where resources
are limited, there is no choice for us but to depend on agricultural productivity. In this
context, various researchers suggest that farming with zeolites may be an option to im-
prove soil’s physical environments in terms of decreasing bulk density, increasing total
porosity and increasing water-holding capacity. Furthermore, the existence of open net-
works in the zeolite structure leads to the formation of new routes for water movement,
subsequently improving the infiltration rate and saturated hydraulic conductivity. Zeolites
also show a strong affinity to various essential nutrient ions by modifying their surface
chemistries using cationic surfactants, multifunctional adsorbents that have the capacity
to trap anions and non-polar organics. Thus, the application of zeolite-loaded fertilizer
improves the nutrient retention in soil and releases nutrients slowly throughout the crop
life; otherwise, rapid mineralisation would take place, leading to nutrient loss. Zeolites
are very much effective in remediation of heavy metal toxicity and wastewater treatment,
and they could help to improve soil’s biological properties. Zeolite application in space
missions as zeoponic substrates opens a new dimension of zeolites. The aforesaid posi-
tive impacts ultimately enhance crop growth, productivity and even quality attributes of
various agronomic and horticultural crops. The higher input use efficiency significantly
reduces greenhouse gas emissions and energy involvement and facilitates better carbon
sequestration. However, the impact of zeolite application varies with the agro-climatic
location, the nature of zeolites, their availability and application strategies, and soil textural
classes. Further studies are needed to identify zeolite resources and the long-term impact
on the soil environment and to develop new, cost-effective zeolite-based nutrient resources
for sound agricultural practices.
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