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Abstract: This study proposes the machine learning based classification of medical plant leaves.
The total six varieties of medicinal plant leaves-based dataset are collected from the Department of
Agriculture, The Islamia University of Bahawalpur, Pakistan. These plants are commonly named
in English as (herbal) Tulsi, Peppermint, Bael, Lemon balm, Catnip, and Stevia and scientifically
named in Latin as Ocimum sanctum, Mentha balsamea, Aegle marmelos, Melissa officinalis, Nepeta
cataria, and Stevia rebaudiana, respectively. The multispectral and digital image dataset are collected
via a computer vision laboratory setup. For the preprocessing step, we crop the region of the leaf
and transform it into a gray level format. Secondly, we perform a seed intensity-based edge/line
detection utilizing Sobel filter and draw five regions of observations. A total of 65 fused features
dataset is extracted, being a combination of texture, run-length matrix, and multi-spectral features.
For the feature optimization process, we employ a chi-square feature selection approach and select
14 optimized features. Finally, five machine learning classifiers named as a multi-layer perceptron,
logit-boost, bagging, random forest, and simple logistic are deployed on an optimized medicinal
plant leaves dataset, and it is observed that the multi-layer perceptron classifier shows a relatively
promising accuracy of 99.01% as compared to the competition. The distinct classification accuracy by
the multi-layer perceptron classifier on six medicinal plant leaves are 99.10% for Tulsi, 99.80% for
Peppermint, 98.40% for Bael, 99.90% for Lemon balm, 98.40% for Catnip, and 99.20% for Stevia.

Keywords: medicinal plant leaves; multi spectral features; texture features; classification; machine
learning; Multi-Layer Perceptron

1. Introduction

Living things on earth depend on the oxygen produced by plants. There are many
different types of plants, all of them playing an important role in maintaining the earth’s
biodiversity by providing air and water to living humans [1]. Medicinal plants are plants
used in the treatment and prevention of certain diseases and conditions that affect hu-
mans [2]. There are many different types of herbal remedies and they can vary from place to
place, resulting in a similar pattern of “size” and “shapes” [3]. These plants have excellent
medicinal properties from roots to leaves. The leaves of some herbs such as Karpooravalli
(Coleus ambonicus), Podina (Mentha arvensis), Neem (Adidirachta indica), Thudhuvalai
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(Solanum trilobatum), Basil (Ocimum sanctum), etc. [4], are used in our life today. Some
leaves have their own medicinal properties such as skin diseases, colds, blood purifier,
indigestion [2].

Thus, medical plants are plants used for their particular properties beneficial to
human health, even animal health. First called “simple” from the Middle Ages in medieval
medicine, today they correspond to products from traditional or modern herbal medicine.
The plant is rarely used whole; at least one of its parts (leaf, stem, root, etc.) can be
used to heal itself. Different parts of the same plant can have different uses [5]. Plants
with medicinal properties can also have food or condiment uses or even be used in the
preparation of sanitary drinks. Since Antiquity, the theory of signatures, systematized in
the 16th century, has played a major role in the distinction by analogy of plants necessary
for human healing, before being extended, contested from the 17th century and completely
abandoned by the elite community in the 18th century [6].

According to dissemination data, around the world, 14–28% of plants are listed as having
medicinal use. Surveys carried out at the beginning of the 21st century revealed that 3–5% of
patients in Western countries, 80% of rural populations in developing countries, and 85% of
populations in southern Sahara use medicinal plants as their main treatment [7,8].

Nowadays, the herbal medicine market is filled with counterfeit or low-quality prod-
ucts, affecting human health and sustainable development from around the world. There-
fore, it becomes a hot area of research to develop tools aiming to classify herbal medicines.
It is now admitted that the leaf of the plant has characteristics that are easy to extract
and analyze. Therefore, it is naturally used as the main basis for the identification of
all medicinal plants. With the increasing development of image processing, automatic
computer image recognition is now widely used in this regard [9,10].

Image processing algorithms are used to identify the leaf images [11–20]. The back-
ground behind this claim is developed below. As a first fact, medicinal plants are difficult
to identify because most of them are found in deep forests, and the leaves look the same. If
one chooses the wrong herb by mistake, one may have a serious health problem, which
can lead to loss of human life. There are many ways to identify a plant. Plants are currently
manually identified and subject to human error [11]. To avoid this, several researchers
have developed an automated system identification system [12]. Many researchers work
on plant leaf disease classification, segmentation, and quality assessment, for instance,
Reference [13] proposed a medicinal plant classification framework using the shape and
color feature of the leaf. They deployed a Support Vector Machine (SVM) classifier on the
optimized features dataset and obtained 96.66% accuracy. Reference [14] proposed a plant
recognition system using leaves. They used 50 medicinal images collected from google
images and employed edge detection algorithms. The texture patch using Convolution
Neural Networks (CNN) approach was deployed for classification and observed a 97.80%
accuracy result. Reference [15] proposed a system for the classification of sugarcane leaf
disease based on fungi. They used the triangle threshold approach for the segmentation
of sugarcane leaves and obtained 98.60% accuracy. Reference [16] proposed a leaf image
classification process using CNN. They collect 12,673 samples of the leaf of soybean and de-
sign LeNet architecture and obtain a 98.32% classification result. Reference [17] presented
a Romanian medicinal plant recognition framework. They used color and gray level (GL)
images for his experimentation. The fused approach of Linear Discriminant Analysis (LDA)
and Principal Component Analysis (PCA) are deployed and 92.9% accuracy is observed.
Reference [18] suggested a novel plant disease approach utilizing a fuzzy logic-based
segmentation approach. They extracted fused features that are a combination of color
texture and histogram features and deployed various Machine Learning (ML) classifiers.
The random forest classifier gives a very promising accuracy that is 98.4%. Reference [19]
proposed the Local Binary Patterns (LBP) approach for plant classification using leaves
images. They dealt with texture feature extraction, salt and pepper noise removal using ML
techniques. Finally, they achieved a 93.5% cumulative classification result. Reference [20]
proposed a leaf-based classification of citrus plants. They used digital images and extracted
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57 multi-features datasets, then optimized these features into 15 features via the ML ap-
proach. For the classification purpose, they employed various classifiers and it has been
observed that MLP gives a higher performance which is 98.14% on a region of interest size
of (256 × 256).

Contribution

The main aim of this study is to propose a framework for the classification of medicinal
plant leaves based on multispectral and texture features using a ML approach. This study
contains six steps which are given below:

• Collect multi-spectral and digital image dataset via computer vision laboratory setup.
• Crop exactly leaf region, and transform into the gray level format with (800 × 800)

resolution.
• Employ seeds intensity-based edge/line detection utilizing Sobel filter.
• Draw 5 regions of observation on each image and extract fused features from the

dataset.
• Optimize fused features dataset using chi-square feature selection approach.
• Apply machine learning based classifiers for observing medicinal plant leaves classifi-

cation.

2. Materials and Methods

We recall that the medicinal plant leaves were collected from the Department of
Agriculture, The Islamia University of Bahawalpur, Pakistan located at 29◦23′44” N and
71◦41′1” E [21]. The foundation of the dataset holds six types of medicinal plants leaves
commonly English named as (herbal) Tulsi, Peppermint, Bael, Lemon balm, Catnip, and
Stevia and scientifically named as (in Latin) Ocimum sanctum, Mentha balsamea, Aegle
marmelos, Melissa officinalis, Nepeta cataria, and Stevia rebaudiana, respectively. These plants
are described in Figure 1.
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digital image dataset of 100 × 6 = 600 colored images of pixel-dimension 1280 × 1024 where 

Figure 1. Sample of the medicinal plants leaves belonging to the dataset.

In the experimentation, we used 50 fresh leaves of medicinal plants for each variety.
Firstly, 100 digital images (50 front and 50 back) are taken for each variety. So, the size
of digital image dataset of 100 × 6 = 600 colored images of pixel-dimension 1280 × 1024
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where size of individual pixel is 0.26 mm was developed to perform further experiments.
The multi spectral dataset was collected via a multi-spectral radiometer (MSR5) with 4 feet
height. They extract five bands with range of 460 nm to 1560 nm known as “Red” (R),
“Blue” (B), “Green” (G), “Near Infrared” (NIR) and “Spectral Bands Shortwave Infrared”
(SWIR). In this regard, a total of 1200 samples were acquired, 600 samples of digital image,
and 600 samples of multispectral dataset per each type of medicinal plant leaves utilizing
computer vision laboratory setup as explained in Figure 2.
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Figure 2. Computer vision laboratory setup for medicinal plant leaves image acquisition.

The collected dataset is noise free due to the computer vision laboratory setup. For
image pre-processing, the medicinal leaves digital image dataset is examined in OpenCV,
computer vision library [22]. Also, the Sobel filter was employed for edge/line detection
as shown in Figure 3.
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After that, we crop exactly the leaf region with (800 × 800) resolution, all the digital
color images being transformed into the 8-bit gray-level format, and draw five regions
of observation (ROO’s) on each sample image. The procedure of taking ROOs is divided
into two steps; the first step, we take the size of ROOs is (220 × 220) and, in the second
step, we take the size of ROOs is (280 × 280) and finally get the different datasets for
experimentations. A total of 1000 (5 × 200) ROO’s have been generated for each medicinal
plant leaf as represented in Figure 4. In this manner, a total of 6000 (6 × 1000) ROO’s has
been generated on 6 varieties of medical plant leaves.
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2.1. Proposed Methodology

The proposed methodology for the medicinal plant leaves classification is described
below. In the first step, all the images acquired in the dataset were examined in OpenCV,
computer vision software library [22]. Then, the Sobel filter was employed for edge/line
detection. This process is based on the seed intensity (pixel threshold value) of connected
pixels of an image; if the threshold value is greater than six then mark the region called a
region of observation (ROO’s). The graphical representation of the proposed methodology
for the classification of medicinal plant leaves based on fused features using machine
learning techniques is described in Figure 5.
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2.2. Fused Features Extraction

The OpenCV, computer vision software library [22] was used for the fused feature
extraction process that holds texture, spectral, and gray level run length matrix features. A
total of 65 fused features were extracted from each ROO’s, which is grouped as 40 texture
features, 5 multi-spectral features, and 20 run-length matrix features as described below.
The extracted dataset has a large features vector space (FVS) size of 390,000 (6000 × 65) for
medicinal plant leaves varieties classification.

2.2.1. Texture Feature

The texture features are based on GL co-occurrence matrix [23–25], which is calculated
via 4 dimensions (0, 45, 90, 135) degrees and distance between seeds. In this study, we used
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5 average features known as energy (ξ), inertia (τ), entropy (ψ), inverse difference (IDE),
and correlation (ϕ). First, energy is defined by

ξ = ∑
u

∑
v
(ρuv)

2 (1)

where u and v are the spatial coordinates and ρuv is gray level values. The correlation is
specified by

ϕ =
1

σuσv
∑
u

∑
v
(u− µu)(v− µv) ρuv (2)

Also, the formula of the entropy is the following:

ψ = − ∑
u

∑
v
ρuv log2 ρuv (3)

The IDE can be defined as

IDE = ∑
u

∑
v

ρuv
|u− v| (4)

Finally, the inertia is obtained as

τ = ∑
u

∑
v
(u− v)2 ρuv (5)

2.2.2. Spectral Features

The frequency domain features, known as spectral features, are used in texture analysis.
These features are calculated as power of different areas (A) also known as rings [26]. The
numerical explanation is given as

Spectral Region Power = ∑u∈A v∈A ∑
∣∣∣η(u, v)2

∣∣∣ (6)

where η(u, v) is the frequency domain.

2.2.3. Gray Level Run-Length Matrix (GLRLM)

Galloway [27,28] introduced the Gray Level Run Length Matrix (GLRM), a section
of gray also known as run length. It can be described as a linear multitude of continuous
pixels with the same gray level in a particular direction. The basics on this approach is
recalled below. Let ηp be the number of seeds in the image, ηr be the number of discrete
run lengths in the image, ψ(v1, v2|θ) be the run length matrix for an arbitrary direction θ,
ηr(θ) be the number of runs in the image along angle θ and ηg be the number of discrete
intensity values in the image. Then, the short run emphasis is described as

RLe1 =
∑

δg
w1=0 ∑δr

w2=1
φ(w1,w2|λ)

w2
2

δr(λ)
(7)

Long run emphasis is given by

RLe2 =
∑

δg
w1=1 ∑δr

w2=0φ(w1, w2|λ)w2
2

δr(λ)
(8)

Gray level non-uniformity corresponds to

RLe3 =
∑

δg
w1=1

[
∑δr

w2=1φ(w1, w2|λ)
]2

δr(λ)
(9)
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Run percentage can be defined as

RLe3 =
δr(λ)

δp
(10)

Low gray level run emphasis is described as follows:

RLe4 =

∑
δg
w1=1 ∑δr

w2=1 φ(w1, w2)
/w2

1

δr(λ)
(11)

High gray level run emphasis is obtained as

RLe5 =

∑
δg
w1=1 ∑δr

w2=1 φ(w1, w2)
w2

1

δr(λ)
(12)

Short run low gray level emphasis is defined by

RLe6 =

∑
δg
w1=1 ∑δr

w2=1 φ(w1, w2)
/w2

1w2
2

δr(λ)
(13)

Long run low gray level emphasis is determined as

RLe7 =

∑
δg
w1=1 ∑δr

w2=1 φ(w1, w2)
w2

2/w2
1

δr(λ)
(14)

Finally, run length variance is presented below:

RLe8 =
δg

∑
w1=1

δr

∑
w2 =,1 φ(w1, w2 )

(w2 − λ)2 (15)

2.3. Feature Selection

The feature selection (FS) process is the most important part of the ML based clas-
sification. This process aims to select the most valid and remove the extra features with
no importance in the classification process [29]. In this study, we observe that a total of
65 fused features dataset has been extracted from each ROO’s with a large FVS size of
390,000 (6000 × 65) for medicinal plant leaves varieties classification that takes too much
time in classification. The feature selection should be to identify the minimum number of
columns/features from the data source that are significant in building a model [30]. Our
goal in this research is to achieve better accuracy in less time. It is observed that without
feature selection, the Multi-Layer Perceptron (MLP) classifier gives 98.81% accuracy results
where the size of ROO is 280 × 280, but it takes a lot of time (4.83 Seconds) due to large
number features. But when we go with selected features, we obtain higher accuracy in less
time. There many ML based features selection approaches such as PCA technique provided
excellent results on linearly separated dataset, also used in the selection of features [31].
The PCA method is an unsupervised approach [32], but the medicinal plant leaves varieties
dataset is labeled, and the PCA results were not as promising on the labeled data. To
solve this problem, ML based supervised feature selection techniques, namely, chi-square
attribute evaluator with ranker search method [33] were used to select optimize features
from the large FVS. This approach was better compared to PCA and was able to obtain the
sub-dataset with the optimal characteristics for this large dataset. The chi-square attribute
evaluator with ranker search method is used in ML to rank the independence of two
discrete properties [34]. In FS, we specifically check whether the presence of a particular
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term and the presence of a particular class is independent. Formally, when a document is
given to η, we estimate the following amounts for each term and rank them according to
their scores through the following formula:

x2
(η,l,m) = ∑l∈{0,1}∑γm∈{0;1}

(N γlγm − Eγlγm)
2

Nγlγm
, (16)

where N is the observed frequency and E is the expected frequency, if the document
contains the terms i and zero, then the value of N γl is 1 and if the document is in class
j and zero, the value of Eγl is 1. The chi-square feature selection technique deployed on
the medicinal plant leaves dataset reduces the FVS, and gives 14 optimized features with
FVS size of 84,000 (6000 × 14) for medicinal plant leaves classification. Figure 6 shows the
three-dimensional (3D) representation of the optimized features dataset within six classes
using PCA. The MDF1, MDF2, and MDF3 are three different dimensions (like x, y, z) of
most discriminant features.
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The fused optimized features for the classification of medicinal plant leaves dataset
are shown in Table 1.

Table 1. Chi-square based fused optimized feature for the classification medicinal plant leaves.

Sr. No. Features Sr. No. Features

1 Texture Energy Average 8 Skewness
2 Correlation Range 9 135dgr_RLNonUni
3 Inverse Diff Range 10 R
4 Texture Entropy Range 11 G
5 45dgr_GLevNonU 12 B
6 Vertl_GLevNonU 13 NIR
7 S (5, 5) Entropy 14 SWIR

2.4. Classification

Five machine learning classifiers named as multi-layer perceptron (MLP), LogitBoost
(LB), Bagging (B), Random Forest (RF), and Simple Logistic (SL) are deployed on the
medicinal plant leaves dataset. It is observed the MLP performed well as compared to the
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other implemented classifiers [35]. The mathematical foundations of the MLP are given
below. The production of input weight and bias are summed using the summation function
(δn) defined by

δn =
k

∑
i=1

ηij Ii + θi. (17)

where Ii is the input variable I, k is the number of inputs, ηij is the weight, and θi is the bias
term. The activation functions of MLP is chosen as

i(x) =
1

1 + e(δn)
(18)

The output of neuron j can be obtained as

zi = ψi

(
k

∑
j=1

ηij Ii + θi

)
(19)

The medicinal plant leaves classification MLP framework with all regulation parame-
ters are shown in Figure 7. The deployed MLP classifier with all parameters is defined in
Table 2.

Agronomy 2020, 10, x FOR PEER REVIEW 10 of 15 

 

where  is the input variable I, k is the number of inputs,  is the weight, and  is the 
bias term. The activation functions of MLP is chosen as ( ) = 11 + e(δ )  (18)

The output of neuron j can be obtained as 

=  +  (19)

The medicinal plant leaves classification MLP framework with all regulation param-
eters are shown in Figure 7. The deployed MLP classifier with all parameters is defined in 
Table 2. 

 
Figure 7. MLP Based classification of medicinal plant leaves framework. 

Table 2. Deployed MLP classifier parameters. 

Parameter Value 
Input Layers 1 

Hidden Layers 14 
Neurons 18 

Learning Rate 0.4 
Momentum 0.5 

Validation Threshold 18 
Epochs 500 

The deployed MLP classifier with all parameters is defined in Table 2. It depends on 
threshold point values which are selected manually. In this study, the experiments were 
performed with different values but, after a large number of tests, these selected values 
bring complete satisfaction. If we increase or decrease these values, our accuracy will be 
disturbed. 

3. Results and Discussion 
Five ML classifiers namely multi-layer perceptron (MLP), LogitBoost (LB), Bagging 

(B) with REPTree, Random Forest (RF), and Simple Logistic (SL), deployed on fused opti-
mized features dataset for the classification of medicinal plant leaves. The foundation of 
the dataset holds six types of medicinal plant leaves named as Tulsi, Peppermint, Bael, 

Figure 7. MLP Based classification of medicinal plant leaves framework.

Table 2. Deployed MLP classifier parameters.

Parameter Value

Input Layers 1
Hidden Layers 14

Neurons 18
Learning Rate 0.4
Momentum 0.5

Validation Threshold 18
Epochs 500

The deployed MLP classifier with all parameters is defined in Table 2. It depends on
threshold point values which are selected manually. In this study, the experiments were
performed with different values but, after a large number of tests, these selected values
bring complete satisfaction. If we increase or decrease these values, our accuracy will
be disturbed.
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3. Results and Discussion

Five ML classifiers namely multi-layer perceptron (MLP), LogitBoost (LB), Bagging (B)
with REPTree, Random Forest (RF), and Simple Logistic (SL), deployed on fused optimized
features dataset for the classification of medicinal plant leaves. The foundation of the
dataset holds six types of medicinal plant leaves named as Tulsi, Peppermint, Bael, Lemon
Balm, Catnip, and Stevia. The medicinal leaves classification based on fused features
is performed using cross-validation (10-fold) data splitting approach. Different testing
parameters such as “Receiver Operating Characteristic” (ROC), “Kappa Statistics”, “False
Positive (FP), “Recall” (R), “True Positive” (TP), and “F-Measure” is observed [27]. Firstly,
an experiment performed on ROO’s size (220× 220) for the classification of medicinal plant
leaves and observed a well-organized accuracy which is 95.87%, 95.04%, 94.21%, 93.38%,
and 92.56% using MLP, LB, B, RF, and SL, respectively, as shown in Table 3.

Table 3. Classification of medicinal plant leaves using five ML classifiers with ROO’s size of (220 × 220).

Classifiers Kappa Statistics TP Rate FP Rate Recall F-Measure ROC Time (Sec) Precision

MLP 0.9504 0.959 0.008 0.959 0.958 0.999 0.19 0.961
LB 0.9405 0.950 0.010 0.950 0.950 0.989 0.11 0.951
B 0.9306 0.942 0.012 0.942 0.941 0.991 0.3 0.944

SLg 0.9207 0.934 0.013 0.934 0.934 0.960 0.10 0.935
RF 0.9107 0.926 0.015 0.926 0.926 0.955 0.7 0.927

It is observed that the MLP performs efficiently insisted of other employed classifiers
when the size of ROO’s 220 × 220, as shown in Figure 8.
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For improvement in classification result, the proposed approach employed on medici-
nal plant leaves dataset where the size of ROO’s is (280 × 280). We observe very promising
results which are 99.01%, 98.01%, 97.02%, 96.03%, and 95.04% using MLP, LB, B, RF, and
SL, respectively, as shown in Table 4.

Table 4. Classification of medicinal plant leaves using five ML classifiers with ROO’s size of (280 × 280).

Classifiers Kappa Statistics TP Rate FP Rate Recall F-Measure ROC Time (Sec) Precision

MLP 0.9876 0.990 0.002 0.990 0.990 0.998 0.13 0.991
LogitBoost 0.9752 0.980 0.005 0.980 0.981 0.999 0.19 0.981

Bagging 0.9629 0.970 0.007 0.970 0.971 0.995 0.11 0.974
SLg 0.9506 0.960 0.007 0.960 0.965 0.984 0.13 0.970
RF 0.9381 0.950 0.013 0.950 0.951 0.985 0.9 0.956
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It is observed that MLP effectively emphasizes the other classifiers when the size of
ROO is 280 × 280, as shown in Figure 9.
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The Confusion Matrix (CM) of MLP classifier on fused medicinal plant leaves dataset
using ROO’s size 280 × 280. The diagonal cells contain the number of correctly identified
plants and the rest of the cells contain the number of misclassified plants. This CM is
presented in Table 5.

Table 5. CM showing medicinal plant leaves classification on ROO’s size (280 × 280) using MLP.

Classes Tulsi Peppermint Bael Lemon Balm Catnip Stevia Total Accuracy

Tulsi 991 1 2 0 6 0 1000 99.1%
Peppermint 0 988 0 2 5 5 1000 98.8%

Bael 4 6 984 0 3 3 1000 98.4%
Lemon
Balm 0 1 0 999 0 0 1000 99.9%

Catnip 0 4 0 0 994 2 1000 99.4%
Stevia 3 0 2 3 0 992 1000 99.2%

The distinct classification accuracy of six medicinal plant leaves, named as Tulsi,
Peppermint, Bael, Lemon balm, Catnip, and Stevia, were 99.10%, 99.80%, 98.40%, 99.90%,
99.40%, and 99.20%, respectively, on ROO’s size 280 × 280 as shown in Figure 10.
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We started our experimentations with the size of ROOs 220 × 220. After that, we
gradually increased the size of ROOs to achieve better accuracy. Finally, at the size of
ROOs 280 × 280, we observe the promising accuracy because it covers maximum useful
information. Further increase in the size of ROOs was causing a decrease in the accuracy
due to speckle noise. Lastly, the comparative analysis performs for the classification of
medicinal plant leaves with the sizes of ROO’s 220 × 220 and 280 × 280, respectively, as
shown in Figure 11.
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The methodology proposed is comparatively reliable and efficient from that described
previously [13,14,16–20]. Furthermore, it is consistent, satisfactory, and better from the
existing medicinal plant leaves classification. A comparative analysis of the proposed
methodology with existing works is shown in Table 6.

Table 6. Comparison of proposed methodology with existing methodologies.

Reference Features Classifiers Accuracy

[13] Shape and Color Features SVM 96.66%
[14] Texture Features CNN 97.80%
[16] Morphological Features CNN, LeNet 98.32%
[17] Texture Features PCA, LDA 92.90%
[18] Fused Features RF 98.40%
[19] Texture Features LBP 93.50%
[20] Multi Features MLP 98.14%

Proposed
Methodology Multi Spectral + Texture Features MLP 99.01%

4. Conclusions

In this study, we develop a machine learning (ML) based medical plants leaves
classification utilizing multispectral and texture dataset. The main objective is to collect a
refined and standardized dataset, edge/line detection, fused features extraction, optimized
extracted features, and select the most valuable feature and select the efficient ML classifiers.
The fused (multispectral + texture) feature dataset holds six types of medicinal leaves
named Tulsi, Peppermint, Bael, Lemon Balm, Catnip, and Stevia collected via computer
vision laboratory setup. Due to the complex laboratory setup, the collected dataset is
very refined and standardized. The chi-square feature selection approach provides the
14 most worthful features that are useful to obtain better classification results. A total of five
AI-based classifiers are considered, named as multi-layer perceptron (MLP), LogitBoost
(LB), Bagging (B), Random Forest (RF), and Simple Logistic (SL). Firstly, an experiment is
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performed on ROO’s size (220 × 220) for the classification of medicinal plant leaves dataset.
It is obtained a well-organized accuracy which are 95.87%, 95.04%, 94.21%, 93.38%, and
92.56% for MLP, LB, B, RF, and SL, respectively. Secondly, the same approach is employed
on a medicinal plant leaves dataset where the size of ROO’s is (280 × 280). We obtain
very promising results which are 99.01%, 98.01%, 97.02%, 96.03%, and 95.04% respectively.
In addition, we observe that the MLP classifier performed well as compared to other
implemented AI-based classifiers. This study opens a new horizon in the field of medicinal
plant leaves classification. Also, it can be very helpful for pharmacists to recognize the
correct medical plant and will help in the process of making medicine.

Limitation and Future Works

This study is limited to six medicinal plant leaves while there are millions of types of
medicinal plant/herbs in the world. This is a pixel-based approach and in the future, we
may wish to use an object-based approach. In future this proposed approach deployed on
other medicinal plant leaves also proposed approach can be improved using hyper spectral
and 3D digital image dataset.
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