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Abstract: Rice yield is not only influenced by factors of varieties and managements, but also by
environmental factors. In this study, agronomic trait data of rice and climate data in eastern China
were collected, and rice yields were predicted using a variety of algorithms, including the non-linear
tool of feed-forward backpropagation neural networks (FFBN) and the linear model of partial least
squares regression (PLSR). The results showed that both the agronomic traits and the climate data
were significantly related with rice yield. The PLSR model showed that covariates occurred among
the parameters, and modifications should be considered for climate data-based modelling. The FFBN
model demonstrated better prediction performance than that of PLSR, in which the relation coefficient
(R2) and root mean square error (RMSE) were 0.611 vs. 0.374 and 0.578 vs. 0.865 ton/ha using climate
data, respectively; and 0.742 vs. 0.689 and 0.556 vs. 0.608 using agronomic trait data, respectively.
When using fused data the R2 and RMSE improved to 0.843 vs. 0.746 and 0.440 vs. 0.549, respectively.
The optimum architecture of the FFBN consisted of one hidden layer with 29 neurons. Therefore,
the FFBN algorithm is an effective option for the prediction of rice yield in complex systems of rice
production.

Keywords: rice yield; artificial neural network; partial least squares regression; climate data; agro-
nomic traits

1. Introduction

Rice (Oryza sativa L.) is a staple food for almost half of the world’s population [1],
and 3.5 billion people depend on it for more than one-fifth of their daily calorie intake [2].
In China, rice accounts for 40% of the total calorie intake [3]. Thus, predicting the yield of
the rice crop is important for food security. Rice grows in a wide range of environments
and is productive in many situations where other crops would fail [2]. Both agricultural
management and environmental factors play important roles in the yields of crops. Predict-
ing the yield is not only highly important in field planning, decision making, stockholding,
and risk management, but also provides a reference for agronomic policymakers to meet
the challenge of national food security issues [4]. Therefore, effective and economical
models are needed to predict the rice yield.

Field measurements, which are time consuming and expensive, are often used to
evaluate the rice yield. However, the result of the rice yield from the harvest does not allow
timely coping strategies to be implemented by policymakers. Therefore, many models have
been created to solve this problem. Crop growth models based on biophysical parameters,
which consist of genotypes, weather, soil conditions, and crop management approaches,
have been applied not only to estimate the yield, but also to provide suggestions for crop
yield management [4]. Prediction models using various data sources, such as remote
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sensing data, climate data, soil data, and agronomy traits, have been successfully used to
predict the rice yield, and experimental data from remote systems and environmental data
from local climate stations can be used for the prediction [5]. Son et al. used Moderate
Resolution Imaging Spectroradiometer (MODIS)Normalized Difference Vegetation Index
(NDVI) data to effectively predict the rice yield [4]. Agronomy traits were used to predict
the yield of safflower [6] and sesame [7]. Online soil data and satellite images were also
used to examine the variation of wheat yield [8], in which three different models were used
to compare the responses of the crop yield to soils and land management [9].

In recent decades, various yield prediction models, including linear and non-linear
models, have been developed. Linear and quadratic regression models have been applied to
examine the response of crop yield to NDVI and Enhanced Vegetation Index (EVI) [10–14].
However, linear models are unstable in complex crop production systems. Therefore,
many studies have applied non-linear models that can reliably estimate yield. Various al-
gorithms, such as machine learning (ML) algorithms, random forests (RFs), decision trees,
artificial neural networks (ANNs), and support vector machines (SVMs), have been applied
to modeling non-linear relationships among variables [15–18]. ML showed a good perfor-
mance for large and complex multi-dimensional datasets, and was able to learn the trends
and patterns of data based on large amounts of data. These algorithms have been applied
in many fields [19–25]. A recent study has shown that WOFOST-GTC, an improved model
based on the World Food Studies model, is also suitable for estimating winter rapeseed
production and oil quality under different scenarios [26]. Using an ANN to predict the
adsorption in a rotating package bed (RPB), Li et al. found that ANN models have superior
performance, accurate prediction, and more generalized ability than multiple nonlinear
regression models [21]. The performance of ANN models in predicting ajowan produc-
tion was found to be better than that of multiple linear regression [27]. Artificial neural
network-based methods, widely used for predicting crop yields, have been used with
high accuracy in different fields. However, the modeling effects of linear and non-linear
algorithms, and the contributions of parameters to the rice yield, remain unclear in the
main rice production areas of China.

In this study, back propagation neural networks (BPNNs) and partial least squares
regression (PLSR) were applied to predict the rice yield in eastern China. The objectives of
the study were: (1) to assess the performance of models applied to rice production with
different databases, and (2) to optimize the prediction models, including the models of
BPNN and PLSR, to guide applications in practice.

2. Materials and Methods
2.1. Data Collection

The main research area was in eastern China, where rice is mainly cultivated (Figure 1)
with the typical paddy soil (anthrosol). A dataset including 979 records, consisting of
weather and seed data, was used to build the prediction models. The database was
randomly divided into training and testing sets, in which the training set contained 70% of
the dataset, and the testing set contained the remaining 30%.

Weather data (daily temperature, daily precipitation, wind speed, sunshine duration,
ground surface temperature, pressure, evaporation, solar radiation, and relative humidity)
were acquired from the Greenhouse data share platform (http://data.sheshiyuanyi.com).
The location of each weather station was entered in a geographic information system and
overlaid with a map of China (Figure 1).

The seed’s agronomic trait data were obtained from the China seed industry big data
platform (http://202.127.42.145). In the study area, the suitable rice varieties and specific
agronomic traits were collected to form the dataset for building the prediction models.
The agronomic traits are shown in Table 1.

http://data.sheshiyuanyi.com
http://202.127.42.145
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Figure 1. Location of the study area and climate stations in China.

Table 1. Statistics of collected data.

Variables Synonym Min Max Mean Std

Agronomic Traits

Plant height (cm) PH 75.10 143.5 106.9 14.43
Effective panicle number (ten thousands/hm2) EPN 160.5 441.0 276.2 49.67

Filled grains per panicle (grains) FGPP 73.90 273.70 143.60 43.21
Seed set rate (%) SSR 0.66 0.95 0.84 0.05

Growth period (day) GP 105.1 179.5 133.1 15.22

ClimateData

Ground surface temperature (◦C) GST 17.25 23.53 20.18 1.54
Pressure of the station (hPa) PRS 983.3 1015.5 999.4 9.31

Relative humidity (%) RHU 69.32 81.35 75.56 2.87
Temperature (◦C) TEM 15.24 20.40 17.71 1.40
Wind speed (m/s) WIN 1.37 3.30 2.15 0.45
Evaporation (mm) EVP 1.63 3.60 2.53 0.38
Precipitation (mm) PRE 2.47 6.86 4.45 1.06

Solar radiation (MJ/m2) SR 9.83 22.03 13.71 2.26
Sunshine duration (hour) SSD 4.04 6.20 4.84 0.49

Rice Yield Rice yield (ton/ha) YIELD 5.07 11.30 8.48 1.11

2.2. Feed-Forward Backpropagation Neural Network (FFBN)

The data collected for model construction are shown in Table 1. Because data were over
2 orders of magnitude, to overcome the influence of dimensions on the results, they were
normalized into the interval of [−1,1] using Equation (1):

X∗ =
2X − Xmax−Xmin

Xmax − Xmin
. (1)

where X* is the normalized value, X is the observed value, Xmax is the maximum value of
X, Xmin is the minimum value of X.

The tansig function was selected as the active function of neurons in the FFBN
(Figure 2) (Equation (2)):

f(x) =
2

1 + e−2x − 1. (2)

The number of neurons in the hidden layer, as proposed by Kolmogorov, is:

N = 2 m + 1 (3)

where N is the neuron number in the hidden layer, and m is the neuron number in the
input layer.
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Figure 2. The basic structure of applied neural networks.

However, it is difficult to determine a model’s optimal number of neurons based only
on theory. To obtain the best neural network, the number of neurons of the network must
be adjusted [21]. Based on modeling accuracy and generalization, we chose a network
structure with similar prediction accuracy between the training and testing sets as the
optimal architecture. Furthermore, the testing set with higher prediction accuracy was
preferred [28].

2.3. Partial Least Squares Regression (PLSR)

Partial least square regression is a bilinear factor model, widely used in chemistry,
economics, and pharmaceutical sciences. It has good performance when applied to a matrix
X with many noisy and collinear factors. In this study, we used PLSR to predict the rice
yield (matrix Y) using the climate and agronomic traits (matrix X).

The optimum factor number of the PLSR was determined by Equations (4)–(6):

SSS,h =
n

∑
i=1

(yi − ŷhi)
2 (4)

SPRESS,h =
n

∑
i=1

(
yi − ŷh(−i)

)2
(5)

Qh
2 = 1 −

SPRESS,h

SSS,h
(6)

where yi is the raw data, ŷhi is the fitted value of the i-th sample point after using all sample
points and taking the h component from regression modeling. ŷh(−i) represents deleting
sample point i when modeling, taking the h component from regression modeling, and
then using this model to calculate the fitted value of yi. When Qh

2 ≥ 0.0975, adding a new
component significantly improves the predictive ability of the built model, otherwise the
added new component has no significant meaning [29].

2.4. Model Evaluations

The relation coefficient (R2) and the root mean square error (RMSE) were used to
evaluate the model performances.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (7)
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RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(8)

where yi is the actual data, ŷi is the predicted data of the model, n is the number of samples.
MATLAB 2018a (MathWorks, Natick, MA, USA) was used for data analysis and model

building.

3. Results and Discussion
3.1. Climate Data Based Modeling

The scatter plots of the predicted values using PLSR and BPNN, and the observed
data, are shown in Figure 3. In PLSR modeling, the R2 was 0.374 for the training dataset
and 0.368 for testing dataset, whereas the R2 of the FFBN model was 0.611 and 0.578 for
training and testing datasets, respectively. The RMSE of FFBN was therefore smaller than
that of the PLSR model. Both models showed a significant relationship between measured
and predicted values, indicating that the climate parameters contributed to the rice yield,
and better prediction performance of FFBN was observed.

Rice yields have not only been predicted by linear models (multiple regression) in east
Madhya [30] and at Kharagpur Lower Gangetic Plain in India [31–33], but also by nonlinear
models (ANN and RF) [34,35]. PLSR and BPNN models were first applied in rice yield
prediction; although similar R2 values were obtained in these predictions, total prediction
accuracy was improved in this study.

From PLSR modeling, it was found that GST, TEM, EVP, PRE, and SR showed negative
correlation with rice yield, and the weight ratio of EVP was the largest; PRS, RHU, WIN,
and SSR showed positive correlation with rice yield, and the weight ratio of WIN was the
largest (Figure 4). This demonstrates that different climate parameters played significantly
different roles in the prediction. Soil fertility should play a role in the modelling, but the
qualification of soil properties was time-consuming and costly, which represents a challenge,
particularly in areas with the same soil types. In addition, the roles might be changed for
different regions, for example, rainfall could be the most important parameter in India [31].

Figure 3. Cont.
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Figure 3. (a) Performance of partial least squares regression (PLSR) model with optimized PLS factor
of 2 for training and testing sets using climate data; (b) performance of feed-forward backpropagation
neural network (FFBN) model with optimized number of neurons of 13 in the hidden layer for training
and testing sets using climate data.

Figure 4. Weight ratio of climate parameters from the PLSR model for training and testing sets
using climate data. GST, ground surface temperature (◦C); PRS, pressure of the station (hPa); RHU,
relative humidity (%); TEM, temperature (◦C); WIN, wind speed (m/s); EVP, evaporation (mm); PRE,
precipitation (mm); SR, solar radiation (MJ/m2); SSD, sunshine duration (hour); YIELD, rice yield
(ton/ha).

3.2. Agronomic Trait-Based Modeling

The scatter plots of the predictions of the PLSR and BPNN models, and the observed
data, are demonstrated in Figure 5. In PLSR modeling, the R2 was 0.707 for the training
dataset and 0.689 for the testing dataset; the R2 of the FFBN model was 0.750 and 0.742 for
training and testing datasets, respectively; and the RMSE of PLSR and FFBN in the testing
set was 0.608 and 0.556 ton/ha, respectively. Both models showed significant relationships
between measured and predicted values. In addition, both models, particularly the PLSR
model, were significantly improved using the agronomic trait data compared to using the
climate data. This indicates a greater contribution was made by agronomic traits to the
prediction, and better prediction performance of FFBN was also observed.
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Figure 5. (a) Performance of PLSR model with optimized PLS factor of 4 for training and testing sets
using agronomic traits data; (b) Performance of FFBN model with optimized neurons of 10 in hidden
layer for train and test set using agronomic traits data.

From PLSR modeling, it was found that all of the agronomic traits showed a positive
correlation with rice yield, and the weight ratio of FGPP was the largest, whereas PH was
the smallest (Figure 6).

3.3. Climate and Agronomic Traits Data Fused Modelling

To improve the accuracy of the model, climate and agronomic trait data were fused to
train the PLSR and FFBN model (Figure 7). In PLSR modeling, the R2 was 0.753 for the
training dataset and 0.746 for the testing dataset, and the R2 of the FFBN model was 0.867
and 0.843 for the training and testing datasets, respectively; the RMSE of PLSR and FFBN
in the testing set was 0.440 and 0.549 ton/ha, respectively. Both models, particularly the
FFBN model, were significantly improved using the fused data. In addition, the FFBN
model showed better prediction performance, which demonstrated that the nonlinear
model performed better than the linear model in a complicated system.



Agronomy 2021, 11, 282 8 of 11

Figure 6. Weight ratio from PLSR model for training and testing sets using agronomic trait data.
PH, plant height (cm); EPN, effective panicle number (ten thousands/hm2); FGPP, filled grains per
panicle (grains); SSR, seed set rate (%); GP, growth period (day).

Figure 7. (a) Performance of the PLSR model with optimized PLS factor of 4 for training and testing sets using fused data;
(b) performance of the FFBN model with optimized number of neurons of 29 in the hidden layer for training and testing
sets using fused data.

Phenology and climate data have also been integrated into rice yield modeling using a
variety of algorithms, including multiple linear regression, SVMs, and RFs [36]. The PLSR
model in this study indicated a significantly improved performance compared to that of
conventional multiple linear regression models, and the FFBN model also demonstrated
significant improvements in R2 and RMSE compared to those of other nonlinear ML models.

From data-fused PLSR modeling, it was found that the contributions of agronomic
traits remained similar in the prediction, in which the largest change was that the weight
ratio of EPN was found to be considerably smaller (Figure 8). However, it was found that
significant changes occurred for the contributions of climate parameters. The contributions
of PRS, RHU, and SSD remained positive, and GST, TEM, EVP, and PRE remained negative,
whereas the contributions of WIN and SR reversed. Notably, WIN reversed from the most
positive into the most negative parameter, which indicates significant interactions occurred
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among climate parameters and agronomic traits. Therefore, the covariates from climate
parameters and agronomic traits functioned in the prediction. Although climate parameters
can be used to directly predict rice yield, impacts should be considered regarding the
covariates, and modifications should be considered in applications.

Figure 8. Weight ratio from the PLSR model for training and testing sets using fused climate data and
agronomic trait data. GST, ground surface temperature (◦C); PRS, pressure of the station (hPa); RHU,
relative humidity (%); TEM, temperature (◦C); WIN, wind speed (m/s); EVP, evaporation (mm);
PRE, precipitation (mm); SR, solar radiation (MJ/m2); SSD, sunshine duration (hour); YIELD,
rice yield (ton/ha); PH, plant height (cm); EPN, effective panicle number (ten thousands/hm2);
FGPP, filled grains per panicle (grains); SSR, seed set rate (%); GP, growth period (day).

4. Conclusions

The rice yield was well predicted by nonlinear FFBN and linear PLSR models using cli-
mate data and agronomic trait data. The agronomic trait data indicated larger contributions
to the predictions than the climate data, and data fusion further improved the prediction
capability of the models. The FFBN model showed better prediction performance using
the optimum neural network architecture of one hidden layer with 29 neurons. The cli-
mate factors of wind speed and evaporation, and the agronomic traits of filled grains per
panicle and growth period, made significant contributions to the predictions. Covariates
occurred among agronomic traits and climate parameters, and the contributions of climate
parameters were significantly impacted by the covariates. Although climate data could be
used for rice prediction, proper modifications should be made to improve the reliability
and accuracy of the modelling.
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