
agronomy

Review

Integrated Soil and Crop Management in Organic Agriculture:
A Logical Framework to Ensure Food Quality and
Human Health?

Leonidas Rempelos 1,* , Marcin Baranski 1,2,* , Juan Wang 1,3, Timothy N. Adams 1,4, Kolawole Adebusuyi 1,5,
Jeremy J. Beckman 1,6, Charlotte J. Brockbank 1,7, Bradley S. Douglas 1,8, Tianer Feng 1,9, Jem D. Greenway 1,10,
Mehmet Gür 1,11 , Eric Iyaremye 1,12, Chi Leong Kong 1,13 , Recep Korkut 1,14 , Shreiya S. Kumar 1,15,
Jonas Kwedibana 1,16 , Julia Masselos 1,17, Benedicto N. Mutalemwa 1,18, Baring S. Nkambule 1,19,
Olatunde B. Oduwole 1,20 , Ayobami Karimot Oladipo 1,21, Julius O. Olumeh 1,22, Leticija Petrovic 1,23,
Nina Röhrig 1,24 , Sarah A. Wyld 1,25, Luxi Xu 1,26, Yaqiong Pan 27, Eleni Chatzidimitriou 1,28, Hannah Davis 1 ,
Amelia Magistrali 1 , Enas Sufar 1, Gultakin Hasanaliyeva 1,29 , Hassan Habib Hassan Ashra Kalee 30,
Adam Willson 31, Manisha Thapa 31, Pip Davenport 31, Dominika Średnicka-Tober 1,32 , Nikos Volakakis 1,33,
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Abstract: The environmental and biodiversity benefits of organic farming are widely recognized,
but there is still controversy about the effects of organic production methods on the nutritional
composition of food and human health. In the first part of this article therefore, we critically review
the evidence that organic farming methods improve the nutritional quality of food crops. Moreover,
we summarize our current understanding of how quality gains are linked to the implementation
of the “innovations” introduced into conventional crop production during the intensification or
“green revolution” of agriculture over the last 100 years. In the second part of the article, we
critically review the evidence for the range of health benefits related to organic food consumption.
Specifically, we describe and discuss the results from: (i) dietary intervention studies which have
found that organic food consumption substantially reduces pesticide exposure in humans and
affects feed intake, growth, hormone balances and immune system responsiveness in animal models;
(ii) human cohort/epidemiological studies which have reported significant positive associations
between organic food consumption and the lower incidence of a range of diseases including obesity,
metabolic syndrome, cancer, hypospadias, pre-eclampsia, eczema and middle ear infections in infants;
(iii) interactions and trade-offs between diet (e.g., whole-grain, fruit and vegetables and reduced
red-meat consumption) and food types (organic versus conventional) concerning public health and
future food security. The article also identifies knowledge gaps and highlights the need for (i) long-
term, factorial field experiments to understand the relative effects of agronomic and pedoclimatic
drivers on crop quality and safety, and (ii) clinical trials and additional human cohort studies to
confirm the positive health outcomes linked to organic food consumption. The main conclusions
from our review are that there is growing evidence that (i) agricultural intensification has resulted in a
reduction in the nutritional quality of food and the sustainability of food production, and (ii) organic
farming practices not only improve food quality and human health, but also food security. This is
particularly true where current nutritional guidelines (increasing whole-grain, fruit and vegetable
products, while reducing red-meat consumption) are implemented.

Keywords: organic farming; conventional farming; food composition; human health; food security;
phenolics; antioxidants; mineral micronutrients; cadmium; pesticides; mycotoxins

1. Introduction

Over the last 25 years, the demand for and production of organic food has increased
rapidly globally [1]. According to the latest statistics, organic land area has grown from
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11 million hectares in 1999 to 72 million ha in 2018, and the organic market value has grown
from 15 billion euro in 2000 to 97 billion euro in 2018 [1]. In 2018 there were an estimated
2.8 million organic producers globally, and 108 countries with organic regulations [1].
Demand is driven by consumer perceptions that, compared with intensive conventional
farming, organic farming is more sustainable, and delivers environmental, biodiversity,
and food quality and safety benefits [1–3].

In many countries, organic farming standards are defined by government laws and
regulations [1,4–6]. Organic farming regulations prohibit or restrict the use of many external
inputs that are commonly used in conventional farming, primarily because they are (i) non-
renewable resources (e.g., mineral P, K and micronutrient fertilizers), (ii) energy intensive
to produce (e.g., mineral N fertilizers, pesticides) and/or (iii) potentially deleterious to
the environment and human health (e.g., mineral N and P fertilizers, synthetic chemical
pesticides, antibiotics, food additives) [1,5,6].

Specifically, organic crop production prohibits the use of all synthetic chemical crop-
protection products (including insecticides, acaricides, fungicides, herbicides, plant growth
regulators and soil disinfection chemicals) and mineral N, KCl and superphosphate fer-
tilizers [4–6]. Instead, weed, pest and disease control in organic farming is based on
preventative and non-chemical crop protection methods, such as the use of (i) diverse crop
rotations, (ii) more resistant/tolerant varieties, (iii) mechanical weeding, and (iv) biological
disease and pest control products. Organic crop production standards do, however, permit
the use of certain plant (e.g., pyrethrum) or microbial extracts (e.g., spinosad) and/or
mineral-based (e.g., Cu and S) crop-protection products, but it is recommended that these
are only used as a last resort [4–6]. Organic farming standards prescribe regular inputs
of organic fertilizers (e.g., manure and composts) and the use of legume crops in rotation
(to increase N-levels and balance N:P ratios in the soil). They also allow the restricted use
of raw phosphate, potassium sulphate and mineral micronutrient fertilizers if shown to
be necessary by soil or plant analyses [4,6]. As a result, organic and conventional crop
production protocols differ substantially in (i) the type of crop protection protocols used,
(ii) the types and quantities of organic and mineral fertilizers applied, and (iii) increasingly,
the types of crop varieties used for production [7–13].

The main aim of this review article is to describe and critically discuss the current
information on how integrated soil fertility and crop health management practices used
in organic farming may affect the nutritional quality and safety of food crops and hu-
man health/wellbeing. The interactions between agronomic practices permitted and
prohibited/restricted in organic farming systems and crop health and quality parameters
are described using a revised “Logical Framework for organic crop production systems”
(Figure 1). Our review is subdivided into three main parts. In part one, we describe the
logical framework for organic crop production and the current understanding of how
the contrasting agronomic regimes used in organic and conventional production lead to
differences in (i) crop resistance and health, and (ii) nutritionally relevant crop-composition
profiles. In part two, we review the currently available evidence for physiological and
health impacts from organic food consumption. In part three—the conclusion—we de-
scribe the main knowledge gaps and strengths of the currently available scientific evidence
supporting the main hypothesis/philosophy of organic farming, which is that “healthy soils
generate healthy crops and thereby healthy livestock and humans” [6].

2. Effect of Agronomic Practices on Crop Yield, Health and Nutritional Quality

Systematic reviews/meta-analyses and long-term field experiments have found that
yields in organic farming systems are between 10 and 25% lower than the yield in intensive
conventional production systems [14–21]. However, the results from a long-term farming
system comparison in the Netherlands suggest that the yield gap between organic and
conventional farming diminishes over time, and that this coincides with higher nutrient-
use efficiency and “spatial stability” in the organic system [17]. One recent meta-analysis
also concluded that the inclusion of diversification practices in organic systems can reduce
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the yield gap [18]. It is interesting to note that current crop yields in organic farming are
similar to conventional crop yields in Europe in the 1980s and 1990s, when mineral NPK
fertilizer inputs were higher, and pesticide inputs were at similar levels to those currently
used in conventional crop production in Europe [22,23].
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Figure 1. Logical Framework for organic crop-production systems (adapted from Leifert et al. [24]). Black text in white
background describes inputs and practices permitted in organic farming; black text in boxes with grey background
surrounded by dotted lines indicates an agronomically desirable effect of permitted inputs and practices or the non-use of
agrochemicals; black text in boxes with white background surrounded by solid lines describes agronomic practices permitted
and/or recommended in organic farming; red text in white background boxes surrounded by solid black lines describes
inputs that are prohibited in organic farming. Black arrows indicate desirable impacts; red arrows indicate undesirable
impacts. 1, see also Section 2.1; 2, see also Sections 2.2.1 and 2.2.2; 3, see also Section 2.2.3; 4, see also Section 2.3.1; 5, see also
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The evidence for food quality and safety gains resulting from the organic production
described in this review should therefore be considered in the context of (i) the lower yields,
and (ii) reduced reliance on non-renewable and increasingly scarce resources in organic
farming, compared with conventional farming systems [1,6,24].

Figure 1 describes the logical framework for organic crop production systems, which is
designed to deliver resistant, competitive crops with high sensory and nutritional qualities,
without the use of water-soluble, mineral N, P and KCl fertilizers and synthetic chemi-
cal pesticides. The main components of organic production systems and their effects on
crop health and nutritional quality are described in separate sections below. Specifically,
this includes sections on: (i) crop rotation designs (Section 2.1); (ii) fertilization regimes
(Section 2.2); (iii) crop protection (Section 2.3); (iv) crop breeding and selection (Section 2.4).
In addition, Section 2.5 describes the impact of confounding effects of pedoclimatic back-
ground conditions on crop quality parameters to explain the considerable variation and
sometimes conflicting results reported in studies comparing the nutritional composition of
organic and conventional crops.
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2.1. Crop Rotation Design

Historically, organic farms were mainly mixed farms with legume-rich, rotational
and/or permanent grassland that was used for grazing and/or conserved forage produc-
tion [6,25,26]. The 2-to-5-year ley phase substantially reduces weed pressure that builds-up
while annual food crops are grown in the rotation, with weed pressure being particu-
larly high after field vegetable crops [6,25–29]. Stockless arable and horticultural crop
production systems also have mixed grass/legume or pure legume leys in the rotations,
but grassland management focuses primarily on optimizing N-balances and soil fertility
for subsequent annual cash crops [30,31]. It is interesting to note that stockless, conven-
tional arable farms with persistent and/or herbicide-resistant black-grass problems have
started to re-introduced grass-leys and grazing livestock to control black-grass (Alopecurus
myosuroides Huds.) in their rotations [29]. Catch- and under-sown cover crops are also
more widely used in organic crop rotations; although they are mainly included to prevent
nutrient losses, they can also contribute to weed control [32,33].

The ley phase of the rotation was also shown to reduce the propagules of many soil
and crop residue-borne diseases, as well as pests that affect annual crops (e.g., cereals
and field vegetables) in the rotation [6,25,26]. For example, there is evidence that the
severity of foliar diseases (e.g., Septoria, Fusarium) in wheat grown after grass clover leys is
significantly lower when compared with wheat (Triticum aestivum L.) crops grown after
wheat, maize (Zea mays L.) and/or potato (Solanum tuberosum L.) [24,33]. An interaction
between the position of wheat crops in the rotation and fertilization regimes (use of organic
versus mineral NPK fertilizer) was also recently reported for Septoria severity in the
UK [33]. Septoria severity in mineral NPK-fertilized wheat crops was significantly (more
than three times) higher when wheat was grown after wheat, compared with wheat grown
after a grass-clover ley, whereas the difference in Septoria severity between pre-crops
was not significant when crops were fertilized with manure, at the same total N-input
level (Figure 2) [33]. However, for some diseases and pests the ley phase can also result
in a build-up of inoculum. For example, long grass-clover leys can increase wireworm
populations in soils and cause significant yield losses in potato crops that are planted
immediately after a ley phase [20,34]. In this context, it is interesting to note, that in
traditional, organic arable rotations in the UK wheat is grown immediately after leys, and
then followed with a potato crop, primarily to reduce Septoria severity in wheat, and
wireworm damage in potato (personal communication, Fred Halder, Murtle, Murtle Farm,
Camphill Trust Aberdeen, UK).

The inclusion of legume crops in the rotation is prescribed by organic farming stan-
dards, and is an important component of the fertility management regime in organic
farming systems (see Section 2.2.1 below). In between leys, organic farming regulations
prescribe that farmers alternate crops from different plant families, and with contrasting
life-cycles, canope structures, rooting patterns and periods of growth, to minimize the
accumulation of crop species-specific weeds, disease and pest populations [6,25–28]. Or-
ganic rotations are therefore thought to be, overall, more diverse than conventional crop
rotations [31], but there is concern that organic ley/arable rotations are not diverse enough
to deliver the desired agronomic gains (e.g., reduced weed pressure; optimum nutrient-use
efficiency) [35,36]. Therefore, the identification of agronomically useful and economically
viable break crops for organic ley/arable rotations remains a major challenge [36].

There have been few studies into the effect of rotation design on nutritional quality
and safety parameters in crops. However, one clear example of rotational effects is the
use of monoculture or less diverse arable crop rotations in conventional cereal production
(e.g., planting wheat after wheat or maize pre-crops, which is common in conventional but
not organic rotations) which has been shown to increase Fusarium disease severity, and
Fusarium mycotoxin load in cereal grains [37–40].
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Zn (p = 0.013) concentrations in wheat leaves and (b) fertilization regime (manure versus mineral NPK fertilizer applied at the
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Means for the same composition parameter or fertilizer type labelled with the same letter are not significantly different
(Tukey’s honest significant difference test, p < 0.05). AUDPC, area under the disease progress curve days x % severity.

Moreover, the crops grown before wheat in the rotation were shown to affect (i) leaf
phenolic and mineral micronutrient concentrations, and (ii) foliar disease severity in the
long-term, factorial Nafferton Farming Systems Comparison (NFSC) Trials [33]. Specifically,
this study reported that potato as the pre-crop resulted in significantly higher leaf phenolics,
but lower Cu and Zn concentrations than wheat and grass clover leys in both manure
and mineral NPK-fertilized crops (Figure 2) [33]. More recently, faba bean (Vicia faba L.)
cover crops were reported to result in the highest mineral, protein and prebiotic carbohy-
drate concentrations in subsequent kale (Brassica oleracea L.) crops, when compared with
Windham winter pea (Pisum sativum L), hairy vetch (Vicia villosa Roth.), Lynx winter pea,
crimson clover (Trifolium incarnatum L.) and ryegrass (Lolium perenne L.) [41].

2.2. Fertilization Regimes

In intensive, conventional farming, the use of N, P, and KCl fertilizers has increased
rapidly over the last 40 years. Whereas nutrient-use efficiency (the amount of mineral NPK
needed to produce a kg of crops) has decreased, the dependence of conventional farming
on NPK inputs to maintain current productivity levels has increased [42]. There is now
increasing concern about the rapidly rising cost, environmental impact and future availabil-
ity of mineral NPK fertilizers, since their production requires high amounts of fossil fuels
(mineral N), and because they are mined minerals and therefore non-renewable resources
(mineral K and P) [42–46]. For example, the manufacture and use of mineral N-fertilizer has
been estimated to generate ~25% of all greenhouse gas (GHG) emissions from agriculture
(=2.5% of all GHG-emissions) [46], and according to some independent estimates, the
currently known deposits of phosphorus will deplete within the next 60–150 years [43–45].

In contrast, traditionally organic and biodynamic farming systems aim to create
closed, on-farm nutrient cycles with a minimum import of nutrients from outside the
farm [4,6,25,26,47]. In mixed organic farming systems, this is primarily based on (i) livestock
depositing manure onto leys during grazing, (ii) the strategic application of farm-yard
manure (produced while livestock are housed in barns or corrals) to annual crops (e.g.,
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cereals, potato, field vegetables) in the rotation, and (iii) including legume ley or grain
crops in the rotation. Since the losses of N from manure and/or soil are larger than those
of P and K, the use of N-fixing legume crops is also designed to compensate for N-losses,
and provide a balanced supply of N:P:K [6,25,26,36]. Although the mixed farm is still
considered the ideal model for organic farming, economic pressures have resulted in
organic farms becoming increasingly specialized [47]. As a result, many specialized arable
and horticultural crop producers do not have livestock, and import larger amounts of
nutrients in the form of organic materials (e.g., manure, waste-based compost or digestate
from biogas-units), permitted mineral P (e.g., finely ground raw phosphate) and K (e.g.,
KSO4), and often also mineral micro-nutrient fertilizer products [6,25,26,30,47]. Stockless
organic systems are (i) more dependent on imports of organic (manure, compost) and/or
permitted mineral P, K and micronutrient fertilizers and (ii) more reliant on mechanical
weed control and/or flame weeding, and therefore they are thought to be less sustainable
when compared with mixed organic farms [6,25,27,30,47].

It is important to note that the inclusion of energy crops in organic rotations, and the
use of digestate from on-farm biogas units as fertilizer, has provided an alternative nutrient
recycling option, especially for stockless organic producers [30,48–50]. Moreover, the use
of biogas units for manure processing on mixed organic farms is thought to minimize
N-losses, since both nitrification and denitrification are inhibited during the anaerobic
digestion process [48–50].

The beneficial effects of organic fertilization regimes on nutritional quality and safety
parameters have been associated with (i) regular organic matter inputs on soil biological
activity, (ii) a more balanced mineralization-driven nutrient (and especially N) supply
pattern from organic fertilizers, and (iii) the non-use of mineral N and superphosphate (see
Section 2.2.1 to Section 2.2.3 below). In contrast, there is limited information on the effect
of different types of organic fertilizer (e.g., farm-yard manure, manure slurry, manure-
compost manure, green-waste compost, household-waste compost, alfalfa pellets) on the
nutritional composition of crops.

2.2.1. Replacing Mineral N-Fertilizer with Organic Fertilizer Inputs

There is now a range of studies that report that using organic fertilizers such as ma-
nure, instead of mineral NPK-based fertilization regimes, results in higher leaf and/or
grain phenolic concentrations, but reduced levels of lodging in cereals and foliar disease
severity in both cereals and other crops [13,33,51–54]. For example, in the NFSC trials,
phenolic concentrations were significantly lower, whereas powdery mildew and/or rust
severity were significantly higher in mineral NPK, compared with manure-fertilized wheat
crops [13,33]. In addition, in the years when the performance of wheat grown after contrast-
ing preceding crops could be compared, wheat grown after grass-clover leys and mineral
NPK as fertilizer had the highest mildew and lowest phenolics levels (Figure 3). It is
well known that phenolic compounds, which have antimicrobial activity, are a component
of both constitutive and salicylic acid (SA)-inducible systemic resistance mechanisms in
plants [51]. Moreover, it has been demonstrated that increasing N-availability to plants,
significantly reduces the concentrations of phenolic compounds and resistance against
biotropic diseases in a dose-dependent manner [52–54].

These results are of nutritional relevance, since phenolics are one of the main phyto-
chemical groups with antioxidant activity in crops, and increased dietary intake of different
types of phenolics has been linked to health benefits in humans, including a reduced risk
of cardiovascular disease, type-2 diabetes and cancer [55].
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Results from the NFSC trials and other studies [56–58] have suggested that replacing
mineral NPK fertilizer inputs with manure at the same N-input level can also result in in-
creased concentrations of other phytochemicals with antioxidant activity in crops, including
vitamin C and folate in potato, cabbage (Brassica oleracea L.) and lettuce (Lactuca sativa L.),
glucosinolates in cabbage, and total carotenoids in cabbage (Table 1).

In contrast, concentrations of toxic glycoalkaloids in potato tubers were significantly
lower when manure, instead of mineral NPK, was used as fertilizer in the NFSC tri-
als (Table 1). However, the effects of mineral NPK versus organic fertilizer use on non-
resistance related phytochemicals are less consistent than those observed for phenolics. For
example, in the NFSC trials, the use of manure instead of mineral NPK resulted in slightly
(~5–10%), but significantly, lower concentrations of tocopherol and tocotrienol in wheat
grain [58].

Differences in the N-supply pattern from organic and mineral N-fertilizer are also
thought to, at least partially, explain the results of (i) the NFSC trials, and (ii) recent system-
atic reviews/meta-analyses and retail surveys that reported higher levels of antioxidant
activity and concentrations of phytochemicals with antioxidant activity in organic crops,
compared with conventional crops [56–60]. However, previous studies and the NFSC
trial results demonstrated that rotation design, variety choice and crop protection regimes
may have also contributed to differences in phytochemical concentrations and antioxidant
activity levels between organic and conventional crops [7,12,13,19,50,51,53,57–60] (Table 1;
Figure 3; Section 2.3).

Mineral N-fertilizer use is thought to be the main reason for the significantly higher
protein, nitrate and nitrite concentrations found in conventional crops, compared with
organic crops in meta-analyses and the NFSC trials, but there is uncertainty about the
potential nutritional and health impacts [57] (see also Section 2.3 below).
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Table 1. Effect of the crop protection (organic versus conventional) and fertilization regime (mineral NPK vs cattle manure)
on nutritionally relevant phytochemicals in potato, cabbage and lettuce grown in the NFSC trial data from [58]; values
shown are main effect means; yield results are from 9, 6, 4 and 4 growing seasons for potato, cabbage, lettuce and onion
(Allium cepa L.), respectively; phytochemical and/or nitrate results are from 3 or 4 growing seasons for potato, cabbage,
lettuce and onion.

ANOVA Results (p-Values)

Crop Protection
(CP) Fertilization (F) Man Effects Inter-Action

Crop Parameter Assessed CON ORG Mineral
NPK

Cattle
Manure CP F CP×F

Potato Marketable tuber yield (t/ha) 9.2 7.7 9.3 7.6 <0.001 <0.001 0.003
total phenolics (µg/g FW) 285 293 277 301 NS 0.016 NS

vitamin C (µg/g FW) 95 97 91 101 NS <0.001 NS
total carotenoids (µg/g FW) 0.7 0.8 0.7 0.7 0.060 NS 0.018

folate (µg/g FW) 0.17 0.18 0.17 0.18 NS <0.001 0.006
glycoalkaloids (mg/kg FW) 42 40 45 37 NS <0.001 NS

Cabbage Yield (t/ha FW) 54 61 71 45 <0.001 <0.001 0.007
total phenolics 1 (µg/g FW) 11.0 9.4 8.8 11.6 0.093 0.001 NS

vitamin C (µg/g FW) 224 223 211 236 NS 0.006 NS
total carotenoids (µg/g FW) 3.5 3.2 3.0 3.7 NS 0.008 0.051

folate (µg/g FW) 0.4 0.3 0.3 0.4 <0.001 0.022 NS
total glucosinolates (g/g FW) 1.37 1.23 1.13 1.48 0.037 <0.001 NS

total volatiles 2 (mg/g FW) 33 31 28 35 NS <0.001 0.032

Lettuce Yield (t/ha FW) 38 36 39 34 NS <0.001 NS
total phenolics (µg/g FW) 104 108 102 112 NS 0.036 NS

vitamin C (µg/g FW) 6.8 6.7 6.8 6.7 NS NS NS
total carotenoids (µg/g FW) 4.4 5.0 4.6 4.8 0.085 NS NS

folate (µg/g FW) 0.3 0.3 0.3 0.3 0.064 0.042 NS

Onion Marketable yield (t/ha FW) 22 20 21 21 NS NS NS
total phenolics 3 (µg/g FW) 725 721 740 706 NS NS NS

vitamin C (µg/g FW) 100 93 86 107 NS NS NS
total carotenoids (µg/g FW) 0.6 0.7 0.7 0.6 NS NS 0.083

folate (µg/g FW) 0.4 0.4 0.4 0.4 NS NS NS

Significantly higher means are shown in bold. NS, not significant; Main effect means of crop protection or fertilization treatments that
resulted in significantly higher values are shown in bold; CP, crop protection; CON, conventional crop protection based on synthetic
chemical pesticides (herbicides, fungicides and insecticides); ORG, organic crop protection based on mechanical weed control and
hand weeding and the use of Cu-fungicides in potato only; 1 total hydroxycinnamic acid derivatives; 2 sum of hexanal, 3-butenenitrile,
(E)-2-Hexenal and 2-propenyl isothiocyanate; 3 flavonoids.

2.2.2. Replacing Superphosphate with Organic Fertilizer Inputs

The use of water-soluble P-fertilizers (superphosphate, triple superphosphate) is
known to suppress mycorrhizal development in crop plants [61]. Mycorrhizal fungal
associations have been shown to provide benefits to crop plants, including (i) improved
uptake efficiency of P and micronutrients such as Zn, Cu and Se, (ii) increased resistance
against soil-borne diseases, and (iii) greater tolerance against abiotic stress, including
drought [61,62].

Organic crop management has been reported to result in higher densities and diver-
sity of mycorrhizal fungal inocula in soil, and increased colonization and mycorrhizal
development on plant roots [61–63]. The non-use of water-soluble P-fertilizers in organic
farming systems may, therefore have (i) contributed to the positive impacts of organic
fertilization regimes on crop health (see e.g., Figures 2 and 3) and/or (ii) explained the
higher concentrations of nutritionally desirable mineral micronutrients detected in organic
crops in some comparative studies [57,59].

It is well known that the application of water-soluble mineral-P fertilizer results
in an increase in the concentration of toxic metal cadmium (Cd) in crop plants [64–66].
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All phosphorus fertilizers contain Cd as a contaminant and levels may vary from trace
amounts, to as much as 300 mg Cd kg−1 of dry product [64]. Fertilization can influence
Cd accumulation in crops by direct Cd addition with P-fertilizers, and by indirect effects
on rhizosphere chemistry, soil microbial activity, soil pH and Zn concentration, and by
affecting plant growth [64–66].

Systematic reviews and meta-analyses reported that organic cereals have significantly
lower Cd concentrations, but there is insufficient published information for other crops [57].
Results from the NFSC trials demonstrated that the use of mineral NPK fertilizer results
in significantly higher Cd concentrations, when compared with manure at the same total
N-input level, in a range of crops, including wheat, potato, cabbage, onion and lettuce
(Figure 4). However, it is important to point out that, in the meta-analyses of published
data, significant differences in Cd concentrations between organic and conventional cereals
were only detected in experimental studies, whereas analyses of farm and retail survey
data showed no significant differences for Cd [57]. In most experimental studies (including
the NFSC trials), no permitted mineral-P fertilizer was applied in the organic management
plots [57,58,65], whereas finely ground rock-phosphate (which also contains Cd as a con-
taminant) is used on many commercial organic farms, and especially by stockless arable
and specialist horticultural producers [6,25,26]. This may explain the contrasting results
obtained in experimental studies and farm/retail surveys, and indicates that there is poten-
tial to reduce Cd exposure by reducing mineral P-inputs in both organic and conventional
farming.
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In this context, it should be noted that the wheat, potato and vegetable cultivars used
in the NFSC trials were varieties from conventional farming-focused breeding programs,
which were selected for performance in conventional mineral NPK-fertilized production
systems. As described in Section 2.4 (see below), varieties selected in conventional NPK-
fertilized agronomic backgrounds may be at a reduced capacity to develop functional
mycorrhizas. This may also affect micronutrient and toxic metal uptake [58].
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2.2.3. Rhizobium and Mycorrhizal Fungal Inocula

Organic farming standards permit the use of symbiotic microbial inocula that improve
N-fixation in soil (e.g., Rhizobium or free-living N-fixing bacteria) and nutrient uptake by
plants (e.g., VA-mycorrhizal fungi) [4]. However, there is controversy about whether such
inocula are necessary and deliver substantial benefits on mixed organic farms with diverse
rotations that have been under organic management for many years [6,25,26].

Rhizobium inocula are used in both conventional and organic farming, especially for
grain legumes [67–71] and were shown to increase N-fixation and soil-N and N/crude
protein in grain legume and cereal crops grown after inoculated grass-clover leys [69].
Rhizobium species are legume species-specific and when new legume crops (e.g., soya) are
introduced into rotations, treatments of seed with Rhizobium inocula is recommended [71].
The use of Rhizobium inocula was also reported to increase mycorrhizal development from
‘natural’ mycorrhizal fungal inocula present in soil [70]. The combined use of (i) Rhizobium
inocula for clover during the establishment of a two-year clover ley and (ii) application
of domestic waste compost with a high C:N ratio was proposed as a strategy to increase
N-fixation and avoid N-losses [69]. N-losses can be substantial when grass clover leys
are incorporated into soil and the combined use of Rhizobium inocula and high C:N ratio
compost was demonstrated to substantially increase both yield and protein concentration
in organic wheat crops established after leys [69]. There is, to our knowledge, limited
published information on the effects of Rhizobium inocula on other nutritionally relevant
quality parameters.

Mycorrhizal inocula are not widely used in both conventional and organic food crop
production, although a lot of research has been done on their development [71–76]. This is
thought to be mainly because arbuscular mycorrhizal fungal (AMF) inoculum products
are relatively expensive, and produce inconsistent and sometimes negative effects on crop
yields [71–76]. Moreover, it remains unclear whether, and to what extent, AMF inocula
increase P and mineral micronutrient uptake and concentrations in crop plants [76].

The effect of AMF inocula on vitamin and antioxidant levels in vegetables was com-
pared in manure and mineral NPK-fertilized crops in the Rodale Institute’s long-term
farming system trial [72]. AMF-inoculation significantly reduced vitamin C and antiox-
idant levels in carrots (Dacus sativus Hoff.), but had no consistent effect in bell peppers
(Capsicum annuum L.) or tomato (Solanum lycopersicum L.) crops [72]. Interestingly, the reduc-
tion in vitamin C from AMF-inocula was significantly greater in the mineral NPK-fertilized
conventional system (87%) than in the manure-fertilized organic system (28%) [72].

2.3. Crop Protection

Crop protection in organic farming systems is based on the integrated use of preven-
tative management strategies and intervention methods for weed, disease and pest con-
trol [6,25,26]. Several important components of organic crop-health management regimes
also affect the nutritional quality and safety of crops: these are described in separate sec-
tions/subsections below. Specifically, organic crop protection is based on the following
practices:

• Use of diverse crop rotation (see Section 2.1 above);
• Non-use of water-soluble mineral N and P-fertilizers (see Section 2.2 above);
• Use of organic fertilizers and soil amendments to increase soil suppressiveness (see

Section 2.3.1 below);
• Use of environmental enrichment measures to increase populations of natural enemies

of invertebrate pests on farms (see Section 2.3.2);
• Use of elicitors for crop resistance where necessary (see Section 2.3.3 below);
• Use of biological control products for pest and disease control where necessary (see

Section 2.3.4 below);
• Use of barrier, mating disruption, and mass-trapping methods for pest control where

necessary (see Section 2.3.5 below);
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• Use of thermal weed control or soil disinfection; these practices are increasingly
restricted and should only be used as a last resort (see Section 2.3.6 below);

• Use of pesticide products that are permitted in organic farming; these products should
only be used as a last resort (see Section 2.3.6 below);

• Non-use of all synthetic chemical pesticides (see Section 2.3.7 below).

In contrast, crop protection in intensive conventional farming systems relies heavily
on the use of synthetic chemical pesticides, which are prohibited in organic farming [4].
It is important to note that many management practices (e.g., monoculture and short
rotations, zero and minimum tillage) used in conventional farming are dependent on
regular pesticide applications [5,29,31,35,42,57].

Differences in the level of pesticide use between organic and conventional farming
systems are thought to have the largest potential direct and indirect effects on food quality
and safety, and human health [57]. The current knowledge about the effects of organic
versus conventional crop protection protocols on (i) pesticide residues, and (ii) other
nutritionally relevant compounds in food crops are therefore also described separately, in
Section 2.3.7 below.

2.3.1. Soil/Substrate Suppressiveness against Pests and Diseases

Regular inputs of organic matter have been shown to increase the organic matter
content, biological activity, microbial and invertebrate biodiversity, structural stability and
erosion resistance of agricultural soils [77–80].

Organic matter inputs, in particular composts produced in controlled aerobic com-
posting processes, were also shown to increase (i) the suppressiveness of soils against
soil-borne bacterial and fungal diseases and nematodes [81–90], and (ii) the populations of
beneficial invertebrates (e.g., ground beetles) in soils [80,87,88]. Close associations between
the increase in soil biological activity and disease suppressiveness associated with organic
matter/compost inputs have also frequently been observed [83,84,86]. Suppressive com-
posts can be made from a range of organic feedstocks and are widely used in commercial
organic horticultural production systems [86–88].

An extensive review of published studies by Bonanomi and co-workers [87] examined
252 scientific papers and reported positive correlations between disease suppressiveness of
soils after compost/organic matter inputs and (i) soil biological activity, and (ii) concen-
trations of specific groups of antagonistic soil microorganisms (e.g., Trichoderma species,
fluorescent pseudomonads) in soil. The finding that soil chemical or steam disinfection
was shown to significantly reduce or eradicate disease suppressiveness also suggests that
components of soil biota are a major driver for “disease suppressiveness” [87].

However, some organic waste materials used as feed material for compost were also
shown to reduce disease severity via (i) inducing crop resistance mechanisms (e.g., the
chitin soil amendments made from shellfish processing waste) [83,84] or (ii) releasing
phytochemicals (e.g., tannins, phenolic compounds and isothiocyanates) that directly
inhibit pathogen development in the soil (e.g., Brassica crop residues/waste or bark from
certain tree species) [83,84,88–90]. It is interesting to note that the use of Brassica cover
crops/green manures, which have a “biofumigation” effect when incorporated into the
soil, are now recommended as an alternative method to chemical soil disinfection for the
control of parasitic nematodes in both conventional and organic farming [90].

There is limited information on the effect of organic soil amendments on the nutri-
tional composition of crop plants. However, the use of soil amendments that induce crop
resistance (e.g., chitosan, chitin) has been linked to higher phenolic concentrations and
antioxidant activity in vegetables, herbs and fruit and/or increased antioxidative and
antimutagenic activity in organic green vegetables (see Section 2.3.3 below) [91–93].

2.3.2. Environmental Enrichment Practices

Environmental enrichment/diversification practices include the use of (i) companion
plants and intercrops to distract invertebrate pests and thereby reduce pest damage, and
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(ii) managed field margins and/or within-field beetle banks to maintain high population
densities of natural enemies of crop pests and/or pollinators [80,94–100] (https://youtu.
be/XvPP6W0m1GA, accessed 30 November 2021). The use of diversification strategies is
thought to be more prevalent in organic farming systems. Moreover, natural enemy and
pollinator density—but not necessarily diversity—was reported to be greater on organic
farms [96,97,101,102] However, in most studies it remained unclear to what extent the
effects on pest and pollinator populations were due to the non-use of insecticides or
environmental enrichment practices used on organic farms.

The studies of natural enemy populations by Eyre and co-workers [80,95–97] sug-
gested that a wide range of parameters, including crop type, and contrasting fertilization
and crop protection methods used in organic and conventional farming, but also field
margin vegetation and landscape features, affect natural enemy populations. For example,
in the NFSC trial plots, ground beetle abundance was greater in many crops when manure
instead of mineral NPK was used as fertilizer. However, abundance was reduced by insec-
ticide applications [80]. In contrast, in wheat crops, the abundance of spiders was greater
in mineral NPK, compared with manure-fertilized plots [80].

There is, to our knowledge, no information on the effects of environmental enrichment
on the nutritional composition of crop plants, apart from contributing to crops being grown
with lower or no pesticide inputs. However, the benefits of organic farming practices on
pollinator populations are thought to improve the sustainability of crop production and
future food security [96,97,101,102].

2.3.3. Elicitors of Crop Resistance

Elicitors permitted for use in organic farming are produced from plant extracts or
organic waste materials, and are primarily used for the control of seed-borne [103,104],
soil-borne [83,84,91] and foliar diseases [51,91–93,105–107]. The main compounds currently
available and used by commercial organic farmers are:

• Chitin (a long-chain polymer of N-acetylglucosamine, which is a primary component
of fungal cell walls and the exoskeleton of insects and crustaceans) is mainly produced
from the shells of shrimps and other crustaceans;

• Chitosan (a linear polysaccharide composed of randomly distributed β-(1→4)-linked
D-glucosamine and N-acetyl-D-glucosamine) is produced by treating the chitin shells
of shrimp and other crustaceans with an alkaline substance, such as sodium hydroxide;

• Giant knotweed (Reynoutria sachalinensis Schmidt ex Maxim.) extracts (tradename:
Milsana®).

Soil and foliar chitin/chitosan, and foliar Giant knotweed extract treatments were
shown to induce salicylic acid-dependent defense responses in plants, which includes the
increased expression of phenolics and other phytochemicals with antioxidant activity in
crop plants [51,91–93,107]. For example, the large difference in antioxidant activity between
organic and conventional spinach (Spinacia oleracea L.) and onion observed in Japan [91]
was linked to (i) 500 kg chitosan/ha being incorporated into the soil before planting, and
(ii) crops being sprayed regularly with a 0.01% chitosan solution during the growing season
(Figure 5).

However, it is important to note that differences in fertilization regimes (e.g., the use
of manure instead of mineral NPK fertilizer for organic vegetables) are also likely to have
contributed to the higher antioxidant activity in organic crops observed in this study (see
also Section 2.2 above).

https://youtu.be/XvPP6W0m1GA
https://youtu.be/XvPP6W0m1GA
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2.3.4. Biological Control Products

Biological pest and disease control products are permitted under EU organic farming
regulations [4] and pest control products based on Bacillus thuringiensis (Bt), or natural
enemies of invertebrate pests, are widely used [6,25,26,108].

Biological control products based on predators and parasitoids are now available for
a wide range of invertebrate pests/herbivores, and are extensively used in both organic
and conventional production systems and especially protected horticultural crops [108].
It would go beyond the scope of this review to describe the different products and their
mode of action, but detailed information on the products available to farmers can be
found on the websites of the main producers/suppliers of biological control products (e.g.,
Koppert B.V., Berkel, The Netherlands; www.koppert.com/products-solutions, accessed
on 29 November 2021; Biobest Group NV, Westerlo, Belgium, www.biobestgroup.com/en/
biobest/products, accessed on 29 November 2021).

There has also been extensive research and development efforts to develop biological
control products for crop diseases based on bacterial (e.g., Bacillus and Pseudomonas spp.)
and fungal antagonists (e.g., Trichoderma spp.) and a range of products are now com-
mercially available and used in organic farming [109,110]. However, compared with
Bt and natural enemy-based biological pest control products, biological disease control
products are thought to be less widely used in organic farming [83,86]. This is thought
to be mainly because they are relatively expensive and/or were found to provide less
effective and/or reliable disease control than other crop protection strategies available
to organic farmers (resistant varieties, sulphur fungicides, biofumigation, suppressive
composts and/or elicitor-based soil or foliar treatments); see Sections 2.3.1 and 2.3.3 above,
and Sections 2.3.5 and 4.4 below [51,81–90,103–107].

Biological control products are not known to produce detectable chemical residues in
foods, and there are currently no concerns about potential negative health impacts of the
consumption of crops treated with biological crop-protection products [111].

There is, to our knowledge, no information on the effects of biological control products
on nutritional composition parameters, apart from contributing to reducing pesticide use
and thereby the risk of pesticide residues being present in foods.

www.koppert.com/products-solutions
www.biobestgroup.com/en/biobest/products
www.biobestgroup.com/en/biobest/products
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2.3.5. Barrier, Mating Disruption, and Mass-Trapping Methods for Pest Control

Barrier-based pest control strategies (e.g., the use of crop covers, netting and insect
proof green and screenhouses) are permitted and widely used for pest control in organic
horticultural crop production [4,112,113]. However, compared with unprotected open field
conditions, the use of insect-proof screens was reported to (i) increase relative humidity
by 2–21%; (ii) reduce solar radiation by 50–87%; (iii) reduce air velocity by between 15
and 39%, and (iv) affect air temperature and evapotranspiration [114]. These changes
in environmental conditions are also known to have significant effects on crop growth,
yield, and quality parameters [114]. For example, they may explain the lower folate and
glucosinolate concentrations in cabbage crops grown with organic crop protection regimes
(which used insect-proof crop covers for pest control only), when compared with cabbage
crops produced with conventional, pesticide application-based crop protection regimes
(Table 1). It is interesting to note that in the NFSC trials, cabbage was the only vegetable crop
in which (i) netting was used in the organic crop protection protocol; (ii) significant main
effects of crop protection on nutritionally desirable phytochemicals were detected, and
(iii) significantly lower pest damage and higher crop yields were recorded in crops grown
with organic regimes, compared with conventional crop protection regimes (Table 1).

Organic farming standards also permit the use of pheromone sprays for mating
disruption, the release of sterile males, and mass-trapping based on pheromones and
nutrient attractants for pest control [4]. These methods are extensively used by organic
farmers, especially in perennial horticultural crops including apples (Malus domestica
Borkh.), citrus (Citrus L.) and olives (Olea europaea L.) [115–120], and are thought to have
a substantially lower impact on natural enemy populations than (i) synthetic chemical
insecticides used in conventional farming, and (ii) plant and microbial fermentation-based
insecticides (pyrethrum, spinosad) that are permitted and used for pest control in both
organic and conventional production [120].

There is limited information on the effects of barrier, mating disruption, and mass-
trapping methods on the nutritional quality of crops, although it should be noted that they
can have a significant impact on minimizing pesticide use and residues in food [115–120].

2.3.6. Thermal Crop Protection Methods and Pesticide Products Used in Organic Farming

The use of thermal soil disinfection and weed control methods are permitted and
used in organic farming, although the use of thermal soil disinfection is now restricted by
many organic certification bodies [4,121]. This is mainly because thermal crop protection
substantially increases fossil fuel use and the carbon footprint of food production, and was
shown to have negative impacts on soil structure and biological activity [121].

The use of pesticides made from mined minerals (e.g., S-fungicides and insecticides;
Cu-fungicides and bactericides) is permitted in both organic and conventional farming
systems [4,6,25,26,122], although the use of Cu-products is restricted under EU-farming
regulations to 6 kg Cu/ha/annum, and requires farmers to justify and obtain a derogation
from their certification body [4].

In the NFSC trials, Cu-fungicides (at a rate equivalent to 6 kg Cu/ha/annum) were
only used in the organic crop protection regime for late blight control in potato crops [20].
Conventional crop protection regimes for potatoes used synthetic chemical fungicides
for late blight control. The finding that potato tubers from Cu-fungicide treated plots
(organic crop protection) had significantly higher Cu concentrations than potatoes from
plots treated with synthetic chemical fungicides (Figure 6) suggests that the use of Cu-
fungicide can increase Cu-concentration in crops. This view is supported by the finding
that Cu-concentrations were not significantly different (lettuce, onion) or higher with
conventional crop protection (cabbage) in the other vegetable crops grown in the NFSC
trials (Figure 6).
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It is important to note that S and Cu are essential mineral nutrients for both plants
and animals/humans, and that there are currently no concerns about potential negative
health impacts of the consumption of crops treated with mineral-based crop-protection
products [4,111,122]. However, there is concern about (i) the potential health implications
for farmers handling Cu-fungicides, because concentrated Cu solutions are highly toxic and
can be taken up through the skin, and (ii) negative environmental impacts (e.g., reduced
soil biological activity or phytotoxicity) of extensive Cu-fungicide use in orchard crops
(e.g., apple, grapevine) [111,122,123].

Organic farming standards permit the use of a small number of insecticide products
based on plant extracts (e.g., pyrethrin and azadirachtin, which are made from chrysan-
themum [Chrysanthemum indicum L.] flowers and the neen tree [Azadirachta A. Juss.] fruit,
respectively) or microbial fermentation extracts (e.g., spinosad, which is made from the
insecticidal chemicals spinosyn A and D produced by the actinomycete Saccharopolyspora
spinosa) for crop protection [4].

Similar to synthetic chemical insecticides, pyrethrin, azadirachtin and spinosad may
also have negative effects on non-target invertebrates including (i) natural enemy popula-
tions present in agricultural ecosystems and (ii) parasitoids and predators released into
crops as biological control treatments [124,125].

Although they are considered to be less toxic than some groups of synthetic chemical
insecticides (e.g., organophosphates, carbamates and neonicotinoids), there is some con-
cern about the potential negative health impacts of exposure to pyrethrins and spinosad
residues [111,126,127].

2.3.7. Synthetic Chemical Pesticides That Are Prohibited in Organic Farming

Negative health effects of occupational (e.g., farmers and crop protection contractors
handling pesticides) and environmental exposure to synthetic chemical pesticides are well
documented, and there is also increasing evidence for negative health impacts of chronic
dietary pesticide exposure [126–136].

In the EU more than 300 different synthetic chemical pesticides (herbicides, insecti-
cides, acaricides, fungicides, plant-growth regulators and soil-disinfecting chemicals) are
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licensed and widely used for crop protection in conventional food production [128,129].
In contrast, EU organic farming regulations prohibit the use of all synthetic, chemical
pesticides for crop protection and as veterinary treatments [4,111]. However, as described
in Section 2.3.5 above, organic farming standards permit the use of pesticide products
made from (i) mined minerals (S, Cu), (ii) microbial fermentation extracts, and (iii) plant
extracts [4,111]. In this section, we therefore summarize the currently available informa-
tion of the effect of organic vs conventional production protocols on pesticide residues in
crops [57,137–141].

Three comprehensive literature reviews and two meta-analyses of organic versus
conventional crop composition data reported that levels of pesticide residues are sub-
stantially lower in organic than conventional foods, and concluded that organic food
consumption may be one strategy to reduce dietary exposure to pesticides and associated
health risks [57,137,139]. For example, the most recent meta-analysis by Baranski and
co-workers [57] reported that organic crops are four times less likely to contain detectable
pesticide residues than conventional crops, and that the level of pesticide contamination
in conventional crops differs significantly between cereals, vegetables and fruit products
(Figure 7a). Specifically, conventional fruits were found to have substantially higher pesti-
cide loads than conventional vegetables and cereal-based foods, whereas contamination
levels were similar in organic fruits, vegetables and cereal-based foods, but substantially
lower than in their conventional comparators (Figure 7a). Similar results were obtained in
recent retail surveys of fruits, vegetables and cereal-based foods [141], which reported that
the number of different pesticide residues detected was substantially higher in conven-
tional products, compared with organic fruit, vegetables and cereal-based food products
(Figure 7b). A large retail survey of wheat flour products carried out over 3 years in the
UK and Germany reported significant effects of wheat species (Triticum aestivum L. vs.
T. spelta L. flour) and refining (white versus whole-grain flour) and the country in which
flour samples were collected (the UK versus Germany), on pesticide residue concentrations
in conventional, but not organic wheat flour, which generally contained very low pesticide
residues [140] (Figure 8). Specifically, the reduction in pesticide exposure associated with
organic food consumption was significantly higher with wholegrain, compared with re-
fined flour, common wheat compared with spelt wheat flour, and in the UK compared with
Germany (Figure 8).
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These results are consistent with regulatory pesticide monitory data from Europe,
which also suggest that pesticide residue levels in whole-grain cereal products, fruit and
vegetables are higher than in food such as refined cereal products, and most meat and
dairy products [128].

It is important to note that the concentrations of pesticides in pesticide-treated crops
may also be affected by both environmental conditions and agronomic practices other than
pesticide use [58,142–144]. For example, wheat produced with conventional, pesticide-
based crop protection regimes had significantly higher chlormequat levels in manure-
fertilized plots, compared with mineral NPK-fertilized plots in the NFSC trial [58] (Figure 9).
Chlormequat is a plant-growth regulator that is licensed in the EU only for use in cereals (es-
pecially wheat) to prevent lodging. The higher chlormequat residues in manure-fertilized
crops are thought to be due to the 1–2-week earlier wheat grain maturity and senescence
observed in manure, compared with NPK-fertilized wheat crops, which shortens the period
available for the metabolism of chlormequat by the plant [58]. Compound feeds made
from manure-fertilized cereal, potato, carrot and onion crops grown in the NFSC trials
and used in animal dietary intervention studies (see Section 2.1) therefore contained sig-
nificantly higher concentrations of chlormequat, than feeds produced with mineral NPK
fertilizer [142].
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In contrast, concentrations of the insecticide aldicarb and the herbicide diquat were
lower in compound feeds made from manure-fertilized crops, compared with mineral
NPK-fertilized cereal, potato, carrot and onion crops, when feeds made from pesticide-
treated crops were compared [58,143]. Aldicarb is an insecticide applied as granules to soils
for soil-borne pests, and nematode control and was only used in potato crops, whereas
Diquat is a semi-selective herbicide that was applied in potato and vegetable crops in the
NFSC trials [58,143]. Soil-applied herbicides and insecticides are known to be absorbed
by soil organic matter, and aldicarb metabolism in topsoil is thought to be mainly by
microbial activity [144,145], which is known to be higher in soils receiving regular organic
fertilizer inputs [78,146–148]. The lower levels of diquat and aldicarb found in crops from
manure-fertilized soils are therefore thought to have been due to higher levels of microbial
metabolism and/or absorption to soil organic matter, but this was not confirmed by soil
analyses in the NFSC trials [58].
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The use of pesticides and especially herbicides can affect the metabolism and physiol-
ogy of crop plants in many different ways [149]. For example, herbicides were shown to
inhibit photosynthesis and energy metabolism and/or inhibit root growth and nutrient up-
take from soil [149–154]. This may lead to an increased susceptibility to crop diseases and
lower concentrations of nutritionally desirable phytochemicals involved in photosynthesis
(e.g., carotenoids), and mineral micronutrients (e.g., Ca, Mg, Fe, Zn) in plants [149–154].
For example, the negative effects of glyphosate-based herbicides (GBHs, the most widely
used crop protection products globally) on crop health and nutritional composition were
recently reviewed [155] and include:

• “Impairment of the innate physiological defenses by interruption of the shikimic acid pathway”;
• “Interference with rhizosphere microbial ecology (in particular, GBHs have the potential to

enhance the population and/or virulence of some phytopathogenic microbial species in the crop
rhizosphere)”;

• “As yet incompletely elucidated reduction in the uptake and utilization of nutrient metals
by crops”.

2.4. Crop Breeding and Selection

The first organic and “low-input” farming-focused breeding/selection programs
started in the late 1990s, and for many crop species there are still no organic-farming-
specific breeding programs [8–11,156,157]. As a result, the majority of crop varieties used
in organic farming were developed for conventional farming, and are therefore thought to
lack important traits required for optimum crop yield, health and/or quality in organic
systems [7–11,156–158].

However, organic farmers tend to use (i) different and often older, traditional culti-
vars and/or (ii) varieties with higher disease resistance and/or competitiveness against
weeds [7–11]. Many organic farmers also prefer to use open-pollinating varieties rather
than hybrids, because they perceive them as having better sensory quality, or because they
want to be able to save seed for the next season [10,158].

The approaches, standards and philosophy of organic plant breeding have recently
been reviewed [156–158] and are therefore not described in detail here. However, it is
important to note several important characteristics of organic breeding programs: namely
that (i) breeding and selection are farmer-participatory, (ii) selection is carried out un-
der low-input and/or organic farming conditions, and (iii) maintenance breeding/seed
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production is carried out in contrasting pedoclimatic environments to optimize local adap-
tation [156–158].

Most breeding and variety selection programs for organic farming have focused on
crop species where modern conventional varieties were found to perform poorly in or-
ganic systems, and/or where the combination of traits desired by organic farmers are
very different from those delivered by conventional breeding programs (e.g., for wheat,
brassicas such as broccoli [Brassica oleracea L. cultivar group italica] and more recently
soya [Glycine max (L.) Merr.]) [10,13,152,153]. For example, conventional wheat breeding
programs have focused on reducing the straw length to minimize lodging risk and increase
grain-yield potential in high mineral NPK and pesticide input systems [13,153]. In con-
trast, organic wheat breeding programs have focused on the delivery of varieties with
longer stems/straw, high levels of disease resistance, competitiveness against weeds, and
the ability to produce a high protein content under low input and/or organic farming
conditions [13,153].

There is increasing evidence for significant differences in the nutritional composition
between modern varieties/hybrids developed for the conventional farming sector and
(i) varieties developed in breeding programs for the low-input or organic farming sector,
and/or (ii) older and/or traditional varieties selected or preferred by organic farmers.
Results from studies with wheat, table grapes (Vitis vinifera L.) and butternut squash
(Curcurbita L.) are described, as examples, in separate sections below.

2.4.1. Wheat

Studies with common wheat (T. aestivum) in the US and spelt wheat (T. spelta) in Crete
reported that modern, short-straw varieties have lower mineral micronutrient (e.g., Cu, Fe,
Se and/or Zn) concentrations in the grain than traditional, long-straw varieties [13,40]. In
a UK study with common wheat (T. aestivum), a long-straw variety from a Swiss organic
breeding program was also shown to have higher levels of rust resistance, and higher
phenolic concentrations than a modern, short-straw variety developed for conventional
production [13]. The study identified strong positive associations between foliar phenolic
concentrations, and both rust and Septoria disease severity [13].

In contrast, in field experiments with spelt wheat (T. spelta) in Crete, a modern short-
straw spelt variety had significantly higher grain phenolic levels than two, traditional
long-straw “Urspelt” varieties and an intermediate straw-length variety developed for the
organic farming sector [40].

Overall, the available evidence suggests that longer-straw wheat varieties, favored by
organic farmers, have higher levels of mineral micro-nutrients, whereas there is no clear
trend for a correlation between straw length and phenolic concentrations.

It is interesting to note that (i) the lower levels of lodging observed with manure,
compared with mineral NPK fertilizer inputs, makes it less risky to use longer-straw
varieties in organic farming systems, and (ii) the greater competitiveness against weeds
and higher grain protein levels in longer straw varieties are a benefit in organic farming
systems, which prohibit the use of water-soluble mineral N-fertilizers to increase grain
protein levels, and herbicides to reduce weed competition [13,40].

2.4.2. Grapes

A group of recent studies comparing the nutritional composition of table grapes (which
included a comprehensive literature review/meta-analysis of retail surveys in the UK and
farm surveys in Crete) also identified significant interactions between variety choice and
the production system. These studies compared the effect of production systems (organic
versus conventional), growing environments (South Africa versus the Mediterranean) and
different grape types/varieties on antioxidant activity, and the phenolic concentrations in
table grapes [12,19,60]. They reported grape type (white, red and black) and/or variety
as the strongest driver for antioxidant and phenolic levels in grapes and that, overall,
organic production was found to result in higher phenolic levels in grapes, compared with
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conventional production. However, when data from all grape varieties assessed in the UK
retail survey were compared, only organic white grapes, but not red and black grapes, were
shown to have significantly higher antioxidant capacity compared with their conventional
comparators [12] (Figure 10a). When the results obtained for individual grape varieties
were compared, both the retail and farm survey-based data showed (i) no significant effect
of production systems for the majority of varieties, and (ii) higher levels of antioxidants
and/or phenolics in organic grapes for some varieties (see Figure 10b for results from the
farm survey). It is important to point out that the reasons for the contrasting effects of
production systems on different grape types/varieties are currently unknown [12,19,60].
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Figure 10. Effect of organic and conventional production methods on antioxidant activity/capacity (TEAC) in (a) white,
red and black table grape analyses, as part of a UK retail survey, data from [12] (2-factor ANOVA detected a significant
interaction (p = 0.025) between grape type and production systems) and (b) grapes of three indigenous, traditional grape
varieties analyzed as part of a farm survey in Crete, Greece, data from [19] (2-factor ANOVA detected a significant interaction
(p = 0.016) between grape variety and production systems). Means with the same capital letter for the same production
system and means with the same lower-case letter for the same grape type or variety are not significantly different according
to Tukey’s contrasts (p < 0.005).

2.4.3. Butternut Squash

A recent field experiment with butternut squash carried out in Spain [159] reported
significant interactions between variety (two modern F1 hybrids developed for conven-
tional production were compared) and production systems (manure versus mineral NPK
fertilizer) for a range of nutritionally relevant parameters (Table 2; Figure 11).

When the main effects of production systems were compared, organic management
resulted in significantly higher Zn, Mn and tocopherol, but lower folate and β-carotene
concentrations and lower antioxidant capacity. When the main effects of variety were
compared, Pluto had higher Fe, Mn, folate and amino acids, but lower concentrations of
tocopherol than Ariel (Figure 11; Table 2).

Principle component analyses suggested that the two F1-hybrids had contrasting
nutritional profiles when grown with organic production methods, but had very similar
nutritional profiles when grown conventionally. It is important to point out that both
F1-hybrids were developed for conventional farming systems [159] and the fertilizer inputs
used in both the organic and conventional systems were very high (Table 2).



Agronomy 2021, 11, 2494 22 of 44

Table 2. Effect of variety/F1-hybrid (Ariel versus Pluto) and production systems (conventional vs. organic) on antioxidant
activity/capacity and concentrations of nutritionally relevant vitamins, total phenolics and amino-acids (values shown are
main effect means; results are from a single field experiment in Spain; data from [159].

Variety Production Systems ANOVA (p-Values)

Parameter Assessed Ariel Pluto Conventional 1 Organic 2 Variety Production
System

Vitamins (Vit)
water soluble (µg/g FW)

folate (Vit B9) 0.25 0.31 0.30 0.26 <0.001 <0.001
fat soluble (µg/g FW)

β-carotene (provitamin A) 2.04 3.67 3.63 2.24 <0.001 <0.001
total carotenoids 39.53 34.54 38.38 35.95 NS NS
tocopherol (Vit E) 5.60 1.65 1.28 5.50 <0.001 <0.001

total phenolics (µg GAE/g) 199 195 205 191 NS NS
antioxidant activity (µg TE/g) 257 281 286 254 NS <0.05
amino acids (AA; mg/100g)

total essential AA 3 204 348 233 324 <0.001 <0.05
total non-essential AA 4 430 792 593 659 <0.001 NS

Significantly higher means are shown in bold. NS, not significant; GAE, gallic acid equivalents; TE, 1 crop protection was according to
recommendations for conventional farmers Spain; mineral fertilizer inputs were 750 kg/ha of N:P:K (8:15:15) pre-planting, plus 300 kg/ha
of calcium ammonium nitrate at thinning (3–4 leaf stage); 2 crop protection was according to organic farming practices in Spain; organic
fertilizer inputs were 25 t/ha of cattle manure pre-planting, plus 500 kg/ha of dehydrated chicken manure at thinning (3–4 leaf stage);
3 sum of histidine, arginine, threonine, valine, lysine, isoleucine, leucine, phenylalanine; 4 sum of aspartic acid, serine, glutamic acid,
glycine, alanine, proline and tyrosine.

Agronomy 2021, 11, x FOR PEER REVIEW 23 of 44 
 

 

  
(a) (b) 

Figure 11. Effect of different F1-hybrid (Ariel F1 versus Pluto F1) and production systems (conventional vs organic) on 
mineral micronutrient concentrations (Cu, Fe, Zn,Mn) in butternut squash (values shown are main effect means; results 
are from a single field experiment in Spain; data from [159]. *** significant difference (p < 0.001); ** significant difference 
(p < 0.01); NS, not significant. 

2.5. Confounding Effects of Pedoclimatic Background Conditions 
When comparing the effects of the agronomic protocols used in organic and conven-

tional farming on crop yield and quality parameters, it is important to consider that (i) 
both productivity and nutritional composition profiles of crops can be affected by a wide 
range of soil, landscape and climatic factors and (ii) that these environmental factors may 
interact with, and confound, the effects of specific agronomic parameters, crop genetics 
and/or production systems [160]. 

Results from the NFSC trials [58] demonstrated that it is not possible to make accu-
rate conclusions regarding the effect of the production system (organic versus conven-
tional) and specific agronomic practices (e.g., fertilization, crop protection and rotational 
design) on crop quality parameters, unless the environmental variability is considered in 
the study design. Specifically, this means that field experiments and surveys need to be 
repeated in at least three production seasons and/or locations with contrasting pedocli-
matic conditions, before (i) reliable estimates of the overall effects of agronomic practices 
or production systems can be made, (ii) interactions between agronomic and environmen-
tal parameters can be identified, and (iii) the relative importance of environmental versus 
agronomic drivers on nutritional quality parameters can be analyzed/modelled appropri-
ately by redundancy analyses (RDA) [58]. 

Specifically, results from the NFSC trials [13,20,33,50,58,65] demonstrated that sea-
sonal variation in climatic conditions was a significant driver for crop composition and 
confounded the effects of rotation, variety choice, fertilization and crop protection [13,58]. 
For example, for winter wheat, RDA of data from four growing seasons confirmed that 
both climatic conditions and agronomic parameters were significant explanatory varia-
bles/drivers for leaf phenolic concentrations (Figure 12). Air temperature and organic fer-
tilization regimes were identified as positive drivers for phenolic concentrations, whereas 
conventional fertilization regimes and high N and P availability were identified as signif-
icant negative drivers for phenolic concentrations [33] (Figure 12). Interestingly, grass-
clover ley pre-crops, which result in higher N-availability, were also identified as a nega-
tive driver for phenolics (Figure 3), which is consistent with studies that reported negative 
correlations between N-availability and phenolic concentrations in crops [13,33,52–54]. 
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are from a single field experiment in Spain; data from [159]. *** significant difference (p < 0.001); ** significant difference
(p < 0.01); NS, not significant.

2.5. Confounding Effects of Pedoclimatic Background Conditions

When comparing the effects of the agronomic protocols used in organic and conven-
tional farming on crop yield and quality parameters, it is important to consider that (i) both
productivity and nutritional composition profiles of crops can be affected by a wide range
of soil, landscape and climatic factors and (ii) that these environmental factors may interact
with, and confound, the effects of specific agronomic parameters, crop genetics and/or
production systems [160].
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Results from the NFSC trials [58] demonstrated that it is not possible to make accurate
conclusions regarding the effect of the production system (organic versus conventional)
and specific agronomic practices (e.g., fertilization, crop protection and rotational design)
on crop quality parameters, unless the environmental variability is considered in the study
design. Specifically, this means that field experiments and surveys need to be repeated in at
least three production seasons and/or locations with contrasting pedoclimatic conditions,
before (i) reliable estimates of the overall effects of agronomic practices or production
systems can be made, (ii) interactions between agronomic and environmental parameters
can be identified, and (iii) the relative importance of environmental versus agronomic
drivers on nutritional quality parameters can be analyzed/modelled appropriately by
redundancy analyses (RDA) [58].

Specifically, results from the NFSC trials [13,20,33,50,58,65] demonstrated that sea-
sonal variation in climatic conditions was a significant driver for crop composition and
confounded the effects of rotation, variety choice, fertilization and crop protection [13,58].
For example, for winter wheat, RDA of data from four growing seasons confirmed that
both climatic conditions and agronomic parameters were significant explanatory vari-
ables/drivers for leaf phenolic concentrations (Figure 12). Air temperature and organic
fertilization regimes were identified as positive drivers for phenolic concentrations, whereas
conventional fertilization regimes and high N and P availability were identified as signifi-
cant negative drivers for phenolic concentrations [33] (Figure 12). Interestingly, grass-clover
ley pre-crops, which result in higher N-availability, were also identified as a negative driver
for phenolics (Figure 3), which is consistent with studies that reported negative correlations
between N-availability and phenolic concentrations in crops [13,33,52–54].

Agronomy 2021, 11, x FOR PEER REVIEW 24 of 44 
 

 

 
Figure 12. Biplot derived from redundancy analysis showing the relationship between weather con-
ditions (in the 14–15-week period before leaf samples were taken in 2005, 2007, 2008 and 2009), N, 
P and K availability (estimated from flag leaf N P and K content at growth stage 50 (GS50), and 
agronomic management explanatory variables/drivers and phenolic compounds in wheat leaves at 
GS50, data from [33]. Axis 1 explains 60% and axis 2 a further 18% of the variation. Continuous 
explanatory variables: N, N-availability (p = 0.064); P, phosphorus availability (p = 0.002); K, potas-
sion availability (p = 0.278); GDD, air temperature (p = 0.0024); RAD, radiation (p = 0.002); PRE2, 
precipitation ((p = 0.090). Fixed explanatory variables: CFT, conventional fertilization (p = 0.002); 
OFT, organic fertilization (p = 0.002); CCP, conventional crop protection (p = 0.160), OCP, organic 
crop protection (p = 0.160); GC, pre-crop grass-clover ley (p = 0.004); GR, pre-crop rye-grass ley (p = 
0.920) PO, pre-crop potato (p = 0.312), WW, pre-crop winter wheat (p = undefined). Phenolic acid 
response variables: c1 to c3, different individual chlorogenic acid derivatives; f1 to f13, different 
individual flavonoids; CQAtot, total chlorogenic acid derivatives; Ftot, total flavonoids 

3. Effects of Organic Crop Consumption on Health Markers and Disease Incidence 
Systematic literature reviews and meta-analyses of comparative crop composition 

data reported that organic crops have on average: 
• Lower concentrations of pesticides and cadmium; 
• Higher antioxidant capacity and concentrations of a range of individual phytochem-

icals with antioxidant activity (e.g., phenolics; other plant defense compounds) 
[56,57,127,139] 
when compared with conventional crops. In addition, recent retail surveys and meta-

analyses of published mycotoxin contamination data in cereals suggest that organic 
whole-grain, and to a lesser extent, refined cereal products have on average: 
• Higher concentrations of mineral micronutrients; 
• Slightly lower concentrations of certain Fusarium mycotoxins [39,40,59]. 

There is general agreement that the presence of pesticides, cadmium and mycotoxin 
residues (which are higher in conventional crops), is nutritionally undesirable and EU-
regulators have set maximum residue levels (MRL) for pesticides and maximum contam-
ination levels (MCL) for mycotoxins and toxic metals such as cadmium [161,162]. How-
ever, since most conventional crop samples contain levels of pesticide residues, cadmium 
or mycotoxins that are below the MRLs or MCLs set by regulators, there is considerable 

Figure 12. Biplot derived from redundancy analysis showing the relationship between weather condi-
tions (in the 14–15-week period before leaf samples were taken in 2005, 2007, 2008 and 2009), N, P and
K availability (estimated from flag leaf N P and K content at growth stage 50 (GS50), and agronomic
management explanatory variables/drivers and phenolic compounds in wheat leaves at GS50, data
from [33]. Axis 1 explains 60% and axis 2 a further 18% of the variation. Continuous explanatory
variables: N, N-availability (p = 0.064); P, phosphorus availability (p = 0.002); K, potassion availabil-
ity (p = 0.278); GDD, air temperature (p = 0.0024); RAD, radiation (p = 0.002); PRE2, precipitation
((p = 0.090). Fixed explanatory variables: CFT, conventional fertilization (p = 0.002); OFT, organic
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fertilization (p = 0.002); CCP, conventional crop protection (p = 0.160), OCP, organic crop protection
(p = 0.160); GC, pre-crop grass-clover ley (p = 0.004); GR, pre-crop rye-grass ley (p = 0.920) PO,
pre-crop potato (p = 0.312), WW, pre-crop winter wheat (p = undefined). Phenolic acid response
variables: c1 to c3, different individual chlorogenic acid derivatives; f1 to f13, different individual
flavonoids; CQAtot, total chlorogenic acid derivatives; Ftot, total flavonoids.

3. Effects of Organic Crop Consumption on Health Markers and Disease Incidence

Systematic literature reviews and meta-analyses of comparative crop composition
data reported that organic crops have on average:

• Lower concentrations of pesticides and cadmium;
• Higher antioxidant capacity and concentrations of a range of individual phytochemicals

with antioxidant activity (e.g., phenolics; other plant defense compounds) [56,57,127,139]

When compared with conventional crops. In addition, recent retail surveys and
meta-analyses of published mycotoxin contamination data in cereals suggest that organic
whole-grain, and to a lesser extent, refined cereal products have on average:

• Higher concentrations of mineral micronutrients;
• Slightly lower concentrations of certain Fusarium mycotoxins [39,40,59].

There is general agreement that the presence of pesticides, cadmium and mycotoxin
residues (which are higher in conventional crops), is nutritionally undesirable and EU-
regulators have set maximum residue levels (MRL) for pesticides and maximum contami-
nation levels (MCL) for mycotoxins and toxic metals such as cadmium [161,162]. However,
since most conventional crop samples contain levels of pesticide residues, cadmium or
mycotoxins that are below the MRLs or MCLs set by regulators, there is considerable
uncertainty and controversy on whether, and to what extent, the higher concentrations
found in conventional foods, compared with organic foods have a significant health im-
pact [66,128–139].

In contrast, the higher dietary intake of phytochemicals with antioxidant activity
(e.g., polyphenols, carotenoids) and mineral micronutrients, such as Zn and Se, with plant
foods is widely considered to be nutritionally desirable, and thought to be one of the main
reasons for the health benefits associated with diets (e.g., traditional Mediterranean diets)
higher in whole-grain, fruit and vegetables [163–167]. However, although the benefits
of increasing whole-grain, and fruit and vegetable consumption on phytochemical and
mineral micronutrient intake and public health are well documented [163–167], there
is considerable controversy on whether, and to what extent, changing to organic food
consumption can affect phytochemical and mineral micronutrient intake and associated
health impacts [168,169].

In this section, we therefore summarize the currently available evidence for: (i) ef-
fects of organic crop consumption on health-related physiological parameters detected in
dietary intervention studies with animals (Section 4.1); (ii) associations between organic
food consumption and disease incidence identified in human cohort studies (Section 4.2);
(iii) additive/synergistic health and food security benefits of increased whole-grain, fruit
and vegetable intake with organic instead of conventional foods (Section 4.3).

3.1. Evidence from Animal Dietary Intervention Studies

A small number of animal dietary intervention studies have compared effects of
organic and conventional feed consumption on health-related physiological markers: see
Velimirov et al. [170] and Średnicka-Tober et al. [142] for detailed reviews of these studies.
All reported some significant differences in growth and/or physiological parameters (e.g.,
body composition, plasma antioxidant and hormone levels, immunoglobulin concentra-
tions and/or immune system responsiveness) between animals raised on conventional and
organically produced feed [142,170]. However, the parameters assessed and the analytical
methods, animal species and/or experimental designs differed between studies, mak-
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ing it difficult to identify consistent trends and draw conclusions about potential health
impacts [142,170]. The only relatively consistent trend found was for immune system
responsiveness. Six out of eight studies (one with rabbits, two with chickens, two with rats
and one with mice) reported greater responsiveness with organic feeds, whereas two stud-
ies (one with pigs and one with rats) reported no significant effect of feed type, and none
of the studies reported greater responsiveness with conventional feeds [142,170].

Two of the published dietary intervention studies with rats had a factorial design,
and investigated effects of and interactions between contrasting fertilization (manure
versus mineral NPK) and crop protection regimes (with and without synthetic chemical
pesticides) used in organic and conventional farming on growth, hormone and immune
system parameters (Figure 13) [142,143].
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and selected hormones and immunological parameters (response variables) in the first (G1) and
second (G2) generation of rats, data from [143]. ASH, ash; LIP, lipids; PRO, protein; FIB, fiber;
BCA, β-carotene; FLA, flavonols; LUT, lutein; POL, polyphenols; Cu, copper; ALD, aldicarb and
DIQ, diquat; Cd, cadmium; Ni, nickel; Pb, lead; TEAC, feed antioxidant activity; IBW, initial body
weight of rats at weaning, cs, corticosterone; gh, growth hormone; igf, insulin-like growth factor 1;
lep, leptin; ins, insulin; ts, testosterone; iga, immunoglobulin A; igg, immunoglobulin G; sp-lp,
spontaneous lymphocyte proliferation; cona-lp, concanavalin A-stimulated lymphocyte proliferation;
lps-lp, lipopolysaccharide-stimulated lymphocyte proliferation.

Results from both studies suggested that the relatively small changes in dietary intakes
of (i) polyphenols and other phytochemicals, (ii) endocrine-disrupting pesticides, (iii) toxic
metals (Cd, Pb) and/or (iv) fiber, lipids and protein resulting from pesticide and/or mineral
NPK fertilizer use, have complex and often interactive effects on endocrine, immune
systems and growth parameters in rats (Figure 13). Moreover, both studies reported that
the consumption of organic feed resulted in higher levels of lymphocyte proliferation (a
marker for immune system responsiveness) when compared with the consumption of
conventional feeds [142,143].

There is mounting evidence that maternal dietary factors (including severe nutrient
deficiencies, intakes of endocrine-disrupting chemicals/pesticides, polyphenols and other
phytochemicals) may result in the epigenetic programming of endocrine and immune
functions, and thereby affect the risk of several diseases, including atopic disease and
cancer development in subsequent generations [171–177]. One of the factorial rat dietary
intervention studies therefore investigated the effects of contrasting fertilization and crop
protection regimes [143] in two successive generations of rats, raised on contrasting feeds.
This two-generation study demonstrated that the physiological response of rats to contrast-
ing feed composition profiles (resulting from organic and conventional crop management
practices) differed substantially between the first and second generations, which may
indicate epigenetic programming and/or the development of “adaptive” phenotypes.
Figure 13 shows the contrasting associations between feed composition drivers and en-
docrine and immune system response variables, identified by redundancy analysis in the
two successive generations of rats [143].

Given that polyphenols were identified as the strongest drivers for both endocrine
and immunological parameters in this two-generation rat study [143] it is important to
consider that polyphenols have been shown to affect the epigenome through several
mechanisms [177,178]. Specifically, in vitro studies reported that catechins (a group of
polyphenols found in green tea) significantly reduced DNA methylation levels of gene
promoters involved in DNA repair, and thereby restored their functions [178]. Moreover,
the consumption of fruit with a high phenolic content (e.g., black raspberry) was reported
to result in DNA demethylation of gene promoters involved in colorectal cancer [179].
Epigenetic regulatory mechanisms are therefore thought to, at least partially, explain cancer-
preventing effects linked to the consumption of (poly)phenolic-rich fruits, vegetables and
whole-grain cereals [180,181].

It is important to note that the effect of feed composition differences associated with
contrasting farming practices has only been investigated in a small number of animal
studies, and that there are no studies in which health outcomes have been measured.
Before drawing a conclusion about potential health impacts, it is therefore important to
carry out additional multi-generation studies with rodents or other animal models to
confirm the results of the studies described above. Moreover, it will be important to
(i) expand the assessment to other health-related physiological markers (e.g., oxidative
stress and inflammation-related markers) and (ii) include obesity, diabetes, cancer and
other disease model rodent strains [181–184] in experiments, to allow health outcomes of
relevance to the human population to be investigated.
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3.2. Evidence from Human Dietary Intervention and Cohort Studies

Several dietary intervention studies with humans and some human cohort studies
have assessed the effect of organic versus conventional food consumption on urinary
excretion of pesticide residues, but there is limited data on urinary excretion of other health
relevant compounds (e.g., phenolics, other phytochemicals, antioxidants and mineral mi-
cronutrients). These studies have consistently shown that organic food consumption results
in significantly lower exposure to a range of pesticides, but identified no or only very small
effects on the urinary excretion of other health relevant compounds [141,168,169,185–190];
this evidence has been described and discussed in detail in a recent systematic review by
Vigar et al. [169].

The most controlled (during the 2-week intervention period participants consumed
either only certified organic or only conventional foods) and comprehensive (in terms of
the range of pesticides monitored) dietary intervention study estimated that changing to
organic food consumption can reduce total pesticide exposure by more than 90% [141].
Interestingly, the same study also found that switching from habitual Western diets (with
high meat and low fruit and vegetable consumption) to a healthy, traditional Mediterranean
diet with low meat, and high fruit and vegetable consumption, resulted in 3–4 times higher
insecticide and organophosphate exposure [141]. These results suggest that the effects
of changing to organic food consumption, considering dietary pesticide intake and the
associated potential negative health impacts, may be greater with a healthy diet.

The finding that organic food consumption can significantly reduce pesticide expo-
sure is thought to be of relevance for human health, because there is increasing scien-
tific evidence for the negative impacts of chronic dietary pesticide exposure, especially
compounds that are suspected or proven to be neurotoxic and/or endocrine-disrupting
chemicals (EDCs) [129–136]. Negative health effects of occupational and environmen-
tal exposure to pesticides are also well documented and predicted to increase in the
future [129,130,132–136,191]. For example, a recent market analysis for pharmaceutical
products that are used to treat acute carbamate and organophosphate poisoning in farmers
and contractors that handle pesticides have predicted a significant increase in demand,
especially in developing and underdeveloped countries, due to a predicted increase in
pesticide use in these countries [191].

It should be pointed out that the European Commission and other government reg-
ulators set maximum residue limits (MRLs) for pesticides in food crops that are orders
of magnitude below the concentrations that result in measurable toxicity symptoms in
animal studies [128,161]. Regulators therefore consider pesticide residues below the MRLs
as safe for consumers [128,129,161,192–194]. However, regulatory residue monitoring in
Europe continues to find that a significant proportion of crop samples contain pesticide
residues above the MRL [128], and there is increasing concern about the efficacy of the
current regulatory pesticide approval system and the “safety” of pesticide residues below
MRLs set by regulators [134–136].

One of the main concerns is that the current regulatory toxicological safety testing
is based on Paracelsus’ 15th century assumption that “toxic effects” are greater at higher
rather than lower doses (“the dose makes the poison”). Pesticide safety testing is therefore
usually based on one-generation animal studies (usually rodents) that assess the effect of
high and moderate doses of chemicals. Specifically, these tests determine the frequency
and severity of death, disease symptoms, fetus malformations and/or low birth weights.
Results are then linearly extrapolated downwards and MRLs set at doses that are assumed
to be safe [129,132,193–195].

However, many of the most widely used pesticides are suspected or confirmed
endocrine-disrupting chemicals (EDCs), which, like hormones, have (i) activity at very
low doses and (ii) U-shaped and/or inverted U-shaped, non-monotonic dose-response
curves [132–134,195–197]. This makes it impossible to predict negative health impacts asso-
ciated with low-level dietary exposure based on the current regulatory, animal model-based
toxicity tests. Moreover, ECDs are increasingly recognized to lead to epigenetic alterations
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and programming, which may eventually lead to an increased incidence in a variety of
diseases (including obesity, type-2 diabetes, immune abnormalities and cancer) later in
life, or in subsequent generations [132,195–198]. Epigenetic effects of ECDs can therefore
only be accurately identified via extensive, multigenerational animal studies, but such
tests are not usually required as part of standard regulatory pesticide safety evaluation
protocols [195–198]. As a result, there is an urgent need to address these deficiencies, given
the “health” and “societal” costs that may result from chronic exposure to EDCs both in
Europe and globally [199,200].

There is also concern about the relatively high MRLs set by the EU for some widely used
pesticides. For example, MRLs for chlormequat (7 mg kg−1) and glyphosate (10 mg kg−1) are
more than 10 times higher than those set for most other pesticides (0.01–0.4 mg kg−1) licensed
for use in Europe [141,161,201,202]. In this context, it is important to consider that both
pesticides are suspected endocrine-disrupting chemicals [203] and glyphosate was recently
classified as a probable carcinogen [204].

Another limitation of the current regulatory toxicological evaluations is that they only
require testing of individual active compounds, whereas testing of formulated products
and combinations of pesticides is not usually required [129,132,193–195]. Moreover, the
reliance of regulators on industry-commissioned (rather than independent) toxicological
evaluations has recently been criticized [205,206].

A recent systematic review reported that there have been no controlled dietary interven-
tion studies/clinical trials in which the effects of organic versus conventional food production
on health outcomes has been studied [169]. However, there is increasing evidence from
human cohort/epidemiological studies that organic food consumption is associated with sig-
nificantly lower risks of a range of diseases including overweight/obesity [207], metabolic syn-
drome [208], certain cancers [209,210], hypospadias [211,212] pre-eclampsia [213], eczema [214]
and middle ear infections (otitis media) [215]. This evidence has been discussed in detail in a
recent systematic review by Vigar et al. [169].

Associations between disease incidence and pesticide exposure were only assessed
in one of these observational studies, which found that the presence of metabolites of
triazine herbicides in urine was positively associated with recurrent middle ear infections
in infants [169,215]. It is important to note that there are now two European studies from
France and the UK, which have reported that organic food consumption results in a lower
incidence of non-Hodgkin lymphoma (NHL) [209,210] and that observational evidence
for positive associations between NHL and exposure to organophosphates were the main
reasons why glyphosate and other organophosphates are now as classified as probable
carcinogens [204].

Lower pesticide exposure from fruit and vegetable consumption was recently found to be
associated with improved reproductive health parameters in both men and women [216,217].
Similarly, a reduced incidence of breast cancer among postmenopausal women in the NutriNet-
Santé cohort was linked to (i) low dietary exposure to synthetic pesticides such as chlorpy-
riphos, imazalil, malathion and thiabendazole [218], and (ii) high organic food consump-
tion [210].

However, although both animal dietary intervention studies and observational re-
search suggest that lower pesticide exposure may at least partially explain the health
benefits associated with organic food consumption, there is still considerable uncertainty,
whether and to what extent dietary pesticide exposure is responsible for the positive health
impacts linked to organic food intake [169]. This uncertainty is mainly due to the lack of
corroborating evidence from clinical trials, but also the finding that organic and conven-
tional food consumers differ in other lifestyle parameters, which may have confounded
results [169]. For example, organic consumers were reported to do more exercise and have
healthier diets [219–221]. It is also important to consider that meta-analyses of comparative
food composition data and dietary intervention studies with animal models suggest that
other composition parameters (e.g., higher phenolic, omega-3 fatty acid, minerals and
antioxidants, and lower cadmium intakes with organic foodss) may also have contributed
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to the health impacts associated with organic food consumption in observational studies
with humans [57,142,143,222] (see also Section 3.1 above).

There is also uncertainty about the potential health impacts of higher nitrate and
iodine intakes associated with conventional food, compared with organic food consump-
tion [57,168,169,222], since these compounds have been linked to both positive and negative
effects on human health [223–226].

3.3. Evidence for Interactions between Diet and Food Type (Organic vs. Conventional)
3.3.1. Nutrition and Health

It is generally accepted that unbalanced habitual Western diets have significantly
contributed to the increase in overweight/obesity, type 2 diabetes, metabolic syndrome,
coronary heart disease and certain cancers in Europe and North America [164,166,221,227].
The health benefits of increasing fruits, vegetables and whole-grain consumption are also
well-documented, and there is increasing evidence that they are, at least partially, due to
increased intakes of fibre, phytochemicals and mineral micronutrient intakes associated
with these foods [163–166]. European consumers are therefore advised to increase fruits,
vegetables and whole-grain intakes, since consumption of all these food groups is currently
below the levels recommended by the WHO in most EU countries [164–166].

However, evidence from composition analyses (see Section 2) and dietary intervention
studies (see Sections 3.1 and 3.2) recommend increasing the following where conventional
food products are used:

• Whole-grain consumption (resulting in a higher dietary intake of pesticides and
Fusarium mycotoxins from cereal products);

• Fruit and vegetable consumption (resulting in an increased dietary intake of pesticides,
in particular insecticides and organophosphates).

In contrast, results show that increasing whole-grain, fruit and vegetable consumption
with organic products will: (i) substantially reduce dietary intake of nutritionally undesir-
able pesticides and Fusarium mycotoxin; (ii) increase the intake of nutritionally desirable
phytochemicals, antioxidants and mineral micronutrients compared with the consump-
tion of conventional products at the same energy intake level (see Section 2, Section 3.1,
Section 3.2).

These findings suggest that the health benefits of following current nutritional guide-
lines may be greater with organic consumption than conventional food consumption. This
view is supported by a recent US study, which reported evidence that the benefits of
increasing fruit and vegetable consumption for the prevention of coronary heart disease is
significantly greater when fruit and vegetables with low pesticide loads are consumed [227].

3.3.2. Food Security

The implementation of the current dietary guidelines to increase wholegrain, fruit
and vegetable consumption while reducing meat, and especially red meat consumption,
may also have a substantial effect on food security. Specifically, this would reduce (i) the
pressure to increase yields in crop production, and thereby (ii), the use non-renewable
resources (e.g., fossil fuel, for the production of mineral N-fertilizer and pesticides, and
mined P and K for the production of mineral P and K fertilizer).

A reduction in red meat consumption is thought to have the greatest potential for
increasing food security because (i) a substantial proportion of cereal and legume crops
are used as animal feed; (ii) the conversion of crops into livestock products results in a
substantial reduction in energy/protein available for human consumption, and (iii) it may
lead to a reduction in the current rate of deforestation/land clearing for feed crop and
animal production [228,229]. For example, a recent study in the US concluded that “overall,
10% of feed calories or protein ultimately becomes consumed as meat, milk or egg calories”. The
study also reported that beef production has the lowest feed to food conversion ratio and
estimated that by “reallocating high quality land currently used for feed production for beef into
producing the same amount of calories and protein from poultry (and any extra land remaining)”
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being “used to produce the mean American diet” could produce enough food to satisfy the
caloric and protein needs of an additional 120 million individuals in the US (= 1/3 of the
current US population) [229].

Since cereals and cereal products account for 45% of the total daily calory intake of
humans globally (ranging from 25% in developed countries to 55% in developing coun-
tries) [59], increasing whole-grain cereal product consumption may also have a significant
positive impact on food security. This is mainly because refining (the removal of the outer
bran and germ layer of the grain during milling) not only removes a large proportion of
the fiber, minerals and phytochemicals with antioxidant activity, but also between 10 and
25% of the caloric value and protein content of the grain [59,163]. It is interesting to note
that organic consumers were reported to, on average, eat less meat, but more wholegrain
cereal products [219,220].

Considering these results, the 10–25% yield gap between organic and conventional
crop production may seem irrelevant, because the successful implementation of the healthy
eating guideline to reduce meat consumption alone would reduce the need to produce
crop calories/protein by more than 25% in North America and Europe [229].

Based on this evidence, it is also important to consider that the 10–25% higher yields
in intensive conventional farming can only be achieved with large inputs of non-renewable
resources, in particular (i) mined minerals such as P and K fertilizers, and (ii) fossil fuels
needed to produce mineral N-fertilizer and synthetic chemical pesticides [42–46]. These
inputs are already unaffordable for many farmers in developing countries, and the cost of
many agrochemical inputs has been increasing more rapidly than agricultural commodity
prices [230,231]. The input-use efficiency (yield per unit input) of mineral fertilizers have
also decreased significantly over the last 40 years [42], and this is thought to be one reason
why yields of most broad acre arable crops have stagnated in many developed countries in
the last two decades [232,233]. For example, a recent study in France concluded that the
marginal cost for agrochemical inputs has now reached a level where the cost of additional
inputs of fertilizer does not pay off at harvest time [233].

In contrast, organic crop production is substantially less dependent on non-renewable
mined mineral and/or fossil fuel-based agrochemical inputs, and would therefore be
expected to sustain the current yield levels when agrochemical inputs become too expensive
and/or unavailable in the future. Moreover, it is reasonable to predict that yields in
intensive conventional farming will eventually decline to levels recorded in the 1920s, if just
one of the main mineral fertilizers (N, P or K) becomes unavailable, unless (i) conventional
farming adopts organic farming methods, or (ii) methods that overcome the “law of the
minimum” of plant nutrition are discovered [234].

4. Conclusions

The underlying philosophy/hypothesis of organic farming—“healthy soils generate
healthy crops which lead to healthy livestock and humans”—was first formulated by Sir Albert
Howard and other organic farming pioneers more than 80 years ago. This was based on
the comparison and observation of different farming systems, including traditional organic
matter recycling-based farming systems in India and China [235].

However, substantial scientific research effort into the impacts of organic farming
on soil, crop and environmental “health” parameters only started around 30 years ago,
when consumer demand and the introduction of legally binding organic farming standards
resulted in a substantial expansion of organic production [1–4]. These studies demonstrated
a range of benefits of organic farming on soil and crop “health” parameters, including
(i) higher soil carbon and organic matter levels, biological activity and biodiversity, sup-
pressiveness against diseases and erosion resistance, and (ii) increased resistance of organic
crops against biotrophic soil-borne and foliar fungal diseases [51,63,77–87,95–107,236–240].
Organic farming was also reported to reduce negative environmental impacts of agricul-
tural production, including (i) lower nitrate leaching, (ii) phosphorus run-off and (iii) green-
house gas emissions per ha of farmland [237–240]. The soil, crop and environmental
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“health” benefits are therefore now widely accepted, and this has resulted in government
support for the expansion of organic farming in many countries [1].

4.1. Organic Crop Production Practices Increase the Nutritional Quality of Food Crops

Substantial research effort into the effects of organic farming practices on the nutri-
tional composition of crops and livestock products (milk, meat and eggs) only started
around 18 years ago, with the EU-funded QualityLowInputFood (2004–2009) [58], and
the first comprehensive meta-analysis of organic versus conventional crop composition
data was not published until 2014 [57]. The evidence now available (reviewed in part 1)
suggests that there are nutritionally relevant composition differences between organic and
conventional crops and that, overall, organic plant-foods contain higher concentrations of
nutritionally desirable (phenolics, other antioxidants and/or mineral micronutrients) and
lower concentrations of nutritionally undesirable chemicals (pesticide residues, cadmium,
and/or Fusarium mycotoxins). It is important to note that a recent scientific report for the
European parliament came to the same conclusion [139,241].

4.2. Agricultural Intensification Practices have Reduced Food Quality and Safety

The scientific evidence now available also allows many of the differences in nutritional
quality to be linked to specific agronomic practices, or the combined effect of several agro-
nomic parameters (reviewed in part 1). Most importantly, the available evidence indicates
that many “innovations” (monoculture/shorter rotations, mineral N and P fertilizers, pesti-
cides, and short-straw cereal varieties) introduced as part of the agricultural intensification
(or “green revolution”) have had negative effects on both crop health and the nutritional
quality and/or safety of crops. Specifically, there is now substantial evidence that the
use of:

• Monoculture and short rotations increase crop species-specific weed, pest and disease
pressure and may lead to (a) greater dependence on synthetic chemical pesticides,
(b) higher pesticide residues being present in crops, and (c) a greater risk of Fusarium
infection and mycotoxin contamination of cereal grains;

• Mineral phosphorus fertilizer can (a) reduce mycorrhizal development on roots
and thereby negatively affect mineral micronutrient uptake and resistance against
soil-borne diseases, and (b) increase cadmium concentrations in crops;

• Mineral nitrogen fertilizer is associated with (a) a reduction in crop resistance,
(b) lower concentrations of nutritionally desirable phenolics and other resistance-
related phytochemicals/antioxidants in crops, and (c) increases the risk of Fusarium
infection and mycotoxin contamination in cereal grains;

• Synthetic chemical pesticides in agriculture are responsible for chronic dietary pes-
ticide exposure and may reduce concentrations of certain nutritionally desirable
phytochemicals/antioxidants and mineral micronutrients in crops;

• Modern short-straw cereal varieties, (a) are less competitive against weeds and more
susceptible to certain diseases (e.g., Fusarium, Septoria), (b) have lower grain pro-
tein and mineral micronutrient concentrations, and (c) increase the risk of Fusarium
mycotoxin contamination in cereal grain.

Moreover, as described in Section 3.3.2, it is likely that current yield levels of in-
tensive conventional crop production are not sustainable, due to the high reliance on
non-renewable resources, and are likely to decline in the future when essential input be-
comes too expensive and/or unavailable. Soil-health management based on organic matter
recycling and crop fertilization methods developed by the organic farming sector may
therefore become essential in maintaining future security, and allowing sustainable waste
management/recycling in the future.

It is important to consider that there is also increasing evidence that the intensification
of conventional livestock production had negative effects on the nutritional composition
of both milk and meat [222,241–251]. For example, studies which compared low-input
and/or organic with intensive conventional livestock production systems have shown
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that the increased use of (i) cereal and grain/legume-based concentrate feeds, (ii) indoor
production, (iii) high-yield potential dairy breeds, (iv) selection for high milk yield within
breeds, and/or (iv) robotic milking systems in conventional systems may:

• Reduce concentrations of nutritionally desirable omega-3 fatty acids in milk and meat,
and conjugated linoleic acid (CLA), carotenoids and vitamin E in milk;

• Increase levels of nutritionally undesirable saturated fatty acids (e.g., myristic and
palmitic acid) in meat [222,241–251].

Composition differences between organic and conventional dairy products may there-
fore also have contributed to the differences in disease incidence between consumer cohorts
with high and low organic food consumption described in Section 3.

4.3. Health Benefits Linked to Organic Food Consumption Need to Be Confirmed in Clinical Trials

Nearly all dietary intervention and observational studies into the effect of organic food
consumption on health markers and/or associations with health outcomes only started
around 15 years ago, and most have reported their results only very recently [169,207–215].
Although organic food consumption was linked to positive health impacts in observational
studies, one important limitation in the currently available evidence is that controlled
clinical trials to confirm and provide a mechanistic understanding of the positive health
impacts of organic food consumption reported in observational studies, have not yet
been carried out [169]. As a result, there is still controversy about whether and to what
extent organic food consumption has health benefits [168,169], and nutritional advice
currently focuses primarily on promoting the increased consumption of fruit, vegetables
and wholegrain cereal products [163,164].

However, this paradigm may change, if results showing that organic food consump-
tion is associated with a reduction in obesity, cancer and metabolic syndrome are confirmed.
Given the high incidence and cost associated with the treatment of these diseases, this
would also further increase the likelihood of additional government support for an expan-
sion of organic farming.

The mounting evidence that (i) conventional fruit, vegetable and whole-grain con-
sumption substantially increases pesticide exposure and (ii) consumption of fruit and
vegetables with high pesticide loads may have negative effects on reproductive health and
reduce the positive effects of fruit and vegetables, with respect to coronary heart disease,
may also contribute to changes in nutritional advice, regarding the importance of organic
food consumption.

It is interesting to note that some fertility clinics already advise organic food consump-
tion as a precautionary measure to avoid exposure to pesticides [252], and that positive
associations between organic food consumption and a higher sperm count and density
were first reported in 1996 in the Lancet [253], but largely ignored.

4.4. Support Required to Increase the Availability and Affordability of Organic Foods

Demand for organic food is driven by consumer perceptions that organic farming is
more sustainable, and delivers environmental, biodiversity, and food quality and safety
benefits [1–3]. However, the higher cost of organic food has been shown to be the main
barrier for further increases in demand for organic food [254].

According to a recent FAO report, the price difference between organic and con-
ventional foods is due to a range of reasons, including: (i) organic food supply being
more limited than demand; (ii) higher production and labor costs; (iii) additional costs of
segregating organic and conventional produce during processing, storage and retailing;
(iv) less efficient marketing and distribution chains [255]. The report also describes that
a range of costs associated with conventional food production are not captured in the
price of conventional foods, including (i) government expenditure to mitigate negative
environmental impacts of intensive farming, and (ii) medical expenses associated with the
inappropriate handling of pesticides by farmers [255].
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In order to make organic food more widely available and affordable to consumers, a
range of support measures have been proposed by the IFOAM Organics Europe. These
include: (i) increasing access to support form agri-environment schemes; (ii) implementing
existing policy frameworks for investment, procurement and promotion of organic food;
(iii) improving the availability and access to advice, training and innovations [256].

Moreover, the European Union has recently published its action plan for the develop-
ment of organic production which includes a range of support measures to boost both the
production and consumption of organic products, and aims to reach 25% of agricultural
land under organic farming by 2030 [257].

The FAO predicts that the price differential between organic and conventional foods
is likely to decrease with increasing demand, because “technological innovations and
economies of scale should reduce costs of production, processing, distribution and market-
ing of organic produce [255]. This view is supported by recent reports that conventional
food prices have increased more rapidly than those of organic foods in the US, where
consumption of organic food has increased rapidly over the last 10 years, although there is
limited government support for the organic farming sector [258].
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20. Palmer, M.W.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Baranski, M.; Eyre, M.; Shotton, P.; Volakakis, N.; Cakmak, I.;
Ozturk, L.; et al. The influence of organic and conventional fertilisation and crop protection practices, preceding crop, harvest
year and weather conditions on yield and quality of potato (Solanum tuberosum) in a long-term management trial. Eur. J. Agron.
2013, 49, 83–92. [CrossRef]

21. Tétard-Jones, C.; Edwards, M.G.; Rempelos, L.; Gatehouse, A.M.R.; Eyre, M.; Wilcockson, S.J.; Leifert, C. Effects of previous crop
management, fertilization regime and water supply on potato tuber proteome and yield. Agronomy 2013, 3, 59–85. [CrossRef]

22. Roser, M.; Ritchie, H. Our World in Data—Fertilizers. Available online: https://ourworldindata.org/fertilizers (accessed on
23 February 2021).

23. FAO. Statistics on Pesticide Use in Agriculture. Available online: http://www.fao.org/economic/ess/environment/data/
pesticides-use/en/ (accessed on 23 February 2021).

24. Leifert, C.; Rembiałkowska, E.; Nielson, J.H.; Cooper, J.M.; Butler, G.; Lueck, L. Effects of organic and ‘low input’ production
methods on food quality and safety. In Improving Sustainability in Organic and Low Input Food Production Systems; Niggli, U., Leifert,
C., Alföldi, T., Lueck, L., Willer, H., Eds.; FiBL: Frick, Switzerland, 2007; pp. 15–96.

25. Blake, F. Organic Farming and Growing; The Crowood Press: Marlborough, UK, 2005.
26. Nandwani, D. Organic Farming for Sustainable Agriculture; Springer International Publishing: Basel, Switzerland, 2016.
27. Haghighi, R.S.; Critchley, N.; Leifert, C.; Eyre, M.; Cooper, J. Individual and interactive effects of crop type and management on

weed and seed bank composition in an organic rotation. Int. J. Plant Prod. 2013, 7, 243–268.
28. Eyre, M.D.; Critchley, C.N.R.; Leifert, C.; Wilcockson, S.J. Crop sequence, crop protection and fertility management effects on

weed cover in an organic/conventional farm management trial. Eur. J. Agron. 2011, 59, 4715–4724. [CrossRef]
29. Hill, O. How grazing livestock can beat blackgrass. Farmers Wkly. 2015. Available online: www.fwi.co.uk/arable/grazing-

livestock-can-beat-blackgrass (accessed on 24 February 2021).
30. Råberg, T.; Carlsson, G.; Jensen, E.S. Nitrogen balance in a stockless organic cropping system with different strategies for internal

N cycling via residual biomass. Nutr. Cycl. 2018, 112, 165–178. [CrossRef]
31. Barbieri, P.; Pellerin, S.; Nesme, T. Comparing crop rotations between organic and conventional farming. Sci. Rep. 2017, 7, 13761.

[CrossRef]
32. Sandra Wayman, S.; Kissing Kucek, L.; Mirsky, S.B.; Ackroyd, V.; Cordeau, S.; Ryan, M.R. Organic and conventional farmers

differ in their perspectives on cover crop use and breeding. Renew. Agric. Food Syst. 2016, 32, 376–385. [CrossRef]

http://doi.org/10.1016/j.fcr.2007.03.011
http://doi.org/10.1080/01448765.2006.9755339
http://doi.org/10.1007/s10681-008-9690-9
http://doi.org/10.1016/j.njas.2010.04.001
http://doi.org/10.1186/s40066-015-0045-1
http://doi.org/10.3390/foods9121874
http://www.ncbi.nlm.nih.gov/pubmed/33339243
https://authors.elsevier.com/sd/article/S0378429019315990
https://authors.elsevier.com/sd/article/S0378429019315990
http://doi.org/10.1016/j.fcr.2020.107822
http://doi.org/10.1038/nature11069
http://doi.org/10.1016/j.agsy.2011.12.004
http://doi.org/10.3390/agronomy9020082
http://doi.org/10.1016/j.agee.2017.12.023
http://doi.org/10.1098/rspb.2014.1396
http://www.ncbi.nlm.nih.gov/pubmed/25621333
http://doi.org/10.3390/foods10020476
http://doi.org/10.1016/j.eja.2013.03.004
http://doi.org/10.3390/agronomy3010059
https://ourworldindata.org/fertilizers
http://www.fao.org/economic/ess/environment/data/pesticides-use/en/
http://www.fao.org/economic/ess/environment/data/pesticides-use/en/
http://doi.org/10.1016/j.eja.2011.01.001
www.fwi.co.uk/arable/grazing-livestock-can-beat-blackgrass
www.fwi.co.uk/arable/grazing-livestock-can-beat-blackgrass
http://doi.org/10.1007/s10705-018-9935-5
http://doi.org/10.1038/s41598-017-14271-6
http://doi.org/10.1017/S1742170516000338


Agronomy 2021, 11, 2494 35 of 44

33. Rempelos, L.; Almuayrifi, A.M.; Baranski, M.; Tetard-Jones, C.; Eyre, M.; Shotton, P.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis,
N.; et al. Effects of agronomic management and climate on leaf phenolic profiles, disease severity and grain yield in organic and
conventional wheat production systems. J. Agric. Food Chem. 2018, 66, 10369–10379. [CrossRef]

34. Keiser, A.; Haeberli, M.; Stamp, P. Quality deficiencies on potato (Solanum tuberosum L.) tubers caused by Rhizoctonia solani,
wireworms (Agriotes ssp.) and slugs (Deroceras reticulatum, Arion hortensis) in different farming systems. Field Crop. Res. 2012, 128,
147–155. [CrossRef]

35. Benaragama, D.; Leeson, J.L.; Shirtliffe, S.J. Understanding the long term weed community dynamics in organic and conventional
crop rotations using the principal response curve method. Weed Sci. 2018, 67, 195–204. [CrossRef]

36. Robson, M.C.; Fowler, S.M.; Lampkin, N.H.; Leifert, C.; Leitch, M.; Robinson, D.; Watson, C.A.; Litterick, A.M. The agronomic
and economic potential of break crops for ley/arable rotations in temperate organic agriculture. Adv. Agron. 2002, 77, 370–427.

37. Paulsen, H.M.; Weißmann, F. Relevance of mycotoxins to product quality and animal health in organic farming. In Proceedings
of the 14th IFOAM Organic World Congress, Victoria, Canada, 21–24 August 2002; Available online: https://orgprints.org/2023
/1/2023-paulsen-weissmann-2002-14th-ifoam-ca-p212.pdf (accessed on 24 February 2021).

38. Bernhoft, A.; Clasen, P.-E.; Kristoffersen, A.B.; Torp, M. Less Fusarium infestation and mycotoxin contamination in organic than
in conventional cereals. Food Addit. Contam. 2010, 27, 842–852. [CrossRef]

39. Wang, J.; Hasanalieva, G.; Wood, L.; Markellou, E.; Iversen, P.O.; Bernhoft, A.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al.
Effect of wheat species (Triticum aestivum vs. T. spelta), farming system (organic vs. conventional) and flour type (wholegrain vs.
white) on composition of wheat flour; results of a retail survey in the UK and Germany—1. mycotoxin content. Food Chem. 2020,
327, 127011. [CrossRef]

40. Wang, J. Effect of Organic and Conventional Agronomic Practices and Variety Choice on Nutritional Quality, the Contents of
Undesirable Compounds and Yield of Cereals. Ph.D. Thesis, Newcastle University, Newcastle Upon Tyne, UK, 2019.

41. Thavarajah, D.; Siva, N.; Johnson, N.; McGee, R.; Thavarajah, P. Effect of cover crops on the yield and nutrient concentration of
organic kale (Brassica oleracea L. var. acephala). Sci. Rep. 2019, 9, 10374. [CrossRef]

42. Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices.
Nature 2002, 418, 671–677. [CrossRef] [PubMed]

43. Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang.
2009, 19, 292–305. [CrossRef]

44. Chowdhury, R.B.; Moore, G.A.; Weatherley, A.J.; Arora, M. Key sustainability challenges for the global phosphorus resource, their
implications for global food security, and options for mitigation. J. Clean. Prod. 2017, 140, 945–963. [CrossRef]

45. Cordell, D.; Jackson, M.; White, S. Phosphorus flows through the Australian food system: Identifying intervention points as a
roadmap to phosphorus security. Environ. Sci. Policy 2013, 29, 87–102. [CrossRef]

46. Farm Carbon Toolkit. Fertiliser Production. 2021. Available online: www.farmcarbontoolkit.org.uk/toolkit/fertiliser-production
(accessed on 25 February 2021).

47. Niggli, U. History and concepts of food quality and safety in organic food production and processing. In Handbook of Organic
Food Safety and Quality; Cooper, J., Niggli, U., Leifert, C., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2007; pp. 9–24.

48. Alburquerque, J.A.; de la Fuente, C.; Campoy, M.; Carrasco, L.; Nájera, I.; Baixauli, C.; Caravaca, F.; Roldán, A.; Cegarra, J.; Bernal,
M.P. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur. J. Agron. 2012,
119–128. [CrossRef]

49. Gerlach, F.; Grieb, B.; Zerger, U. Sustainable Biogas Production; A Handbook for Organic Farmers; FiBL Projecte GmbH: Frankfurt,
Germany, 2013; Available online: https://aa.ecn.cz/img_upload/8d8825f1d3b154e160e6e5c97cf9b8b3/sustaingas_handbook_en.
pdf (accessed on 4 December 2021).

50. Magistrali, A.; Vavera, R.; Janovska, D.; Rempelos, L.; Cakmak, I.; Leifert, C.; Grausgruber, H.; Butler, G.; Wilkinson, A.;
Bilsborrow, P. Evaluating the effect of agronomic management practices on the performance of differing spelt (Triticum spelta)
cultivars in contrasting environments. Field Crop. Res. 2020, 255, 107869. [CrossRef]

51. Margaritopoulou, T.; Toufexi, E.; Kizis, D.; Balayiannis, G.; Anagnostopoulos, C.; Theocharis, A.; Rempelos, L.; Troyanos, Y.;
Leifert, C.; Markellou, E. Reynoutria sachalinensis extract elicits SA-dependent defence responses in courgette genotypes against
powdery mildew caused by Podosphaera xanthii. Sci. Rep. 2020, 10, 3354. [CrossRef]

52. Sander, J.F.; Heitefuss, R. Susceptibility to Erysiphe graminis f. sp. tritici and phenolic acid content of wheat as influenced by
different levels of nitrogen fertilization. J. Phytopathol. 1988, 146, 495–507. [CrossRef]

53. Leser, C.; Treutter, D. Effects of nitrogen supply on growth, contents of phenolic compounds and pathogen (scab) resistance of
apple trees. Physiol. Plant. 2004, 123, 49–56. [CrossRef]

54. Sun, Y.; Guo, J.; Li, Y.; Luo, G.; Li, L.; Yuan, H.; Mur, L.A.J.; Guo, S. Negative effects of the simulated nitrogen deposition plant
phenolic metabolism: A meta-analysis. Sci. Total Environ. 2020, 719, 137442. [CrossRef]

55. Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An Overview of Plant Phenolic
Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [CrossRef]

56. Brandt, K.; Leifert, C.; Sanderson, R.; Seal, C.J. Agroecosystem management and nutritional quality of plant foods: The case of
organic fruits and vegetables. CRC Crit. Rev. Plant Sci. 2011, 30, 177–197. [CrossRef]

http://doi.org/10.1021/acs.jafc.8b02626
http://doi.org/10.1016/j.fcr.2012.01.004
http://doi.org/10.1017/wsc.2018.64
https://orgprints.org/2023/1/2023-paulsen-weissmann-2002-14th-ifoam-ca-p212.pdf
https://orgprints.org/2023/1/2023-paulsen-weissmann-2002-14th-ifoam-ca-p212.pdf
http://doi.org/10.1080/19440041003645761
http://doi.org/10.1016/j.foodchem.2020.127011
http://doi.org/10.1038/s41598-019-46847-9
http://doi.org/10.1038/nature01014
http://www.ncbi.nlm.nih.gov/pubmed/12167873
http://doi.org/10.1016/j.gloenvcha.2008.10.009
http://doi.org/10.1016/j.jclepro.2016.07.012
http://doi.org/10.1016/j.envsci.2013.01.008
www.farmcarbontoolkit.org.uk/toolkit/fertiliser-production
http://doi.org/10.1016/j.eja.2012.06.001
https://aa.ecn.cz/img_upload/8d8825f1d3b154e160e6e5c97cf9b8b3/sustaingas_handbook_en.pdf
https://aa.ecn.cz/img_upload/8d8825f1d3b154e160e6e5c97cf9b8b3/sustaingas_handbook_en.pdf
http://doi.org/10.1016/j.fcr.2020.107869
http://doi.org/10.1038/s41598-020-60148-6
http://doi.org/10.1111/j.1439-0434.1998.tb04611.x
http://doi.org/10.1111/j.1399-3054.2004.00427.x
http://doi.org/10.1016/j.scitotenv.2020.137442
http://doi.org/10.3390/molecules21101374
http://doi.org/10.1080/07352689.2011.554417


Agronomy 2021, 11, 2494 36 of 44
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