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Abstract: A semiochemical-based attractant for Euplatypus parallelus was identified and field-tested.
Analyses of headspace volatile extracts of conspecific males revealed the presence of 1-hexanol along
with lesser amounts of 3-methyl-1-butanol, hexyl acetate, 1-octanol and trans-geraniol, which were
not found in equivalent extracts from females. Emission of 1-hexanol coincided with the emergence
of adults of both sexes during afternoon hours. A synthetic blend of these compounds, with and
without ethanol, was tested in the field. The blend alone attracted a small number of females and no
males. Ethanol alone attracted a small number of females (not significantly different from the blend
alone) but significantly more males than the blend alone. More females were caught with the blend
combined with ethanol than the combined catch of either attractant alone, suggesting a synergistic
interaction. Attraction of males appeared to be a response to ethanol alone. During the trials, two
potential natural enemies of E. parallelus were caught, indicating that they might be eavesdropping
on the semiochemical channels of their prey. Traps containing the male-specific volatile compounds
combined with ethanol could be applied as an effective attractant for detection and monitoring of
E. parallelus as well as for recruitment of its natural enemies.

Keywords: ambrosia beetle; chemical ecology; pheromone; traps; quarantine species; monitoring;
Platypodinae; Bothrideridae

1. Introduction

The Neotropical ambrosia pinhole borer, Euplatypus parallelus (Fabricius) (Coleoptera:
Curculionidae: Platypodinae), is one of the most important invasive forest pests worldwide,
causing damage in natural and managed forests in over 50 countries [1–3]. This beetle is
highly polyphagous, attacking conifers and broadleaf trees of over 80 species from ~25
botanical families [2–4]. Adult E. parallelus damage trees by boring deep galleries into the
wood, inside of which they inoculate fungal symbionts that create a substrate for their
larvae to feed [2,5]. In addition to the damage by the beetles, staining of the woody tissues
by the associated fungi compromises the wood quality specially for furniture and veneer
production [2,6].

Outbreaks of E. parallelus are commonly associated with massive attacks on trees
stressed by biotic or abiotic factors, such as damage by other insects, phytopathogens,
storms, drought, fire, and forestry management practices [2,7–14]. The attacks compromise
the physiology of trees, making them vulnerable to infection by phytopathogens that may
result in high mortality in tree stands [7–9,12]. In Brazil, outbreaks of E. parallelus have
been reported in commercial plantations of Pinus [10], Eucalyptus [11], Hevea brasiliensis
(Willd. ex A.Juss.) Müll.Arg. [15], and Khaya senegalensis (Desv.) A.Juss. (present study, see
Supplementary Material).

Attraction of adult platypodine beetles to stressed trees is mediated by volatile organic
compounds (VOCs) [16,17]. Ethanol is released in large amounts by stressed trees [18–20],
and platypodine beetles use this VOC as a chemical cue to locate their host [21,22]. In this
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case, adult males appear to locate and initiate colonization of a suitable host tree. After
initiating a gallery, males emit a pheromone to attract conspecific females for mating and
reproduction [5].

To our knowledge, male-produced attractant pheromones in platypodine beetles have
been identified for five species: Megaplatypus mutatus (Chapuis) [23,24], Myoplatypus flavicor-
nis (Fabricius) [25], Platypus cylindrus (Fabricius) [26], Platypus koryoensis (Murayama) [27],
and Platypus quercivorus (Murayama) [28]. The pheromone of E. parallelus has not hitherto
been addressed. Despite evidence of attraction of adult E. parallelus to ethanol-baited
traps [29], there is no further information, either on the efficacy of this alcohol compared to
other attractants or controls or on the sex ratio of attracted beetles.

Traps containing semiochemical blends (e.g., pheromones and kairomones) have been
applied with success in surveillance programs for native and exotic forest pests [30]. Our
objective was to identify a semiochemical-based attractant for E. parallelus that could be
incorporated into traps for early detection or delineation of the geographical spread of this
invasive species.

2. Materials and Methods
2.1. Source of Chemicals

The authentic standards 3-methyl-1-butanol (purity ≥99%, CAS No. 123-51-3), 1-
hexanol (≥99%, 111-27-3), hexyl acetate (99%, 142-92-7), 1-octanol (≥99%, 111-87-5), and
trans-3,6-dimethyl-2,6-octadien-1-ol (geraniol; 98%, 106-24-1) were purchased from Sigma-
Aldrich (Darmstadt, Hessen, Germany).

2.2. Source of Beetles

Adult males and females of E. parallelus were obtained from infested trees of African
mahogany, Khaya senegalensis (Desv.) A. Juss. (Meliaceae), from a 15-year-old plantation
(~40 ha) located in the city of Inocência, in the Brazilian state of Mato Grosso do Sul
(19◦13′19” S 52◦09′31” W) on 30 October 2017. This plantation suffered a serious outbreak
of E. parallelus in that year, which resulted in the typical symptoms of dieback wilt syndrome
in many trees (Figure S1; Supplementary Material). Infested trees were sawn into logs
(50 cm long × 25 cm diameter) and sent by courier to the Laboratory of Chemical Ecology
and Insect Behavior, University of São Paulo, Piracicaba, SP (~800 km from Inocência). The
logs were housed in two black plastic containers (89 cm long × 56 cm width × 48.5 cm
height), and each container received three logs. Because adults of E. parallelus are positively
phototactic, the newly emerged beetles were recovered from translucent bottles attached
to the bottoms of the containers. The material was kept in a greenhouse with no control
of environmental temperature and humidity. One of the containers was serviced daily
from 16:00 to 18:00 h and the emerged beetles were used for headspace volatile collections.
To determine the circadian rhythm of emergence of E. parallelus, the other container was
checked for emerged beetles every two hours from 06:00–20:00 h and once from 20:00–
06:00 h over 19 days in November 2017.

In the laboratory, adults of E. parallelus were separated by sex under a stereomi-
croscope, based on morphological features described by Thube et al. [31]. Males have
prominent spinelike projections on the declivity of the elytra, the striae of elytra are deeply
impressed, and the body length is slightly shorter than that of females, whereas females
lack elytral projections and impressed striae. Beetles were placed in groups of 10–20 in-
dividuals of the same sex in 50 mL Falcon tubes containing paper strips for perching and
kept under controlled environmental conditions (25 ± 2 ◦C, 60 ± 10% RH, 12:12 L:D and
5000 lux) ~20 h prior to the headspace volatile collections.

2.3. Collection of Beetle-Produced Volatile Compounds

Headspace volatiles were collected from groups of 10–75 beetles (2–3 days old) of
the same sex in cylindrical glass 500-mL chambers. The inner surfaces of the chambers
were lined with paper towels to provide a surface for perching. Volatiles were collected in
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glass pipettes (8.5 cm long × 0.5 cm i.d.) containing 150 mg of 80/100 mesh HayeSep® Q
adsorbent (Supelco, Bellefonte, PA, USA) held in place with glass wool plugs. Collectors
were connected to outlets of chambers with screw caps fitted with PTFE ferrules. Activated-
charcoal-filtered air was pushed through the chamber at constant flow of ~150 mL/min.
Groups of beetles were continuously aerated for 48 h and then discarded. Chambers
containing only paper towels were aerated in parallel to monitor system contaminants.
Volatiles were eluted from collectors with three successive aliquots of 500 µL of double-
distilled hexane into 2-mL silanized amber glass vials, which were stored at −30 ◦C. Nine
aeration extracts were obtained from each sex. The resulting extracts were not concentrated
for the analyses.

2.4. Identification of Beetle-Produced Volatile Compounds

Headspace volatile extracts were initially analyzed using gas chromatography with
flame ionization detection (GC–FID) to track sex-specific compounds, i.e., the potential
attractant pheromone candidates. Two-microliter aliquots were injected into a GC-2010 gas
chromatograph (Shimadzu Corp., Kyoto, Japan) fitted with a Rtx-1 capillary column (30 m
× 0.25 mm i.d. × 0.25 µm film; Restek, Bellefonte, PA, USA). Injections were made splitless
(purge valve off for 1 min) with injector port set at 250 ◦C and helium carrier gas at a linear
velocity of 30 cm/s. The GC oven was programmed at 35 ◦C (held 1 min), increased to
40 ◦C at 2 ◦C/min (held 1 min), and then increased to 250 ◦C at 10 ◦C/min (held 10 min).

Extracts containing compounds collected from adult males of E. parallelus were ana-
lyzed using gas chromatography–mass spectrometry with a Shimadzu QP2010 Ultra GCMS
(Shimadzu Corp., Kyoto, Japan) fitted with a Rtx-1MS nonpolar column (30 m × 0.25 mm
× 25 µm film; Restek, Bellefonte, PA, USA). One microliter was injected splitless with an
injector and GC oven temperatures were set as described above with helium carrier gas at
44 cm/s and 80.8 kPa inlet pressure. Ion source and quadrupole were set at 250 ◦C. Mass
spectra were recorded in electron impact mode (70 eV) from m/z 35–260 amu, with 4-min
solvent delay. The candidate pheromone compounds were identified by retention indexes
and mass spectra similarity with Library NIST 11 and confirmed by co-injection with au-
thentic synthetic standards. Retention indexes were calculated by comparison with a blend
of C5-C30 straight-chain alkane standards (Sigma-Aldrich, Darmstadt, Hessen, Germany).

2.5. Emission of the Major Male-Specific Volatile Compound Over Time

We ran an extra set of aerations of adult males of E. parallelus to determine the time
of emission of the major sex-specific volatile compound. Groups of 12 adult males (n = 6
replicate groups) were aerated from 06:00 to 22:00 h and volatiles were eluted from collec-
tors at every 4-h interval. Elutions were done with two successive aliquots of 150 µL of
double-distilled hexane spiked with 1 ng/µL of nonyl acetate as internal standard. Because
1-hexanol was the major and most frequent component in male-specific volatile extracts
(see Results), the quantifications were made on this compound. The results were expressed
as nanograms of 1-hexanol per male per 4-h interval.

2.6. Field Bioassay of Synthetic Male-Specific Volatile Compounds

The synthetic blend of male-specific volatile compounds of E. parallelus (see Results)
were field-tested in the same African mahogany plantation in Inocência (see above) from
13 October 2018 to 1 November 2018. We used custom-made cross-vane traps (translucent
polyethylene terephthalate glycol panels; 24 cm high × 19.5 cm width). Translucent
traps have shown excellent results for capture of other platypodine beetles—for example,
M. mutatus in South America [32]. Collection jars (500 mL) were attached to the trap basins
and filled with 250 mL of an aqueous solution of polypropylene glycol (20%) to kill and
preserve the captured beetles. Traps were suspended from inverted L-shaped hangers
of PVC pipe (1.8 m × 2.5 cm i.d.), which were mounted on 1-m reinforcing steel bars
hammered halfway into the ground, so the trap base was at ~1.2 m high. Lures consisted
of clear polyethylene press-seal sachets (5 cm width × 7 cm height, 80 µm wall thickness,
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Daiso Ind. Co., Hiroshima, Japan) containing a roll of dental cotton loaded with 1-mL
solution of a blend of male-produced volatiles in isopropanol. Lures were hung in the
central open slot of the traps with pieces of plastic-coated wire.

The amount of each compound used per lure was based on the natural propor-
tion emitted by adult males (see Results). The release ratio of the major component
was similar to those described in previous studies with other platypodine species (i.e.,
~28 mg/day) [32–34]. Because it was proved that adult E. parallelus are attracted to
ethanol [29], we included a treatment lure composed of a 30-mL polyethylene flask filled
with 99.5% ethanol. The flask was fitted with a 7-cm-long cotton-string wick to provide a
high ethanol release rate (~2 g/day), which is necessary to trigger the attraction of ambrosia
beetle species [21,35]. Thus, the field bioassay comprised the following treatments: (1) MSV
(male-specific volatiles) = blend of 3-methyl-1-butanol (1.5 mg), 1-hexanol (50 mg), hexyl
acetate (2 mg), 1-octanol (3 mg), and geraniol (0.5 mg); (2) ethanol (EtOH; 20 mL); (3) MSV
+ EtOH; and (4) control (1 mL of neat isopropanol). Isopropanol was chosen because we
have used it as a standard solvent for coleopteran pheromones [36] and it appears not to
affect the attraction of beetles at the concentrations used here.

Treatments were assigned randomly to traps in five blocks, and each block contained
one trap for each treatment. Traps were placed 30 m apart and blocks were spaced 50 m
from each other. Traps were checked daily for captured beetles, at which time treatments
were changed one position within blocks to control for positional effects. MSV lures were
replaced every two days to prevent complete depletion of the minor components, and
flasks were refilled with ethanol when the volume was depleted by 50%.

Captured beetles were kept in Falcon tubes filled with 70% ethanol until identification
in the laboratory. Beetles were collected under ICMBio permit #60705-2, issued by the
Brazilian Ministry of the Environment. Voucher specimens of E. parallelus were deposited
in the “Luiz de Queiroz” Museum of Entomology, Department of Entomology and Ac-
arology (USP/ESALQ), Piracicaba, SP, Brazil, under register codes ESALQENT000053 to
ESALQENT000062.

2.7. Statistical Analysis

Differences between treatment means in the number of beetles caught were tested
individually for species (represented by at least 10 specimens), using the nonparametric
Friedman’s test (PROC FREQ, option cmH) [37] because the assumptions of ANOVA were
violated by heteroscedasticity [38]. Replicates were considered as a block and collection
date and replicates with zero captures (due, for example, to inclement weather) were
omitted from the analysis. In recognition of the multiple statistical tests of treatment
effects, significance level was adjusted by the number of species included in the analyses
(i.e., α = 0.017, n = 3 independent analyses), according to the Bonferroni procedure [39].
Pairs of means were compared using the Ryan-Einot-Gabriel-Welsch Q multiple range
test, which controls the Type I experimentwise error rate [37]. The sex ratio of adult
E. parallelus emerged from African mahogany logs and caught with traps baited with the
optimal attractant was compared to a nominal ratio of 0.5 with 95% Clopper–Pearson exact
confidence intervals at 5% probability [40].

3. Results
3.1. Identification of Beetle-Produced Volatile Compounds

Headspace volatile extracts of adult males of E. parallelus showed five peaks that
were absent from equivalent extracts of conspecific females (Figure 1) and controls. Their
identities corresponded to the following compounds: 3-methyl-1-butanol (Retention Index
on Rtx-1 column = 702), 1-hexanol (RI = 820), hexyl acetate (RI = 996), 1-octanol (RI = 1055),
and geraniol (RI = 1233), which were produced by beetles in ratios (mean ± SD, n = 3
aeration extracts) of 2.6 ± 0.3:100:2.9 ± 0.5:4.3 ± 2.2:1.6 ± 0.8, respectively. Only 1-hexanol
and hexyl acetate were found in 100% of male extracts; all other male-specific compounds
were found in 75% of the extracts.
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Figure 1. Representative total ion chromatograms of headspace volatile extracts from adult males (top trace) and females
(bottom, inverted trace) of Euplatypus parallelus. Numbers on peaks represent the male-specific volatile compounds:
1 = 3-methyl-1-butanol; 2 = 1-hexanol; 3 = hexyl acetate; 4 = 1-octanol; and 5 = geraniol.

3.2. Circadian Rhythm of Adult Emergence

A total of 191 female and 200 male adults of E. parallelus emerged from mahogany logs
during 19 days of evaluation. The sex ratio of emerged beetles did not differ significantly
from an expected ratio of 0.5 (48.9% females; Clopper–Pearson exact confidence intervals:
0.438–0.4539, p = 0.649). Emergences began in early afternoon with adult males, but a
prominent peak of emergence including both sexes occurred between 14:00 and 18:00 h.
After that time, emergences declined dramatically. No beetles emerged from 20:00 h until
next afternoon (Figure 2).

A total of 46 adults of Sosylus cf. cursorius (Pascoe) and Sosylus squirei (Pascoe)
(Coleoptera: Bothrideridae) emerged from African mahogany logs during the 19-day col-
lection.

3.3. Emission of the Major Male-Specific Volatile Compound Over Time

1-Hexanol was emitted by adult males of E. parallelus in all time intervals evaluated.
Peak emission occurred from 14:00 to 18:00 h (Figure 3), corresponding with peak adult
emergence (see above).
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Figure 2. Mean (± SE) numbers of adult females and males of Euplatypus parallelus emerged from logs of Khaya senegalensis
over different times of day during 19 days of evaluation.
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Figure 3. Mean (± SD) amount of 1-hexanol emitted per male of Euplatypus parallelus in every 4-h
interval from 06:00–22:00 h.
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3.4. Field Bioassay of Synthetic Male-Specific Volatile Compounds

Overall, 302 adult E. parallelus (194 males and 108 females) were caught during the
field bioassay to test the reconstructed blend of male-specific volatile compounds. Adult
females were significantly attracted to traps containing the combination male-specific
volatiles (MSV) + ethanol (mean ± SE of 1.7 ± 0.2 beetles/replicate) (Figure 4). A small
number of females, not significantly different from zero, were collected in traps containing
the MSV alone or ethanol alone. Adult males were attracted equally to the MSV + ethanol
(1.9 ± 0.3) and ethanol alone (1.2 ± 0.3). No males were captured in traps baited with the
MSV in the absence of ethanol (Figure 4). The sex ratio of beetles caught with the MSV
+ ethanol was male-biased (42.4% females; Clopper–Pearson exact confidence intervals:
0.355–0.495, p = 0.029). No other platypodine species was captured during the bioassay.
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Figure 4. Mean (± SE) numbers of adult females and males of Euplatypus parallelus caught with traps containing synthetic
male-specific volatile compounds in combination or not with ethanol. Treatment abbreviations: MSV = male-specific
volatiles, i.e., blend of 3-methyl-1-butanol, 1-hexanol, hexyl acetate, 1-octanol, and geraniol in the same ratio produced by
conspecific males; EtOH = 99.5% ethanol; control = neat isopropanol. Type of attractant lure significantly affected the trap
catch of females (Q3, 200 = 101.4, p < 0.0001) and males (Q3, 252 = 133.6, p < 0.0001). Means followed by same letter within a
panel are not significantly different according to the Ryan-Einot-Gabriel-Welsch Q multiple range test at 5% probability.

Adults of the two bothriderid beetle species that emerged from the mahogany logs
were also caught in the treatment traps, i.e., 18 adults (sexes combined) of S. cf. cursorius
and 22 adults of S. squirei. Adult S. cf. cursorius were significantly more attracted to the
MSV + ethanol compared to other treatments (Figure 5), whereas adult S. squirei were
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attracted in significant numbers to the MSV + ethanol than to ethanol alone and the control,
but the combination did not differ statistically from MSV alone (Figure 5).
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Figure 5. Mean (± SE) numbers of adults of Sosylus cf. cursorius and Sosylus squirei captured with traps containing synthetic
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4. Discussion

Adult male E. parallelus produced five sex-specific volatile compounds, including
1-hexanol and smaller amounts of 3-methyl-1-butanol, hexyl acetate, 1-octanol, and trans-
geraniol. Some of these compounds have been reported as male-produced pheromone
components in other platypodine species, e.g., 1-hexanol and 3-methyl-1-butanol in M. flav-
icornis [25], 1-hexanol in P. cylindrus [26], and trans-geraniol in P. koryoensis [27].

During the field bioassay, traps containing the synthetic blend of male-produced
volatile compounds did not attract adult female E. parallelus, equivalent to the catch of
traps baited with ethanol or isopropanol (a negative control). Significantly more females
were caught in traps baited with the male-specific volatiles + ethanol. Males were not
attracted to the male-specific volatiles alone, but they were significantly attracted to ethanol
alone. The catch of males did not increase in traps containing ethanol combined with the
male-specific volatiles. These results suggest that the male-specific volatiles comprise the
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putative sex-pheromone components of E. parallelus that attract conspecific females, but
this attraction functions only in the presence of ethanol that is presumably produced by
trees that have been compromised by environmental stress factors. Synergism implies that
the response of insects to the mixture of pheromone and plant volatiles is greater than the
sum of the responses to the individual components [41]. This phenomenon has been well
documented in Lepidoptera for sex pheromones and in Coleoptera (Curculionidae) for
aggregation pheromones [41]. Synergism between insect-produced volatile pheromones
and host-produced ethanol is a common feature of the life history of several ambrosia
beetle species that colonize stressed trees [42].

Stressed trees attract ambrosia beetles because they release large amounts of ethanol
in contrast to healthy trees [18,20]. Ethanol release reflects the suitability of the host for
cultivation of fungal symbionts for feeding the beetles’ larvae [21,22]. Trees can be stressed
by a range of biotic and abiotic factors, including attack by other insects, phytopathogens,
storms, fire, drought, flooding, and forestry practices that injure woody tissues and induce
metabolic production of ethanol [18,20]. In smaller amounts, ethanol can also be released
by fungal fermentation of infected woody tissues [22,43,44].

The putative male-produced sex pheromone combined with ethanol is a critical com-
ponent in the reproductive behavior of E. parallelus. Ethanol is a kairomone that lures adult
males to a suitable host tree, in which they initiate galleries and emit a sex pheromone
to call in females. Ethanol combined with the sex pheromone guides conspecific females
to the host tree for mating and reproduction. This scenario seems to be true for other
platypodine species, where adult males are responsible for seeking suitable host trees and
subsequently produce attractant pheromones [5].

The sex ratio of adult E. parallelus attracted by the blend of male-specific volatiles +
ethanol was male-biased, whereas the sex ratio of conspecifics emerged from mahogany
logs was 1:1. However, further independent sampling of the actual sex ratio in the ma-
hogany plantation during the course of bioassays should be undertaken to determine
whether males are more attracted to this blend than are females.

In addition to these biological data, we found that the peak in emission of the major
male-produced volatile compound (1-hexanol) of E. parallelus lasts from early afternoon
until sunset, which corresponds to the period of greatest emergence of conspecific adults.
This diurnal activity rhythm appears to occur in other platypodines—for example, M. mu-
tatus [24], M. flavicornis [45], and P. quercivorus [46].

During the field trial, adults of S. cf. cursorius and S. squirei were attracted to some
treatments. These species belong to the coleopteran family Bothrideridae, subfamily
Bothriderinae, tribe Deretraphrini [47,48]. Adults of both species were attracted mainly to
traps containing the male-specific volatiles of E. parallelus + ethanol. Adults of these species
were also recovered from the African mahogany logs evaluated. Based on these results,
S. cf. cursorius and S. squirei can be considered potential natural enemies of E. parallelus,
which agrees with previous studies that report other species of the genus as predators and
ectoparasitoids of platypodine beetles [49–51]. Adult bothriderids may be eavesdropping
on the semiochemical channels of E. parallelus to locate their prey.

The increasing global trade of goods and movement of people have contributed to the
spread of non-native and invasive insect species, especially forest pests [52]. Semiochemical-
based traps have become important for early detection and monitoring of these invaders
wherever they occur [30]. The inexpensive, readily available attractant semiochemicals
identified here have good potential for use in surveillance programs of E. parallelus. Lures
containing the male-specific volatile compounds of E. parallelus + ethanol could be incorpo-
rated into traps for early detection of this species in ports of entry, as well as for delineation
of geographical spread and for monitoring in cultivated forests. Moreover, semiochemical-
based attractant lures could be deployed in forest plantations to attract female beetles to
kill stations (mass trapping), to nonhost (decoy) tree species, as a mating disruptor, or to
recruit natural enemies for biological control of this important platypodine species.



Agronomy 2021, 11, 266 10 of 12

We have not determined if all five volatile compounds isolated from male E. parallelus
are necessary for attraction of females. Furthermore, other volatile organic compounds
emitted by suitable host trees, which may enhance the attraction of adult beetles to ethanol,
and the optimal release rate of compounds in the lures merit further investigation.

5. Conclusions

Adult male E. parallelus sex-specifically produced 1-hexanol (major), 3-methyl-1-
butanol, hexyl acetate, 1-octanol, and trans-geraniol. In the field, a synthetic blend of
these volatile compounds, in combination with ethanol, attracted conspecific females.
Males were attracted equally to ethanol alone or to male-specific volatiles + ethanol. It is
unclear if all the blend compounds are necessary and sufficient for the attraction that we
observed. Two potential natural enemies of E. parallelus were attracted by the combina-
tion male-specific volatiles + ethanol blend. Traps containing this semiochemical-based
attractant may be useful in surveillance and management programs for this important
platypodine species.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
395/11/2/266/s1, Figure S1: African mahogany, Khaya senegalensis trees showing the symptoms of
dieback wilt syndrome (a) and resinosis (b) supposedly attributed to stress factors in a plantation in
southwestern Brazil.
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