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Abstract: Haloxylon persicum is a well-known plant of sandy deserts, but yet, its allelopathic and
phytochemical potential has not been explored. In the present study, we evaluated the effects of
different concentrations (1%, 2%, 4%, and 8%) of the aqueous extract of H. persicum shoots on
seed germination and seedling growth of wheat crop and black mustard weed. The effects of the
same extract on the biochemical parameters (chlorophyll a, chlorophyll b, carbohydrates content,
and proline content) of wheat seedlings were also investigated. Low and moderate concentrations
(1%, 2%, and 4%) of H. persicum aqueous extract nonsignificantly affected seed germination, shoot
length, root length, fresh weight, and dry weight of wheat seedlings, whereas these parameters were
negatively affected by the application of the highest extract concentration (8%). The results revealed
a significant increase in proline content in wheat seedlings under all the applied concentrations of
H. persicum extract. Low and moderate concentrations (1–4%) of H. persicum extract significantly
enhanced chlorophyll a, chlorophyll b, and total chlorophyll content in wheat seedlings, whereas
these parameters were significantly reduced when the highest extract concentration (8%) was applied.
Only the lowest concentration (1%) of H. persicum extract reduced the carbohydrates content of wheat
seedlings, while other concentrations showed nonsignificant effects. Concentrations of 4% and 8% of
H. persicum extract reduced the seed germination percentage of black mustard. The root length, shoot
length, and fresh weight of black mustard seedlings were significantly decreased by the application
of 1% and 2% extract concentrations and completely inhibited in response to treatment with 4%
and 8% concentrations. The dry weight of black mustard seedlings was not affected by 1% and 2%
extract concentrations but completely inhibited at 4% and 8% concentrations. The methanol extract of
H. persicum contains high contents of bioactive secondary metabolites, such as phenolics, flavonoids,
flavonols, anthocyanins, tannins, saponins, as well as proved to has a very strong antioxidant activity
of the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH). Based on our results, we
recommend the potential application of the aqueous extracts of H. persicum to control black mustard
weed in wheat crops. Furthermore, H. persicum revealed an interesting phytochemical pattern with
sound antioxidant activity that assigns this plant as a promising candidate to explore its detailed
metabolomics profile along with potential bioactivities.

Keywords: allelochemicals; chlorophyll; DPPH; germination; Haloxylon persicum; PCA; proline;
carbohydrates; seedling growth
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1. Introduction

One of the major challenges to wheat growth and yield is its interspecific compe-
tition with weeds, such as black mustard (Brassica nigra (L.) Koch), for environmental
resources [1–4]. The application of weedicides is considered as one of the suitable practices
to control weeds’ growth, but unfortunately, it comes with major concerns about food
safety as well as causing environmental pollution [5,6]. It leads the interest of the scientific
community to search for natural measures for growth inhibition of these noxious weed
species [7–9]. Interestingly plants represent a rich source of biologically active molecules
with species-specific allelopathic potential by supporting the growth of some species and
retarding the growth of others at the same time [10–12]. These phytochemicals belong
to diverse groups, including phenols, alkaloids and terpenes [13], saponins [14,15], glu-
cosinolates and their enzymatic degradation products (isothiocyanates) [16], with varying
concentrations in different plant species [17].

These metabolites affect some plant species by altering the plant’s biological fluxes,
affecting photosynthetic pigments [18,19], which leads to the inhibition of seed germination,
and root and shoot growth [14]. Most of these allelochemicals are soluble in water and
are found in all plant parts, such as root, stem, rhizome, leaves, flowers, fruits, and
seeds [13–16], and so can be used in foliar as well as soil applications for their desired
positive or negative effects on seeds, seedlings, or adult plants [20,21].

Although there is a number of plants that have been reported for potential weed
control in economically important crops [22–24], a lot needs to be done to find high
efficiency and more targeted weed control allelopathic plants [22,23,25–30]. Deserts have
a vast resource of native plants rich in bioactive metabolites (e.g., alkaloids, saponins,
tannins, flavonoids, anthocyanins, and phenols), produced by plants under an extremely
harsh environment [31,32].

Haloxylon persicum Bunge ex Boiss and Buhse (locally known as Al-Ghada) is a well-
known desert plant used in rehabilitating pastures, afforesting desert roads, furniture,
paper, and dyes manufacturing [33]. The geographical distribution of H. persicum extends
to cover several countries, including Central Asia, West Asia, the Arabian Peninsula, Iran,
Russia, China, Sinai desert, and many other countries [33–36].

The present study aimed to evaluate the allelopathic effects of the aqueous extract
of H. persicum on wheat crops and black mustard weed. Furthermore, the phytochemical
diversity along with the antioxidant potential of H. persicum was also investigated.

2. Materials and Methods
2.1. Samples Collection

The young vegetative shoots of H. persicum were collected in January 2019 from the
Sakaka area in the Al-Jouf region (northern west of KSA) and were dried in the dark in the
laboratory at ambient temperature for 15 days. The air-dried shoots were ground using an
electric mixer into a fine powder. Wheat grains (Triticum aestivum L.), variety Sindhi, were
obtained from a farmer in the Omlej area in KSA, and black mustard seeds (Brassica nigra)
were collected from wheat fields in Egypt.

2.2. Extraction and Preparation of H. persicum Aqueous Extract

The stock (20%) aqueous extract solution of H. persicum was prepared from the shoots
by soaking 100 g of powdered materials in 500 mL of sterilized distilled water for 24 h
at ambient temperature. Then, the solution was filtered through Whatman filter paper.
Serial dilutions (1%, 2%, 4%, and 8%) from stock were prepared in sterilized distilled water.
Three replicates were used in all experiments for each treatment.

2.3. In Vitro Germination Experiment

Homogenized size wheat grains and black mustard seeds were soaked for 30 min
in distilled water. Surface sterilization was done by soaking seeds in 70% ethanol for
30 s, then washing 4 times in sterilized distilled water after soaking for 10 min in 5%
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sodium hypochlorite. Afterward, 10 seeds were transferred into 10 cm sterile Petri dishes
containing filter papers. Five groups of Petri dishes were prepared: The first group
received only sterilized distilled water (control), the second group received 1% H. persicum
aqueous extract, the third group received 2%, the fourth group received 4%, and the fifth
group received 8% of H. persicum aqueous extract. The germinated seeds were counted
as the radicle was seen to the naked eye after its emergence from the testa [37,38]. Seed
germination percentages were daily recorded and used to evaluate the germination rate of
wheat and black mustard. On the ninth day of the experiment, the germination percentage
for each treatment was calculated.

Based on nine randomly selected seedlings from all replicates of each treatment, the
root and shoot lengths were measured by a ruler [39]. Directly after harvesting, the fresh
weights were determined, and after removal of water content and drying in the oven at
105 ◦C for 24 h, the dry weights were calculated.

2.4. Biochemical Characteristics of Wheat Seedlings

A spectrophotometer (PD-303 UV, APEL CO., Ltd., Japan) was used for the determina-
tion of carbohydrates, proline, and photosynthetic pigments contents in wheat, as well as
for the determination of secondary metabolites and 2,2-diphenyl-1-picrylhydrazyl (DPPH)
radical scavenging activity of H. persicum. More details considering the determination of
these metabolites are found in a previous report [40].

2.4.1. Determination of Carbohydrates

Dried samples were used to determine carbohydrates by using anthrone reagent [41].
The concentrations of carbohydrates in plant samples were calculated and expressed as
mg g−1 dry weight (DW).

2.4.2. Determination of Free Proline

Fresh samples were used to determine proline contents as mg g−1 of fresh weight
(FW) using an acidic ninhydrin reagent [42].

2.4.3. Determination of Photosynthetic Pigments

Fresh samples were used to quantify the photosynthetic pigments (chlorophyll a,
chlorophyll b, and total chlorophyll) following a previously reported method [43]. Fresh
plant samples (50 mg), were extracted in absolute methanol, vortexed, then homogenized,
and centrifuged for 10 min at 1000 rpm. The supernatant was separated, and its absorbance
was determined at 666 nm and 653 nm. Chlorophyll a and chlorophyll b contents were
calculated. The pigment content was reported as µg g−1 FW was based on the following
equations [43]:

Chlorophyll a = 15.65 A666 − 7.34 A653

Chlorophyll b = 27.05 A653 − 11.21 A666

2.5. Phytochemical Analysis of H. persicum Shoots for Secondary Metabolites
2.5.1. Plant Extraction

The powdered shoots of H. persicum were immersed in 80% methanol for 24 h, and
this mixture was filtrated through Whatman filter paper. The filtrate was evaporated under
low pressure by a rotary evaporator, and the resulting crude methanol extract was used for
evaluating the phytochemical analysis and antioxidant activity of H. persicum.

2.5.2. Determination of Total Phenolics (TP)

The plant extract or different dilutions of gallic acid (as standard) were mixed with
Folin Ciocalteau reagent to determine total phenolics as mg g−1 gallic acid equivalent.
One mL of 10% Na2CO3 solution was added and mixed. The mixture was allowed to stand
for 1 h at room temperature, and the absorbance was measured at 700 nm [44].
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2.5.3. Determination of Total Flavonoids (TF)

Total flavonoids (mg g−1 quercetin equivalent) were determined according to a previ-
ously reported method [45]. The plant extract (samples) and different dilutions of quercetin
for constructing the standard curve were mixed with 5% NaNO2 solution in water. Six min
later, 10% (w/v) AlCl3 solution in water was added, and the mixture was allowed to stand
for a further 6 min, then 1 M NaOH was added. The mixture was vortexed well and rested
for 12 min, and the absorbance was read at 510 nm.

2.5.4. Determination of Total Flavonols

The content of flavonols was determined (mg g−1 of quercetin equivalent) through a pre-
viously reported method [46]. The methanol plant extract was mixed with 0.2% aluminum
chloride and 5% sodium acetate. A series of quercetin dilutions were treated as the samples
to construct a standard curve for control. After 2.5 h, the absorbance of both standard and
samples was read at 440 nm.

2.5.5. Determination of Total Anthocyanins

Plant samples were dissolved in acidified methanol in brown tubes or well-closed
tubes covered with aluminum foils and incubated at +4 ◦C for 24 h [47]. The absorbance of
the supernatants after centrifugation was recorded at 530 nm and 657 nm. The anthocyanins
content was calculated using the following equation as µmole g−1:

Anthocyanin (µmole g−1) =

[
A530 − 0.33 × A657

31.6

]
× Volume (mL)

Weight (g)

2.5.6. Determination of Total Condensed Tannins

Total condensed tannins (as mg catechol equivalent g−1) were measured using the
vanillin assay as previously reported by Julkunen-Titto [48]. Vanillin/methanol solution
(w/v) was added to a methanol plant extract, and the solution was vortexed. Concentrated
hydrochloric acid was added to the mixture and allowed to react at room temperature for
20 min. A series of catechol dilutions as a standard were treated as mentioned before, and
the standard curve was developed. The absorbance of samples and standard was recorded
at 550 nm.

2.5.7. Determination of Total Saponins

The saponin content (mg g−1 saponin equivalent) was determined using vanillin
reagent at 473 nm, according to Ebrahimzadeh and Niknam [49].

2.5.8. Determination of 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Free Radical
Scavenging Activity

Different concentrations of crude extracts and ascorbic acid as a standard were used to
evaluate the DPPH radical scavenging activity using a spectrophotometer in the presence
of 0.5 M acetic acid buffer solution at pH 5.5 and 0.2 mM and 50% DPPH in ethanol [50].
After the incubation of the solutions at ambient temperature for 30 min, the remaining
amount of DPPH was determined by reading the absorbance at 517 nm. The antiradical
effect of the plant extract was compared with ascorbic acid as a positive control.

% DPPH radical scavenging activity = Ac −
[

As
Ac

]
× 100

where Ac = Absorbance of negative control at 517 nm; As = Absorbance of the sample at
517 nm [51].

The % inhibitions were plotted against concentrations, and IC50 was calculated from
the graph.
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2.6. Statistical Analysis

The level of significances for the germination percentage, shoot length, root length,
fresh and dry weights of seedlings, the content of proline, the content of carbohydrates, and
the contents of photosynthetic pigments between control and treated plants was evaluated
by the one-way analysis of variance (ANOVA) using Minitab ver. 12.21. Data are a mean
with a standard deviation of three replicates. p-Values < 0.05, <0.01 and <0.001 were
considered significant, highly significant, and very highly significant, respectively. To
evaluate the effect of allelopathic stress of H. persicum aqueous extract on seed germination
and seedling growth of black musard and on seed germination, seedling growth, and
biochemical features of wheat, principal component analysis (PCA) was performed with
SIMCA-P software (ver. 14.1, Umetrics, Umeå, Sweden) to reduce the dimensionality
among these data sets.

3. Results and Discussion
3.1. Effect of H. persicum Aqueous Extract on Seed Germination and Seedling Growth of Wheat
and Black Mustard

The concentrations of 2–8% of the aqueous extract of H. persicum significantly reduced
the germination rate in black mustard, whereas the germination rate of wheat was only
significantly reduced due to treatment with the highest concentration of H. persicum extract
(8%) (Figure 1A,B).On the last day of the experiment, 4–8% extract concentrations signifi-
cantly reduced the germination percentage in black mustard seeds (p < 0.05), whereas this
trend was observed in wheat only under the highest concentration (8%) (Figure 2).
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Figure 2. Effect of the aqueous extract of H. persicum on seed germination in wheat and black
mustard determined on the ninth day of the experiment. * = significant and ** = highly significant.
Crl = Control, No stars on the bars means there is no significant change.

The low and moderate concentrations of H. persicum (1–4%) had no effect, but the high-
est concentration (8%) had a significant inhibitory effect on wheat shoot length (Figure 3A).
On the other hand, application of 1% and 2% extract concentrations of H. persicum signifi-
cantly reduced the shoot length of black mustard (2.1 and 0.8 cm, respectively) compared
to control (3.1 cm), while treatment with 4% and 8% concentrations completely inhibited
shoot growth (Figure 3A). The strong suppressive effect of the extract on the shoot length
of the black mustard plant was concentration-dependent (Figure 3A).
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Both wheat and black mustard showed different levels of responses of root length
to the allelochemical stress. The effect of H. persicum aqueous extract on root length
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was similar to its effect on shoot length, whereas only the highest concentration (8%)
significantly reduced the root length in wheat. In the case of black mustard seedlings,
the root length was significantly reduced at 1% and 2% concentrations and completely
inhibited due to treatment with 4% and 8% concentrations (Figure 3B).

For wheat, neither low nor moderate concentration (1–4%) of H. persicum extract
significantly affected the fresh and dry weights of seedlings (Figure 4A,B). The fresh
weight of black mustard seedlings was significantly reduced by 1% and 2% concentrations
and completely inhibited by 4% and 8% concentrations of H. persicum extract. The dry
weight of black mustard seedlings was inhibited in response to treatment with 4% and 8%
concentrations of H. persicum extract (Figure 4A,B).
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In our investigation, the seed germination percentage and seedling growth traits
in wheat were not significantly affected by the low and moderate concentrations of the
aqueous extract of H. persicum. By contrast, for black mustard weed, the moderate con-
centration of H. persicum significantly reduced seed germination, while low and moderate
concentrations negatively affected seedling growth. The negative impact of H. persicum on
seed germination and seedling growth of black mustard increased with increasing extract
concentration. This trend was noticed for black mustard treated with Calotropis procera,
Morettia philaeana, and Casuarina cunninghamiana extracts [26,28]. Interestingly, the re-
sponse of crop plants is significantly different compared to the weed species under similar
allelochemicals [23,28].

The inhibitory effect of H. persicum on seed germination and seedling growth of black
mustard may be attributed to the high content of its bioactive secondary metabolites, i.e.,
phenolics, flavonoids, tannins, and saponins, that have been reported to be phytotoxic
and allelopathic against weeds if present at high concentrations [18,23,26,28,29,52–56]. The
aqueous extract of Hypericum myrianthum and H. polyanthemum inhibited the seed germi-
nation percentage in Lactuca sativa [57,58]. The aqueous extracts of different parts of both
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Acacia nilotica and Acacia seyal have been reported to inhibit seed germination of black
mustard, with the least effect on the wheat seedlings [56]. Moreover, C. cunninghamiana
branchlets reduced the seed germination of black mustard, and the reduction was propor-
tional to the concentration of the aqueous extract [28].

Although the mechanism of actions of these bioactive secondary metabolites on seed
germination and seedling growth has not been completely revealed, the negative impact of
donor allelochemicals on the recipient species may involve one or more mechanism(s), such
as the roles of these bioactive allelochemicals in the destruction of cell membrane resulting
in membrane permeability and membrane lipid peroxidation [53,59,60], reduction in mito-
chondrial respiration [8,60], cell division and hormones involved in cell division [8,19,61],
oxidative, antioxidant, and growth regulation systems [8], and enzymes synthesis con-
tributing to seed germination and seedlings growth [8,62–64].

The root has been found to be the most sensitive part of black mustard seedlings that
is influenced by allelochemicals [65–67], and so the root growth was greatly reduced due to
the application of H. persicum extract. This might be due to the phytotoxic direct effect of the
secondary metabolites of H. persicum, such as phenols, saponins, and others, affecting the
permeability of membrane [53] and/or on cell division [19,28,61], or through the indirect
negative effect of these bioactive metabolites on the activity of enzymes and hormones
required for the mitotic division in apical root tips and seedlings’ growth process [19,61].

Interestingly, at low concentrations, H. persicum extract stimulated wheat shoot growth
while negatively affected the growth of black mustard. Low concentrations of H. persicum
extract may contain proper concentrations of allelochemicals that played a stimulating role
for wheat growth, but at the same concentration level, these compounds were inhibitory
to the black mustard. This shows the species specificity of H. persicum allelochemicals.
It was reported for many plants that when seedlings were subjected to low or moderate
allelochemicals concentrations, shoot length was significantly promoted and consequently
enhanced seedling weight, such as in the case of aqueous extracts of M. philaeana, A. nilotica,
and A. seyal, which enhanced shoot length and the dry weight of wheat seedlings [26]. The
increase in the weights of wheat seedlings may also be attributed to the stress counter mech-
anism that directed the metabolomics flux in wheat seedlings to tolerate the allelochemicals
stress [24,26].

3.2. Effect of H. persicum on the Photosynthetic Pigments Content in Wheat

Chlorophyll a, chlorophyll b, and total chlorophyll contents were significantly in-
creased at low and moderate concentrations (1–4%) of extract. By contrast, these parame-
ters were significantly decreased at the highest extract concentration (8%). Chlorophyll b is
more sensitive than chlorophyll a regarding its response to the highest concentration of
extract, where under the highest concentration of H. persicum, the content of chlorophyll a
and b were reduced to 20% and 50%, respectively, as compared to control (Figure 5A–C).
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 Figure 5. Effect of the aqueous extract of H. persicum on photosynthetic pigments in wheat. Total
chlorophyll (A), chlorophyll a (B), and chlorophyll b (C). *** = very highly significant.

The effect of allelochemicals on the content of photosynthetic pigments varies ac-
cording to the recipient species and the qualitative and quantitative content of the alle-
lochemicals of the donor species [19,26,28,68,69]. In our study, the allelopathic stress of
H. persicum significantly enhanced the level of chlorophyll a and b under the low and mod-
erate content of allelochemicals, whereas the highest concentration of allelochemicals (8%)
intensively reduced the content of chlorophyll a and b in wheat seedlings. The reduction in
chlorophyll a and b in wheat under allelochemicals stress is well reported in various wheat
cultivars [56], including Pirsabaq, Serin, and Ata Habibin, Pakistan [68]. Furthermore, the
seedlings of two different wheat varieties exposed to Helianthus annus allelochemicals also
demonstrated a significant reduction in chlorophyll a and b [63].

3.3. Effect of H. persicum on Carbohydrates and Proline Contents in Wheat

Carbohydrate content was significantly reduced under the lowest concentration (1%),
whereas no significant change was recorded under other treatments (Figure 6A). On the
contrary to carbohydrates, the content of proline was significantly increased in response
to all treatments, with an increase with increasing extract concentration from 1% to 4%
(Figure 6B).
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The content of carbohydrates in wheat seedlings was significantly decreased only
under the lowest concentration of H. persicum, whereas no significant change occurred
under higher concentrations of the extract. Citrullus colocynthis shoot aqueous extract
reduced the content of carbohydrates in Vicia faba and Hordeum vulgare seedlings [70].
Artemisia monosperma and Thymus vulgare aqueous extracts decreased carbohydrates content
in Pisum sativum seedlings, particularly at the highest concentrations used from the two
species [70].

An increase in the content of carbohydrates was reported previously in cucmber,
tomato, and wheat subjected to the aqueous extract of C. procera [24]. Furthermore, onion
and garlic seed extracts reduced the content of carbohydrates in Pisum sativum, while
the same concentrations of cucumber and carrot extract increased the content of carbohy-
drates [67].

The quantitative alteration in chlorophyll and carbohydrates in allelopathic stressed
seedlings is dependent on many factors, such as plant species, variety, the sensitivity and
tolerance of the recipient species, and the donor species allelochemicals (quantitative and
qualitative profile), as well as the age of the seedlings [24,28,64,68–72].

Proline content was increased in wheat seedlings subjected to all concentrations of
H. persicum. Proline is an osmo-regulant agent that is associated with many abiotic stresses,
including drought and salinity [73–76]. Allelochemical stress may indirectly cause drought-
like stress to some plants. Moreover, increasing the proline content under allelochemical
stress may enhance the stress tolerance in plants as it represents an antioxidative defense
molecule [75], which is more prominent in wheat. Allelochemicals of many plants, such as
those of C. procera, were also reported to increase the proline contents in wheat, cucumber,
and tomato [24]. The increase in proline and simultaneous decrease in carbohydrates
under allelochemical stress may refer to the shift of metabolomics’ flux of plant from
carbohydrate storage towards the osmo-regulator (proline) to cope with allelochemical
stress [77], which is similar under drought stress, where NADPH and ATP are utilized for
proline biosynthesis as stress counter mechanism [78].
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3.4. Dissecting the Effect of Allelochemical Stress on Wheat and Black Mustard Using Multivariate
Data Analysis

The effect of allelochemical stress on seed germination, growth parameters, and physi-
ological characteristics of wheat and on seed germination and seedling growth of black
mustard seedlings was studied using principal component analysis (PCA) of multivariate
data analysis. As shown in Figure 7, the PCA of wheat under allelochemical stress revealed
two distinct groups, one for control plants together with plants that were subjected to low
and moderate concentrations of H. persicum allelochemicals (concentrations 1–4%). In this
group, there was no significant difference between control and low and moderate levels
of H. persicum extract regarding the growth traits and carbohydrates content, whereas a
significant difference was observed in the case of photosynthetic pigments and proline
content between control seedlings and those that were treated with 1–4% aqueous extract of
H. persicum. The second group was for seedlings that were subjected to the highest level of
H. persicum (8%) (Figure 7), which was characterized by very low values of growth parame-
ters, percentage of seed germination, photosynthetic pigments (chlorophyll a, b, and total
chlorophyll), and carbohydrates (Figure 7). In the case of black mustard, PCA represented
discrimination of seedlings into two distinct groups, one for the control plants characterized
by a high percentage of germination and high seedling growth parameters, whereas the
other group included the seedlings subjected to the aqueous extract of H. persicum (2–8%)
characterized by a low percentage of germination and low seedling growth criteria, such
as shoot and root length, fresh and dry weights (Figure 8). When data of seed germination
and seedling growth of both wheat and black mustard under allelochemical stress were
processed in the same score biplot (Figure 9), two distinct groups were observed, where
one of these, i.e., positive PC1, included control seedlings for both wheat and black mustard
and wheat seedlings subjected to low and moderate levels of H. persicum allelochemicals
(1–4%). This group was characterized with the highest percentage of seed germination
and the greatest growth parameters values. The second group, i.e., negative PC1, included
black mustard seedlings that were subjected to 2–8% concentrations of H. persicum extract
in addition to wheat seedlings that were subjected to the highest level of H. persicum allelo-
chemicals (8%). This group was characterized by the lowest seed germination percentage
and the lowest growth parameters (Figure 9). Black mustard plants that were subjected
to 1% of H. persicum occupied an intermediate position between the two groups (Figure
9). This confirms that the black mustard seed germination and seedling growth were
dramatically influenced by most levels (2–8%) of the applied H. persicum allelochemicals,
whereas wheat seed germination and seedling growth parameters were only influenced by
the highest level (8%) of H. persicum allelochemicals.
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Figure 8. Effect of various concentrations of H. persicum aqueous extract on seed germina-
tion and seedling growth in black mustard. MC = Mustard control; M1 = 1% concentration;
M2 = 2% concentration; M4 = 4% concentration; M8 = 8% concentration; G = Germination percentage;
DW = Dry weight; FW = Fresh weight; SL = Shoot length, and RL = Root length.
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Figure 9. Effect of various concentrations of H. persicum aqueous extract on seed germination
and seedling growth in wheat and black mustard. WC = wheat control; MC = Mustard con-
trol; W1 = 1% concentration on wheat; W2 = 2% concentration on wheat; W4 = 4% concentra-
tion on wheat; W8 = 8% concentration on wheat; M1 = 1% concentration; M2 = 2% concentration;
M4 = 4% concentration; M8 = 8% concentration on black mustard; G = Germination percentage;
DW = Dry weight; FW = Fresh weight; SL = Shoot length, and RL = Root length.

Multivariate data analysis is used to dissect the influence of environmental stresses
on plant growth and development. In a simple biplot, PCA reveals the effect of these
stresses on growth parameters and biochemical changes in the recipient plant. PCA was
efficiently used to dissect the effect of different levels of salinity stress on growth criteria
and physiological characteristics in tomato [40]. The effect of allelochemicals’ stress on
the growth of tomato and cucumber was also evaluated using PCA and multivariate data
analysis [28].

3.5. Phytochemical Analysis and Antioxidant Activity of H. persicum

Shoots of H. perscicum are characterized by high amounts of polyphenols, including
total phenolics, flavonoids, flavonols, tannins, and anthocyanins, and also saponin (Table 1).
The antioxidant activity of the methanol extract of H. persicum was evaluated in terms of
DPPH radical scavenging activity as a percentage of inhibition. DPPH was increased with
increasing the concentration used (Figure 10). IC50 of the methanol extract of H. persicum
was 88.7 µg mL−1 and that of ascorbic acid was 6.87 µg mL−1 (Figure 10A,B). This reflects
the strong antioxidant activity of H. persicum.
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Table 1. Phytochemical analysis of H. persicum shoots.

Secondary Metabolites Concentration

Total phenolics (TP) mg GAE g−1 extract 46.02 ± 0.21
Total flavonoids (TF) mg QE g−1 extract 37.05 ± 0.81

Total flavonols mg QE g−1 extract 9.3 ± 0.68
Total anthocyanins µmole g−1 extract 0.57 ± 0.02

Total condensed tannins mg CE g−1 extract 59.73 ± 1.28
Total saponins mg SE g−1 extract 143.3 ± 1.79

GAE = gallic acid equivalent, QE = quercetin equivalent, CE = catechols equivalent and SE = saponins equivalent.
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methanol extract of H. persicum (A) and ascorbic acid (B).

The high content of bioactive secondary metabolites in H. persicum, such as polyphe-
nols (phenolics, flavonoids, flavonols, anthocyanins, and tannins) in addition to saponins,
was not only reflected in the allelopathic potentiality against the weed species, black mus-
tard but also in its antioxidant activity showed by the higher DPPH radical scavenging
activity. Different Haloxylon species were profiled for their chemical constituents and
their antioxidant activity. H. salicornicum showed high content of alkaloids, saponins,
tannins, steroids, flavonoids, and cardiac glycosides. The methanol extracts showed
strong DPPH radical scavenging activity with higher IC50 than that reported in our study
(112.56 µg mL−1) [79]. The high antioxidant activity of H. persicum and low IC50 may be
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attributed to the high content of bioactive secondary metabolites profiled, which were
reported as antioxidant agents [80–82].

4. Conclusions

One of the positive effects of allelopathy is the use of selected plants to control the
growth of weed species associated with economic cultivated crops. Low and moderate
concentrations of H. persicum extract with its high amounts of polyphenols and saponins
mostly inhibited seed germination and seedling growth of black mustard without any
negative impact on wheat seed germination and seedling growth. Moreover, the photo-
synthetic pigment contents of wheat seedlings was enhanced after the application of low
and moderate concentrations of H. persicum. Under most of the applied extract concen-
trations of H. persicum, the carbohydrates content was not significantly changed, whereas
simultaneously, an increase in proline content under all concentrations was observed. It is
suggested that H. persicum could be used to control the growth and development of black
mustard weed species in wheat, and field trials are recommended. Moreover, due to its
high antioxidant activity, H. persicum should be intensively studied to purify and isolate
some antioxidant agents for potential industrial applications.
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