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Abstract: The accurate estimation of grain yield in rice breeding is crucial for breeders to screen and
select qualified cultivars. In this study, a low-cost unmanned aerial vehicle (UAV) platform mounted
with an RGB camera was carried out to capture high-spatial resolution images of rice canopy in
rice breeding. The random forest (RF) regression techniques were used to establish yield models
by using (1) only color vegetation indices (VIs), (2) only phenological data, and (3) fusion of VIs
and phenological data as inputs, respectively. Then, the performances of RF models were compared
with the manual observation and CERES-Rice model. The results indicated that the RF model using
VIs only performed poorly for estimating yield; the optimized RF model that combined the use of
phenological data and color VIs performed much better, which demonstrated that the phenological
data significantly improved the model performance. Furthermore, the yield estimation accuracy of
21 rice cultivars that were continuously planted over three years in the optimal RF model had no
significant difference (p > 0.05) with that of the CERES-Rice model. These findings demonstrate that
the RF model, by combining phenological data and color Vis, is a potential and cost-effective way to
estimate yield in rice breeding.
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1. Introduction

Rice (Oryza sativa L.), one of the most important food crops in the world, is consumed
by more than half of the global population [1], especially in East Asia and Southeast Asia.
Food price fluctuations in the market can adversely affect rice cost and production; hence,
a convenient and reliable technology for predicting rice yield is necessary for farmers and
governments to make appropriate decisions in regard to rice production [2].

Traditionally, agronomists rely on field survey to obtain approximate yield predictions.
However, estimation based on empirical and subjective knowledge resulted in inaccurate
crop assessment and were limited in capacity for yield estimation in regional scale [3,4].
Satellite imagery-based remote sensing (RS) data have been widely used for monitoring
crop growth status and nutritional conditions [5,6]. Yield prediction models were estab-
lished based on meteorological factors and an RS vegetation index (VI) using the multiple
linear regression technique [7], and it was found that the inclusion of remote sensing
data could significantly improve the yield prediction accuracy. The enhanced vegetation
index (EVI) and normalized difference vegetation index (NDVI) data derived from the
moderate resolution imaging spectroradiometer (MODIS) were compared for estimating
rice yield, and the result indicated that the EVI-based models were slightly more accurate
than the NDVI-based models [1]. However, typically, satellite imagery had conflict between
spatial and temporal resolutions, and the quality of RS data was considerably affected by
atmospheric interference [8,9]. Although synthetic aperture radar (SAR) techniques that
could penetrate vegetation canopies were not influenced by clouds [10,11], it was difficult
to exactly extract crop information due to the small size of farmlands in the south of China.
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For understanding the effect of site-specific crop management and environmental stress
on crop production, a highly accurate and reliable model for crop yield estimation in the
plot-scale was essential [12].

As for plot-scale yield estimation, crop growth models have been successfully pro-
posed to simulate yield such as DSSAT [13], AquaCrop [14], EPIC [15], and APSIM [16].
These models become efficient and useful tools for field management and precision agri-
culture [17]. The CERES-Rice model involved in the DSSAT model has been widely used
as a technological tool to support the decision-making for rice field management activ-
ities [18,19]. The capability of the CERES-Rice model for rice yield estimation has been
reported in previous studies [20–22]. However, the implementation of crop growth models
(e.g., CERES-Rice) in commercial application remains limited because of their high data ac-
quisition costs. For example, the soil properties need to be measured in the laboratory and
the cultivar parameters need to be tuned costly. Moreover, the proper use of these models
requires skillful manipulators with agronomic knowledge to obtain satisfactory results.

In recent years, unmanned aerial vehicle (UAV) with a high spatial resolution of
imagery has attracted considerable interest for crop yield estimation in plot scale [23–25].
Feng et al. [26] extracted eight image features from a UAV system and found that the fusion
of two image features could improve the accuracy of cotton yield estimation. Yang et al. [27]
constructed the convolutional neural network (CNN) model with the dataset of RGB and
multispectral images derived from UAV to estimate rice yield, and they found that the
CNN’s accuracy in RGB image dataset was better than that in the multispectral image
dataset. The VIs and crop height data extracted from UAV-RGB images with crop surface
models (CSMs) were combined to estimate corn yield by three linear models [28]. Agueera
Vega et al. [29] calculated NDVI from multi-temporal images obtained from a UAS and
found that NDVI was highly correlated with grain yield. Furthermore, a good correlation
also exists between the sugarcane yield and G–R vegetation index obtained by the UAV-
RGB images [30].

Although most scholars have proven the potential of image features for crop yield
estimation under the same crop cultivar, the yield estimation in breeding programs was
still challenged by the variation of genotypes. In breeding trials, thousands of genotypes
from two parents were planted without duplication. The great variation of phenotypes in
yield could be caused by the combination of environmental and genetic variations [31]. Ac-
cordingly, only a few studies have been reported for yield estimation in crop breeding [32].
For example, Zhou et al. [32] used CNN to estimate the yield of 972 soybean breeding lines
with R2 of 0.78 and RMSE of 391 kg ha−1 based on the UAV imagery. Ashapure et al. [33]
demonstrated that a simple Artificial Neural Network (ANN) model could perform well
for yield estimation in a set of tomato varieties by using UAV-RGB imagery.

To the best of the authors’ knowledge, previous studies focused on estimating the plot-
scale crop yield by using image features from UAV-based imagery, and they neglected the
growth duration that determined the amount of incident solar radiation closely associated
with biomass and grain yield as an important phenological factor [34]. In rice breeding, the
growth duration varied across cultivars; thus, the estimation of grain yield in rice breeding,
only based on VIs from UAV images, could result in considerable uncertainty. The random
forest (RF) regression technique has been successfully used to estimate crop biomass [35],
grain yield [36], and nitrogen status [37]. Thus, in this study, RF was used to construct the
yield estimation models. Meanwhile, the yield estimation of the same cultivars that were
continuously planted over three years in the RF model was compared to the CERES-Rice
model. Accordingly, the objectives of this study are: (1) to establish the RF model for
yield estimation in rice breeding using UAV-based RGB images only; (2) to improve the
capability of the RF model combining RGB images and phenological data; (3) to validate
the performance of the optimal RF model, comparing it with that of the CERES-Rice model.
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2. Materials and Methods
2.1. Field Trial Design

The experimental station is located at the Guanshan rice breeding base (28◦19′ N,
112◦40′ E), Jinzhou town, Ningxiang City, Hunan Province, China (Figure 1). Its annual
average temperature, rainfall, and sunshine duration are 16.8 ◦C, 1358 mm, and 1739.2 h,
respectively. The average annual sunshine hour duration per day is about 4.8 h. The
soil type is fine-loam with pH, organic carbon, and total nitrogen concentrations of 6.7,
17.1 g kg−1, and 1.76 g kg−1, respectively.

Figure 1. Study area with the aerial image of the experimental site.

In this study area, the breeding strategies include the photoperiod/thermo-sensitive
genic male sterile line-based two-line system and the cytoplasmic male sterile line-based
three-line system. A total of 122, 127, and 105 one-season-late indica hybrid rice com-
binations were investigated, respectively, in 2017, 2018, and 2019. These hybrids were
developed by different breeding institutes and companies and were applied for commercial
release in Hunan province, China. All hybrids were grown in a randomized complete
block with three replicates. Seedlings were transplanted in each plot, which was comprised
of 450 plants at spacing of 17 cm × 20 cm. All the experimental plots applied the same
fertilizer treatment with N (195 kg ha−1), P2O5 (112 kg ha−1), and K2O (112 kg ha−1), using
urea as the N fertilizer. The N fertilizer was split into three applications, with 40% being
basal fertilizer, 40% being tillering fertilizer, and 20% being ear fertilizer. All phosphorus
and potassium fertilizer were used as basal fertilizer. Water, insects, weeds, and disease
were controlled when needed. Sowing was conducted in early June; then, transplanting
was performed in late June or early July, depending on the climate conditions and seedling
growth status (Table 1).
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2.2. Field Data Collection

In field survey, rice breeders observed and recorded the growth stages of different culti-
vars every day; the phenological traits have been specifically described by Fageria et al. [38].
The basic phenological information of different rice cultivars were shown in Tables 1 and A1.
The rice grain yield of the investigated plots was harvested, depending on the maturity
date of each rice cultivar. After the harvest, the grains were put into an oven at 75 ◦C
until their weights did not change (after 72 h) and were then weighed by an electronic
balance (±0.1 g).

Table 1. Basic information of sowing and transplanting dates across rice cultivars.

Year Plots Cultivars Sowing Date Transplanting Date

2017 366 122 June 7–10 July 9
2018 381 127 June 10 June 29
2019 315 105 June 6 June 27

To analyze the phenological differences among the rice cultivars from these plots, the
duration and effective accumulated temperatures between the ST (sowing to transplant),
TI (transplant to initial heading), IH (initial heading to full heading), HM (full heading
to maturity), and SM (sowing to maturity) were calculated (Table A2). The effective
accumulated temperature was calculated as follows:

GDD =
m

∑
i

(
Tavg − Tbase

)
Tavg = (Tmax+Tmin)

2
Tavg = Tbase i f Tavg ≤ Tbase
Tavg = Tupper i f Tavg ≥ Tupper

(1)

where GDD is the effective accumulated temperature, ◦C; where i = 1, 2, 3, . . . m days
during the growing season. Tavg is the daily average temperature, ◦C; Tbase is the minimum
temperature required for crop growth, ◦C. Tmax is the daily maximum temperature, ◦C;
Tmin is the daily minimum temperature, ◦C. The biological upper limit temperature of rice
(Tupper) is 40 ◦C, and the lower limit temperature (Tbase) is 10 ◦C [39].

2.3. UAV Data Acquisition and Image Processing

The UAV used in this study was a four-rotor consumer UAV (Phantom 4 Pro, SZ DJI
Technology Co., Ltd., Shenzhen, China) with a maximum payload capacity of 1.375 kg. This
UAV had a 1-in CMOS 20-megapixel camera mounted on its platform that was employed
to capture the rice canopy images during the flights. Autonomous flights were carried out
by Pix4Dcapture software to have overlap (70% forward and 80% side). The angular field
of view is 60◦ horizontal × 27◦ vertical, resulting in a nominal resolution of 3.68 cm ground
sampling distance (GSD) at 100 m above ground level. The focal length of the camera
lens was 35 mm, and the RGB sensor could acquire 5456 × 3632 pixels over a brief period
(faster than 1/2000 s). The captured camera images were in JPEG format. The images were
collected on 6 September 2017; 7 September 2018; 29 August 2019, when practically all the
rice cultivars were at the heading stage. The flights were carried out between 11:00 a.m.
and 1:00 p.m. in stable ambient light conditions [9].

After the flights, the RGB images were downloaded from the memory card. The
Pix4Dmapper (version 1.1.38, Pix4D SA, Lausanne, Switzerland) was used for image
stitching. First, the overlapping images were automatically aligned by a feature point
matching algorithm. Second, fifteen GCPs were used to georeference each image. Finally,
the orthomosaic map with a TIFF image format was exported. In this study, VIs or bands
were extracted from the orthomosaic maps by using the “GDAL” module in Python 3.6.
Region of interests (ROIs) in individual plots were determined based on the orthomosaic
maps by dividing the study area into regular plot polygons (Figure 1). In this study, Esri
ArcGIS 10.2 software was used to draw ROIs and establish a buffer between boundary
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plots to reduce plot edge effects [40]. Then, the mean VI (Table 2) of ROI represented the
value of each plot.

Table 2. Summary of VIs or bands derived from UAV images.

Vegetation Index or Band Formula Reference

R band of UAV image (R) DN values of R band –
G band of UAV image (G) DN values of G band –
B band of UAV image (B) DN values of B band –

Normalized red index (NRI) R/(R + G + B) [41]
Normalized green index (NGI) G/(R + G + B) [41]
Normalized blue index (NBI) B/(R + G + B) [41]

Normalized excess green index (E × G) (2G − R − B)/(G + R + B) [42]
Normalized excess red index (E × R) (1.4R − G)/(G + R + B) [43]

Green–red ratio index (G/R) G/R [44]
Green–blue ratio index (G/B) G/B [44]

Red–blue ratio index (R/B) R/B [44]
Green minus red index (GMR) G − R [45]

Color intensity index (INT) (R + G + B)/3 [46]
Green and red index (VIgreen) (G − R)/(G + R) [47]

2.4. RF Model

RF is an ensemble learning method that combined the independent predictor results
with bagging and random feature selection; the final result is obtained by voting or taking
the mean value [48]. RF is insensitive to collinearity among multiple variables, obtaining
high estimation accuracy and minimizing overfitting phenomenon [49].

In this study, fourteen VIs were calculated as different mathematical combinations of
the three visible bands (i.e., red, green, and blue) from the UAV-based images (Table 2).
Most of the VIs selected in this study were widely used to estimate the vegetation’s diverse
biophysical parameters, such as aboveground biomass [50,51], chlorophyll content [52],
nitrogen accumulation [9], and yield [41]. The phenological data involved five duration
length variables (e.g., ST, TI, IH, HM, and SM) and five effective accumulated temperature
variables (e.g., GDDST, GDDTI, GDDIH, GDDHM, and GDDSM) under specific growth
stages (Table A2). The RF regression technique was carried out to establish the estimation
model for grain yield in the breeding trial by using VIs only, phenological data only, and
combination of VIs and phenological data. We used the dataset in 2017 and 2018 to train RF
models. The remaining dataset in 2019 was used to test the RF models. Three hyperparam-
eters that need to be tuned in an RF model are the maximum depth of trees (max_depth),
minimum number of samples to split an internal node (min_samples_split), and minimum
number of samples at a leaf node (min_samples_leaf). A grid search algorithm with 10-fold
cross validation was used to split the set cultivar-wise in the calibration dataset to obtain
optimal parameters values (Table 3). RF models were implemented by using the function
“RandomForestRegressor” in the package of scikit-learn (https://scikit-learn.org/stable/,
accessed on 28 November 2021) in Python 3.6.

Table 3. Description of parameters tuned in RF regression models.

Parameter Range Interval
Model

RF (VIs) RF (Phenology) RF (Vis + Phenology)

max_depth 2–8 1 2 3 4
min_samples_split 2–14 2 12 8 12
min_samples_leaf 2–16 2 8 10 4

2.5. CERES-Rice Model
2.5.1. Input Data

The input data for the CERES-Rice model included meteorological data, soil character-
istics, field management information, and cultivar specific parameters. The meteorological

https://scikit-learn.org/stable/
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data were collected from the local experiment meteorological station. The minimum re-
quirement of weather data included daily maximum air temperature (◦C), minimum air
temperature (◦C), solar radiation (MJ m−2 d−1), and precipitation (mm). The soil param-
eters and characteristics are shown in Table 4. The physical and chemical properties of
each horizon of collected soil samples (Table 4) were analyzed by using the Soil Science
Society of America (SSSA) and American Society of Agronomy (ASA) methods for soil
analysis [53]. Field management information, such as planting date, transplanting date,
harvest date, and fertilization amount, were shown in Table 1, Table A1, and Section 2.1.
There are eight cultivar parameters in the CERES-Rice model: four phenology-related
parameters (P1, P2R, P5, and P2O) and four yield-related parameters (G1, G2, G3, and G4).
The cultivar parameters were determined by the generalized likelihood uncertainty estima-
tion (GLUE) method. The specific procedures of parameter estimations were described in
the following section.

Table 4. Soil properties of five soil layers at the experiment site.

Layer (cm) Clay (%) Silt (%) Organic Carbon (%) Cation Exchange
Capacity (cmol kg−1) Total Nitrogen (%)

0–20 26.0 28.6 2.1 14.5 0.18
20–40 25.1 27.1 2.1 16.9 0.20
40–60 23.0 25.7 1.7 17.1 0.17
60–80 23.0 27.9 1.5 17.2 0.19

80–100 24.5 28.0 1.6 14.6 0.16

2.5.2. Cultivar Parameter Estimations

In this study, we screened out 21 rice cultivars that were planted continuously over
three years. The datasets in 2017 and 2018 were used to calibrate cultivar parameters.
Then, the dataset in 2019 was used to evaluate the performance of the CERES-Rice model.
The GLUE method exploited prior distributions of the parameters and variables to obtain
the optimal value. First, Monte Carlo sampling of distributions were used to generate
6000 random parameter sets in each cultivar. Second, the likelihood value was calculated
based on the mean observation data such as flowering date, maturity date, and grain
yield. Then, we ran the CERES-Rice model 6000 times, and the results were evaluated by
GLUE. After applying this approach to parameter sets, a final set of cultivar parameters
was determined (Table A3).

2.6. Statistical Methods

The Pearson correlation analysis between studied variables and measured yield was
carried out by a function called “pearsonr” in the Python module “scipy.stats”. A paired-
samples t-test at p ≤ 0.05 was used for paired mean difference comparisons between the
estimated values of the optimal RF model and the CERES-Rice model for 21 replicated
cultivars across the years. The paired-samples t-test method was used to test the null
hypothesis “there were no significant differences in the predictions of the optimal RF model
and CERES-Rice model for 21 replicated cultivars in 2019”. The normality of the distribution
of sample datasets was tested by using the Kolmogorov–Smirnov test, and homogeneity
of variances was tested by using the Levene test. All sampled datasets followed a normal
distribution (p-values > 0.05) and similar variances (p-values > 0.05). Therefore, a paired-
samples t-test could be used in this research. The Python script named “ttest_rel” function
from Scipy Python module was used to perform the paired-samples t-tests.

For yield estimation, the performance of models was evaluated in the calibration
dataset (in 2017 and 2018) and validation dataset (in 2019), respectively. The estimation
accuracy of the yield model was quantified using the coefficient of determination (R2,
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Equation (2)), root mean square error (RMSE, Equation (3)), and mean absolute error (MAE,
Equation (4)). These statistical indices were calculated as follows:

R2 =
n

∑
i=1

(Si −Mi)
2/

n

∑
i=1

(
Si −Mi

)2 (2)

RMSE =

√
∑n

i=1(Si −Mi)
2

n
(3)

MAE =
1
n

n

∑
i=1
|Mi − Si| (4)

where n is the number of samples in the calibration or validation data set; Si is the estimated
yield; Mi is the measured yield; Mi is the mean value of the measured yield. Mathematically,
the model with higher values of R2, a smaller RMSE and MAE corresponds to more
accurate results.

3. Results
3.1. Statistical Analysis of Measured Yield

Figure 2 shows the negative correlations between the yield and the growth duration
length from sowing to maturity (GDL) for all cultivars in 2017, 2018, and 2019. Strong
correlations were observed between yield and GDL in 2017 and 2019. The linear correlation
between yield and GDL seemed slightly weak in 2018. Figure 3 also shows negative
correlations between yield and GDL for 21 replicated cultivars across the years. The
variability of yield was larger than that of GDL for all cultivars, as well as for 21 replicated
cultivars across the years (Table 5). Note that the GDL of cultivars in 2018 tended to be
smaller than that in 2017 and 2019. The GDL difference was largely attributed to the
variations in climate conditions across the years. The mean daily temperature between
sowing and maturity in 2018 was 1.4 ◦C and 0.7 ◦C higher than that in 2017 and 2019,
respectively (Table A4). Additionally, the mean values of yield for 21 replicated cultivars
were relatively consistent across the years.

Figure 2. The relationship between measured yield and GDL for all cultivars in 2017 (366 plots and
122 cultivars), 2018 (381 plots and 127 cultivars), and 2019 (315 plots and 105 cultivars).
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Figure 3. The relationship between measured yield and GDL for 21 replicated cultivars with three
replicates across the years.

Table 5. Descriptive statistics of measured yield (t ha−1) and GDL for all cultivars and 21 replicated cultivars across
the years.

Statistical
Indicator

Data Set Year Cultivars
Descriptive Statistics

Minimum Maximum Mean SD CV (%)

Yield

All cultivars
2017 122 5.67 9.62 8.01 0.84 10.51
2018 127 7.61 11.01 8.99 0.60 6.7
2019 105 6.79 10.67 8.72 0.64 7.3

Replicated cultivars
2017 21 7.08 9.51 8.84 0.64 7.22
2018 21 7.82 9.93 8.93 0.58 6.46
2019 21 7.70 9.74 8.82 0.55 6.28

GDL

All cultivars
2017 122 123 148 137 5.02 3.68
2018 127 117 130 124 2.1 1.71
2019 105 117 144 132 4.6 3.47

Replicated cultivars
2017 21 125 136 129 2.59 2.01
2018 21 120 130 125 2.72 2.17
2019 21 119 134 127 3.65 2.86

Note: GDL represents growth duration length (d) from sowing to maturity. SD and CV represent standard deviation and variation
coefficient, respectively.

3.2. Analysis of VIs and Phenological Data

Figure 4a,b show the Pearson correlation coefficients between VIs and phenology
and yield. The correlation between VIs and yield was somewhat inconsistent in different
years. Generally, all VI variables were significantly correlated (p < 0.05) with the measured
yield in 2017. However, most VIs in 2018 and 2019 were weakly correlated with yield.
For example, the largest absolute values of Pearson coefficients (|r|) were only 0.24 and
0.35 in 2018 and 2019, respectively. Conversely, the correlation between phenology and
yield was relatively consistent across the years. For example, the two growth duration
length variables (TI and SM) and one effective accumulated temperature (GDDHM) had
a strong correlation with yield (|r| ranged from 0.41 to 0.70, p < 0.01) in different years
and combined years. Some phenological variables such as ST, IH, HM, and GDDST had
weak or no significant correlation (p > 0.05) with yield across the years. Figure 4c shows



Agronomy 2021, 11, 2439 9 of 20

the relationship between VIs and GDL. All VI variables were significantly correlated with
GDL (p < 0.05) in 2017. However, some VI variables such as G, B, G/R, and INT had no
significant correlation with GDL (p > 0.05) in 2018 and 2019. Accordingly, the relationship
between VIs and GDL was inconsistent across the years.

Figure 4. Pearson correlation coefficients between (a) VIs and yield, (b) phenology and yield, and (c) VIs and GDL for
all cultivars across the years. The numbers in panels (a–c) represent the Pearson correlation coefficients. Note: * F-test
statistical significance at the 0.05 probability level. ** F-test statistical significance at the 0.01 probability level. n.s. refers to
no statistical significance.

3.3. RF Method for Yield Estimation

Three different RF models were established for yield estimation in rice breeding, and
the results were evaluated using R2, RMSE, and MAE. Figure 5 shows the distributions of
the simulated yield by those models in calibration and validation sets. When using VIs
only as inputs, the simulated yield based on the RF model was mainly around 9 t ha−1. The
variation of simulated yield was small, especially in the validation dataset (Figure 5). When
using phenology data as inputs, the distribution of simulated yield was similar to that of the
RF (VIs + phenoloy) model. The range of simulated yield in the RF (VIs + phenoloy) model
was closer to the range of the measured yield. However, all the RF models underestimated
yield at the high yield level, to a certain extent.

Figure 5. The distribution of measured yield and simulated yield of three RF models in calibration
(747 plots in 2017 and 2018) and validation (315 plots in 2019) sets.
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In comparison with approaches that solely use VIs or phenology to estimate rice
yield, the RF (VIs) model exhibited unsatisfactory performance for yield estimation in the
validation set with R2 = 0.06, RMSE = 0.65 t ha−1, and MAE = 0.51 t ha−1, respectively. In
contrast, the RF model that used only phenological data exhibited good yield estimations
with R2 values of 0.62 and 0.46 in the calibration and validation sets, respectively, which
indicated that the phenological information across rice cultivars was an important factor
in determining yield in rice breeding. When combined RGB–VIs and phenological data
as inputs, the RF model (VIs + phenology) achieved the highest performance in rice yield
estimation in the calibration and validation sets; R2, RMSE, and MAE were 0.70 and 0.53,
0.48 and 0.43 t ha−1, and 0.38 and 0.34 t ha−1, respectively (Table 6). These results indicated
that more variables in the RF model provided more accurate yield estimation. However,
the RF (VIs + phenology) model in the all datasets underestimated the yield when the
measured yields were greater than 10 t ha−1 (Figure 6). Additionally, the optimal RF model
overestimated yield when the measured yields were less than 7 t ha−1 (Figure 6).

Table 6. Statistics of RF models for yield estimation in calibration (747 plots in 2017 and 2018) and validation (315 plots in
2019) sets.

Model
Calibration Set Validation Set

R2 RMSE (t ha−1) MAE (t ha−1) R2 RMSE (t ha−1) MAE (t ha−1)

RF (VIs) 0.52 0.61 0.49 0.06 0.65 0.51
RF (phenology) 0.62 0.54 0.43 0.46 0.51 0.39

RF (VIs + phenology) 0.70 0.48 0.38 0.53 0.43 0.34

Figure 6. Measured vs. simulated yield from the RF (VIs + phenology) model in calibration set (a, 747 plots in 2017 and
2018) and validation set (b, 315 plots in 2019).

3.4. CERES-Rice Model for Yield Estimation

Unlike the RF regression technique for yield estimation proposed in Section 2.4, the
CERES-Rice model is a crop growth dynamic model that can simulate yield, aboveground
biomass, crop phenology, etc. Based on the dataset of 21 rice cultivars planted over three
years in the experimental site, the GLUE method was used to obtain 21 sets of rice cultivar
parameters (Table A3). The relationship between the simulated and measured yield was
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shown in Figure 7. The result showed the good accuracy with the R2, RMSE, and MAE
values of 0.75 and 0.80, 0.37 and 0.48 t ha−1, and 0.31 and 0.42 t ha−1 in calibration set and
validation set, respectively. The accuracy of CERES-Rice model for yield estimation was
slightly better to that of deep convolutional neural networks for rice yield estimation with
R2 and RMSE values of 0.59 and 0.66 t ha−1, respectively [27]. These results indicated that
the yield from the CERES-Rice model provided relatively accurate estimations.

Figure 7. Measured vs. simulated yield from CERES-Rice model for 21 replicated cultivars in the calibration set (a, in 2017
and 2018) and validation set (b, in 2019). The horizontal error bar refers to ± one standard deviation associated with each
mean in the measured yield distributions. The error bar in the CERES-Rice model was not presented here. Due to the
same input data and cultivar parameters in the same cultivar with three replicates, the estimated yields obtained from the
CERES-Rice model for three replicates were consistent.

3.5. Performance Comparison between CERES-Rice Model and the Optimal RF Model

In order to evaluate the robustness and capacity of the optimal RF model that com-
bined VIs and phenological data as inputs, the simulated yield of the 21 rice cultivars
planted over three years based on the RF (VIs + phenology) model was compared with that
of the CERES-Rice model. Figure 8 shows the relationship between the measured yield and
simulated yield obtained from these two models. Compared to the RF (VIs + phenology)
model, the slope and R2 values of the linear regression between simulated yield, based on
the CERES-Rice and measured yield, were closer to 1. However, the values of RMSE and
MAE, based on the optimal RF model, were comparable to those based on the CERES-Rice
model (Table 7). In addition, the paired-sample t-tests results showed that there were
no significant differences between the CERES-Rice model and the optimal RF model for
simulated yields in 2019 (p > 0.05, Table 7).

Table 7. Paired-samples t-tests for difference comparisons between the simulated values of the CERES-Rice model and the
optimal RF model for 21 cultivars in 2019.

Model Cultivars
Statistical Indicators Mean Paired

Differences (t ha−1)
Significance (p Value)

R2 RMSE (t ha−1) MAE (t ha−1)

RF (VIs + phenology) 21 0.51 0.44 0.38 −0.07 0.69CERES-Rice 21 0.80 0.48 0.42

Note: The paired-sample t-test was analyzed at the significant level p = 0.05.
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Figure 8. Measured vs. simulated yield from the CERES-Rice model and the optimal RF model
for 21 cultivars in 2019. The dots represent the mean values of 21 cultivars with three replicates.
The horizontal and vertical error bars refer to ± one standard deviation associated with each mean,
respectively, in the measured yield distributions and prediction distributions of the optimal RF model
for each cultivar. The error bar in the CERES-Rice model was not presented here.

4. Discussion
4.1. Response of Phenology to Yield

Phenology determines the amount of interception of solar radiation by the rice canopy
that is closely associated with grain yield [34]. In this study, 10 phenological indicators
were selected to analyze their correlation with yield. It was found that the GDDHM, TI,
and SM were significantly correlated (|r| > = 0.41, p < 0.01) with the yield for each year
and combined years (Figure 4b). Among the three phenological indicators, GDDHM was
positively related to yield across the years (r > = 0.45, p < 0.01). This result is supported
by the previous study, which found that GDDmat (from 50% heading to maturity) was
positively associated with yield (r = 0.46) in Italian rice germplasm [54]. In our study, the
mean daily temperatures during the reproductive period were in the optimum temper-
ature range (20–35 ◦C) for rice development (Table A4) [55]. The increase in mean daily
temperature during this phase could increase GDDHM significantly and then increase
the photosynthesis rate, which contributes to rice yield increase [56]. The strong negative
relationship was found between TI and yield across the years (r from −0.45 to −0.70,
p < 0.01), suggesting that the cultivars with short durations before heading presented a
high-level yield. One possible explanation is that cultivars with short durations during
the vegetative phase could reduce N uptake to ensure N supply at the reproductive phase,
which is beneficial to increase the yield. However, due to the limitations of the observed
data, we could not provide any qualitative or quantitative explanation; the relationship
among N uptake, duration length, and yield needs to be further studied in rice breeding.
The short GDL (i.e., SM) tended to afford high grain yield in the Guanshan rice breeding
base (Figure 2), which was consistent with the results by using short growth durations in
central China [57]. They found that the grain yield improved by way of desirable traits,
e.g., the plants were tall, and the panicles were heavy. Chen et al. [58] also demonstrated
that short-duration cultivars had higher spikelet filling rate and higher harvest index than
long-duration cultivars in Hunan Province, China; thus, the higher grain yield could be
a target for breeding high-yielding rice cultivars with short durations. Climate warming
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has reduced the rice growth duration in China over the past three decades [59]; short-
duration cultivars were proposed for German oats without the stress caused by climate
warming [60]. It needs to be pointed out that, despite certain associated yield penalties, the
use of short-duration cultivars could be a viable option for adaptation to climate change.
Cultivating short-duration cultivars may be beneficial to rice yields by avoiding extreme
heat stress at the heading stage (i.e., flowering) [61] and reducing drought exposure [62].
In the long run, the yield benefits brought by the positive shifts of cultivar traits may offset
the losses caused by the adverse phenological changes to a certain extent [59]. However,
in this study, we only analyzed the relationship between phenology (i.e., GDL and effec-
tive accumulated temperature variables) and yield, and we did not try to quantify the
decline in yield due to the increase of GDL because pest and disease pressure, a variety
of genetic properties such as spikelet fertility and the harvest index are equally important
for determining the yields. Since rice breeding depends on both consumer demands and
climate in China, further research is necessary to be carried out to determine the reasons
for the improved performance of short-duration cultivars by combining measured data or
obtaining information that could reflect rice breeding objectives.

4.2. Importance of Phenology to RF Model Formulation

At present, the ability to estimate crop yields based on UAV images is an area of active
research [63]. The applications of VIs obtained from UAV images, such as NDVI, E × G,
and VIgreen, have been reported in rice yield predictions [36,63]. However, there are few
studies describing yield estimation based on the UAV-VIs in rice breeding. In this study,
the relationships between yield and VIs from UAV-RGB images were analyzed from 2017
to 2019. In terms of variable importance, R/B was the most important for yield estimation
in the optimal RF model among the 14 VIs (Figure 9). This was mainly attributed to the
consistent performance of R/B on yield across the years (Figure 4a). However, the RF
model based on only VIs had an insufficient accuracy and over-fitting problems for yield
estimation (Table 6 and Figure 5). There were three main reasons for these results: (1) the
variation in Pearson correlation between VIs and yield was relatively large and inconsistent
across the three years (Figure 4a); (2) due to the high vegetation coverage at the heading
stage, VIs (e.g., E × G and NRI) became obviously saturated (Figure A1), and this result
was consistent with the findings of Zhou et al. [63] and Gitelson et al. [64]; (3) the effect
of VI values on yield was barely quantified because of the variation in the phenology
across cultivars in rice breeding. Compared with the RF model using VIs only, adding
phenology significantly improved the accuracy of yield estimation (Table 6). Significant
benefits were associated with the use of phenological information and VIs in the remote
sensing-based soybean and maize yield models [65], which were similar to the results of
this study. Yang et al. [27] also pointed out that the combination with the observations
of phenological dates could improve model accuracy for yield estimation. In this study,
the phenological variables, such as SM and GDDHM, had the determined effect on model
estimation accuracy in rice breeding (Figure 9). We demonstrated that phenological data
dominated the yield variance, and the data set of VIs provided the secondary contribution
to yield estimation. However, the phenological stages of plots were based on manual
observation in the experimental site. Recently, the VI data have been widely used to
extract phenology. The methodologies based on VI data are mainly shown as two types:
(1) curve fitting methods that used Savitzky-Golay filtering, logistic function, and Gaussian
function to smooth the time-series VI curves, then extracted phenological information
based on its inflection points [66,67]; (2) shape model fitting methods that could smooth VI
curves, and then extracted phenology based on optimum scaling coefficients and visual
observations [68]. These methodologies based on time-series VI data often relied on high
temporal resolutions. Therefore, it was necessary to detect phenology-based on time-series
images from UAV to improve the applicability of the RF models for yield estimation in
the future.
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Figure 9. Ranking of the top 10 important variables in the RF (VIs + phenology) model.

4.3. Comparison between RF and CERES-Rice Models

There were no significant differences in the estimated yield (p > 0.05) between the
optimal RF model and the CERES-Rice model based on the paired-samples t-tests (Table 7).
The accuracy of estimated yield in these two models was comparable in terms of RMSE
and MAE. In fact, the statistical assumptions of these two kinds of models were totally
different. The CERES-Rice model was a process-based model that required advanced data
in higher costs. In this study, 21 replicated rice cultivars planted for three years were
selected to simulate yield by using the CERES-Rice mode. Although, the crop growth
model could obtain reliable and satisfactory results in agriculture [19–21]. Using crop
growth models to simulate yield for breeding programs is still challenged by the variances
in phenotypes and genotypes. It is difficult for crop growth models to calculate cultivar
parameters in hundreds and even more breeding materials. In contrast, the RF model
proposed in this paper, with the use of UAV-based RGB images, was performed at the
decreased cost. The simulation results based on the optimal RF model coincide with the
measured yield (Figure 10). In this study, the optimal RF model could be used as a case
to prove that the fusion of VIs and phenological data in an RF model were useful and
promising for yield estimation in breeding. Similar conclusions could be found in the
study of Wan et al. [36], where they found that the fusion of VIs and crop traits in an RF
model could improve model accuracy for yield estimation. However, yield was affected
by many factors such as crop traits, environmental conditions (heat stress and cold stress),
and field management [51,54,55], which made the RF model difficult to apply for large
areas. Thus, the feasibility of estimating yield in the field by using phenological data and
VIs from high-resolution UAV images should be additionally determined by the more field
validation. Future studies are also required to verify the use of phenology and VIs for
different ecological areas and crops.

There were some limitations for the RF models to further improve the yield estimation
accuracy. For example, the images of multi-growth stages needed to be examined for yield
estimation. There were only three bands (R, G, and B) of images used to calculate VIs.
Thus, the spectral information of multispectral and hyperspectral sensors mounted on UAS
should be captured and further analyzed. In addition, other methodological methods such
as machine learning (ML) and deep learning might be applied to improve yield estimation
accuracy in rice breeding.
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Figure 10. Yield maps in rice breeding from 2017 to 2019: (a–c) measured yield and (d–f) simulated yield from the optimal
RF model.
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5. Conclusions

In this study, 14 VIs derived from UAV-based images and phenological data were
used to estimate grain yield in rice breeding from 2017 to 2019. Three RF models based
on VIs and phenological variables were constructed for yield estimation. The results
demonstrated that these models explained 52–70% and 6–53% of grain yield variability,
respectively, in calibration and validation sets. VIs from the UAV–RGB imagery had
inadequate performances in yield estimation because of differences in phenology across
rice cultivars. The RF model that combined VIs and phenological data obtained the best
accuracy for yield estimation. Further analysis indicated that phenology dominated the
yield variance, and VIs provided a secondary contribution to the estimation of yield in rice
breeding. Additionally, there were no significant differences between the simulated yields
of the optimal RF model and the CERES-Rice model for 21 replicated cultivars. These results
further indicated that the foregoing RF model demonstrated the considerable potential for
yield estimation in rice breeding. Future work should be carried out to investigate the RF
model with spectral information derived from the multispectral and hyperspectral sensors
onboard UAS in multiple growth stages to improve the model robustness and applicability.
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Appendix A

Table A1. Statistics of phenological dates after transplanting across rice cultivars.

Year Plots Cultivars Initial Heading Date Full Heading Date Maturity Date

2017 366 122 August 25–September 15 August 31–September 19 October 8–December 2
2018 381 127 August 19–September 5 August 23–September 9 October 5–October 17
2019 315 105 August 15–September 3 August 20–September 8 October 1–October 28

Table A2. Basic information of phenology across rice cultivars from 2017 to 2019.

Descriptive
Statistics

Duration length (d) Growth Degree Days (◦C)

ST TI IH HM SM GDDST GDDTI GDDIH GDDHM GDDSM

Min 19 47 3 34 117 358 990 59 412 2061
Max 32 68 7 56 148 521 1412 140 720 2329

Mean 24.03 58.99 4.55 42.83 130.40 419.64 1211.13 97.10 560.11 2233
SD 5.76 3.91 0.55 3.44 7.08 72.55 77.03 17.69 62.45 35.86

CV (%) 23.96 6.63 12.16 8.02 5.43 17.29 6.36 18.22 11.15 1.61

Note: ST, duration (days) from sowing to transplant; TI, duration (days) from transplant to initial heading; IH, duration (days) from initial
heading to full heading; HM, duration (days) from full heading to maturity; SM, duration (days) from sowing to maturity; GDDST, GDDTI,
GDDIH, GDDHM, and GDDSM represent effective accumulated temperatures (◦C) for ST, TI, IH, HM, and SM, respectively.



Agronomy 2021, 11, 2439 17 of 20

Table A3. Cultivar coefficients of rice varieties used in the CERES-Rice model.

Cultivar Name P1 P2R P5 P2O G1 G2 G3 G4

5960You058 665 285.7 518.1 12.72 51.81 0.026 1.187 0.954
CLY343 706.2 190.6 445.2 11.96 51.32 0.022 1.231 0.991

R534 591.1 169 491.2 11.11 51.73 0.022 1.079 1.001
HYY605 612.9 221.6 491.7 12.78 67.41 0.025 1.134 0.943
HLY2035 275 278.2 422.7 11.27 55.6 0.021 1.265 0.8
HLY3748 288.6 227.1 483.2 11.44 66.58 0.02 1.245 0.878
HLY5035 565.7 249.5 432.4 12.09 58.46 0.022 1.239 1.019
HLY7155 487.7 243.4 531.7 13.11 66.84 0.025 0.793 0.988
HLY8210 418.9 259.5 483.3 13.57 73.89 0.025 0.729 1.059
JLY1678 395.4 95.5 689.1 9.62 71.17 0.025 0.866 1.032
JLY2626 395.4 75.1 454 7.544 66.38 0.024 1.257 1.043
JLY9936 395.4 182.4 643.1 11.91 59.47 0.03 0.851 0.974
LFY905 601.3 98.76 465.1 10.33 60.05 0.022 1.106 1.057
LJY8246 555.8 130 409.9 10.05 50.04 0.024 0.85 1.006
LLY3748 395.4 283.7 461.8 12.35 61.62 0.024 0.841 1.039
LLY5809 395.4 76.56 450 7.133 59.89 0.025 1.263 1.077
RLY1019 417.5 142.8 520 10.5 55.55 0.03 1.097 0.88
WLY6018 395.4 60 472.7 3 71.52 0.025 1.196 0.957
XLY7629 395.4 86.07 506.5 9.049 52.11 0.03 0.955 1.045
XLY8736 395.4 330 550 12.94 61.46 0.03 1.244 0.907
YLY526 601.3 193.2 450 11.52 55.44 0.024 0.966 0.898

Note: P1 represents juvenile phase coefficient, GDD; P2R represents photoperiodism coefficient, GDD; P5 repre-
sents grain filling duration coefficient, GDD; P2O represents critical photoperiod, h; G1 represents spikelet number
coefficient; G2 represents single grain weight, g; G3 represents tillering coefficient; G4 represents temperature
tolerance coefficient.

Table A4. The mean daily temperature (Tavg, °C), minimum temperature (Tmin, °C) and maximum temperature (Tmax, °C)
during different growth stages from 2017 to 2019.

Year
ST TI IH HM SM

Tmin Tmax Tavg Tmin Tmax Tavg Tmin Tmax Tavg Tmin Tmax Tavg Tmin Tmax Tavg

2017 23.4 29.2 26.3 26.6 33.8 30.2 22.1 26.8 24.5 19.3 25.7 22.5 23.4 30.0 26.7
2018 24.8 32.7 28.8 26.7 34.5 30.6 25.4 30.7 28.0 20.6 28.0 24.3 24.3 32 28.1
2019 23.0 30.1 26.5 26.4 34.4 30.4 25.2 30.8 28.0 20.4 27 23.7 23.7 31.1 27.4

Note: ST, duration (days) from sowing to transplant; TI, duration (days) from transplant to initial heading; IH, duration (days) from initial
heading to full heading; HM, duration (days) from full heading to maturity; SM, duration (days) from sowing to maturity.

Figure A1. Vegetation indices vs. measured yield; (a) ExG and yield; (b) NRI and yield. These two
vegetation indices were Figure 4a.



Agronomy 2021, 11, 2439 18 of 20

References
1. Son, N.T.; Chen, C.F.; Chen, C.R.; Minh, V.Q.; Trung, N.H. A comparative analysis of multitemporal MODIS EVI and NDVI data

for large-scale rice yield estimation. Agric. For. Meteorol. 2014, 197, 52–64. [CrossRef]
2. Bastiaanssen, W.G.M.; Ali, S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin,

Pakistan. Agric. Ecosyst. Environ. 2003, 94, 321–340. [CrossRef]
3. Reynolds, C.A.; Yitayew, M.; Slack, D.C.; Hutchinson, C.F.; Huete, A.; Petersen, M.S. Estimating crop yields and production by

integrating the FAO Crop specific Water Balance model with real-time satellite data and ground-based ancillary data. Int. J.
Remote Sens. 2000, 21, 3487–3508. [CrossRef]

4. Sakamoto, T.; Gitelson, A.A.; Arkebauer, T.J. MODIS-based corn grain yield estimation model incorporating crop phenology
information. Remote Sens. Environ. 2013, 131, 215–231. [CrossRef]

5. Inoue, Y.; Sakaiya, E.; Zhu, Y.; Takahashi, W. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral
measurements. Remote Sens. Environ. 2012, 126, 210–221. [CrossRef]

6. Yonezawa, C.; Negishi, M.; Azuma, K.; Watanabe, M.; Ishitsuka, N.; Ogawa, S.; Saito, G. Growth monitoring and classification of
rice fields using multitemporal RADARSAT-2 full-polarimetric data. Int. J. Remote Sens. 2012, 33, 5696–5711. [CrossRef]

7. Kern, A.; Barcza, Z.; Marjanovic, H.; Arendas, T.; Fodor, N.; Bonis, P.; Bognar, P.; Lichtenberger, J. Statistical modelling of crop
yield in Central Europe using climate data and remote sensing vegetation indices. Agric. For. Meteorol. 2018, 260, 300–320.
[CrossRef]

8. Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012,
13, 693–712. [CrossRef]

9. Zheng, H.; Cheng, T.; Li, D.; Zhou, X.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of RGB, Color-Infrared and Multispectral
Images Acquired from Unmanned Aerial Systems for the Estimation of Nitrogen Accumulation in Rice. Remote Sens. 2018, 10, 824.
[CrossRef]

10. Koppe, W.; Gnyp, M.L.; Hennig, S.D.; Li, F.; Miao, Y.; Chen, X.; Jia, L.; Bareth, G. Multi-Temporal Hyperspectral and Radar
Remote Sensing for Estimating Winter Wheat Biomass in the North China Plain. Photogramm. Fernerkund. Geoinf. 2012, 3, 281–298.
[CrossRef]

11. Jin, X.; Yang, G.; Xu, X.; Yang, H.; Feng, H.; Li, Z.; Shen, J.; Zhao, C.; Lan, Y. Combined Multi-Temporal Optical and Radar
Parameters for Estimating LAI and Biomass in Winter Wheat Using HJ and RADARSAR-2 Data. Remote Sens. 2015, 7, 13251–13272.
[CrossRef]

12. Peng, Y.; Zhu, T.e.; Li, Y.; Dai, C.; Fang, S.; Gong, Y.; Wu, X.; Zhu, R.; Liu, K. Remote prediction of yield based on LAI estimation
in oilseed rape under different planting methods and nitrogen fertilizer applications. Agric. For. Meteorol. 2019, 271, 116–125.
[CrossRef]

13. Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Hlavinka, P.; Moriondo, M.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Rumbaur, C.;
Takac, J.; et al. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop
growth models. Eur. J. Agron. 2011, 35, 103–114. [CrossRef]

14. Katerji, N.; Campi, P.; Mastrorilli, M. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops
simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agric. Water Manag. 2013,
130, 14–26. [CrossRef]

15. Wang, X.; Liu, G.; Yang, J.; Huang, G.; Yao, R. Evaluating the effects of irrigation water salinity on water movement, crop yield
and water use efficiency by means of a coupled hydrologic/crop growth model. Agric. Water Manag. 2017, 185, 13–26. [CrossRef]

16. Bai, H.; Tao, F. Sustainable intensification options to improve yield potential and ecoefficiency for rice-wheat rotation system in
China. Field Crops Res. 2017, 211, 89–105. [CrossRef]

17. Jin, X.; Kumar, L.; Li, Z.; Feng, H.; Xu, X.; Yang, G.; Wang, J. A review of data assimilation of remote sensing and crop models.
Eur. J. Agron. 2018, 92, 141–152. [CrossRef]

18. Devkota, K.P.; Hoogenboom, G.; Boote, K.J.; Singh, U.; Lamers, J.P.A.; Devkota, M.; Vlek, P.L.G. Simulating the impact of water
saving irrigation and conservation agriculture practices for rice-wheat systems in the irrigated semi-arid drylands of Central
Asia. Agric. For. Meteorol. 2015, 214, 266–280. [CrossRef]

19. Zhang, J.; Miao, Y.; Batchelor, W.D.; Lu, J.; Wang, H.; Kang, S. Improving High-Latitude Rice Nitrogen Management with the
CERES-Rice Crop Model. Agronomy 2018, 8, 263. [CrossRef]

20. Cheyglinted, S.; Ranamukhaarachchi, S.L.; Singh, G. Assessment of the CERES-Rice model for rice production in the Central
Plain of Thailand. J. Agric. Sci. 2001, 137, 289–298. [CrossRef]

21. Shamim, M.; Shekh, A.M.; Pandey, V.; Patel, H.R.; Lunagaria, M.M. Simulating the phenology, growth and yield of aromatic rice
cultivars using CERES-Rice model under different environments. J. Agrometeorol. 2012, 14, 31–34.

22. Amiri, E.; Rezaei, M.; Rezaei, E.E.; Bannayan, M. Evaluation of Ceres-Rice, Aquacrop and Oryza2000 Models in Simulation of
Rice Yield Response to Different Irrigation and Nitrogen Management Strategies. J. Plant Nutr. 2014, 37, 1749–1769. [CrossRef]

23. Yeom, J.; Jung, J.; Chang, A.; Maeda, M.; Landivar, J. Automated Open Cotton Boll Detection for Yield Estimation Using
Unmanned Aircraft Vehicle (UAV) Data. Remote Sens. 2018, 10, 1895. [CrossRef]

24. Fu, Z.; Jiang, J.; Gao, Y.; Krienke, B.; Wang, M.; Zhong, K.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Wheat Growth Monitoring and
Yield Estimation based on Multi-Rotor Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 508. [CrossRef]

http://doi.org/10.1016/j.agrformet.2014.06.007
http://doi.org/10.1016/S0167-8809(02)00034-8
http://doi.org/10.1080/014311600750037516
http://doi.org/10.1016/j.rse.2012.12.017
http://doi.org/10.1016/j.rse.2012.08.026
http://doi.org/10.1080/01431161.2012.665194
http://doi.org/10.1016/j.agrformet.2018.06.009
http://doi.org/10.1007/s11119-012-9274-5
http://doi.org/10.3390/rs10060824
http://doi.org/10.1127/1432-8364/2012/0117
http://doi.org/10.3390/rs71013251
http://doi.org/10.1016/j.agrformet.2019.02.032
http://doi.org/10.1016/j.eja.2011.05.001
http://doi.org/10.1016/j.agwat.2013.08.005
http://doi.org/10.1016/j.agwat.2017.01.012
http://doi.org/10.1016/j.fcr.2017.06.010
http://doi.org/10.1016/j.eja.2017.11.002
http://doi.org/10.1016/j.agrformet.2015.08.264
http://doi.org/10.3390/agronomy8110263
http://doi.org/10.1017/S0021859601001319
http://doi.org/10.1080/01904167.2014.888750
http://doi.org/10.3390/rs10121895
http://doi.org/10.3390/rs12030508


Agronomy 2021, 11, 2439 19 of 20

25. Zhang, M.; Zhou, J.; Sudduth, K.A.; Kitchen, N.R. Estimation of maize yield and effects of variable-rate nitrogen application
using UAV-based RGB imagery. Biosyst. Eng. 2020, 189, 24–35. [CrossRef]

26. Feng, A.; Zhou, J.; Vories, E.D.; Sudduth, K.A.; Zhang, M. Yield estimation in cotton using UAV-based multi-sensor imagery.
Biosyst. Eng. 2020, 193, 101–114. [CrossRef]

27. Yang, Q.; Shi, L.; Han, J.; Zha, Y.; Zhu, P. Deep convolutional neural networks for rice grain yield estimation at the ripening stage
using UAV-based remotely sensed images. Field Crops Res. 2019, 235, 142–153. [CrossRef]

28. Geipel, J.; Link, J.; Claupein, W. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface
Models Acquired with an Unmanned Aircraft System. Remote Sens. 2014, 6, 10335–10355. [CrossRef]

29. Agueera Vega, F.; Carvajal Ramirez, F.; Perez Saiz, M.; Orgaz Rosua, F. Multi-temporal imaging using an unmanned aerial vehicle
for monitoring a sunflower crop. Biosyst. Eng. 2015, 132, 19–27. [CrossRef]

30. Sanches, G.M.; Duft, D.G.; Kolln, O.T.; dos Santos Luciano, A.C.; Quassi De Castro, S.G.; Okuno, F.M.; Junqueira Franco, H.C. The
potential for RGB images obtained using unmanned aerial vehicle to assess and predict yield in sugarcane fields. Int. J. Remote
Sens. 2018, 39, 5402–5414. [CrossRef]

31. Justin, J.R.; Fehr, W.R. Principles of cultivar development. v. 1. Theory and technique—v. 2. Crop species. Soil Sci. 1987, 145, 390.
[CrossRef]

32. Zhou, J.; Zhou, J.; Ye, H.; Ali, M.L.; Chen, P.; Nguyen, H.T. Yield estimation of soybean breeding lines under drought stress using
unmanned aerial vehicle-based imagery and convolutional neural network. Biosyst. Eng. 2021, 204, 90–103. [CrossRef]

33. Ashapure, A.; Oh, S.; Marconi, T.G.; Chang, A.; Enciso, J. Unmanned aerial system based tomato yield estimation using machine
learning. In Proceedings of the Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping
IV, Baltimore, MD, USA, 15–16 April 2019.

34. Katsura, K.; Maeda, S.; Lubis, I.; Horie, T.; Cao, W.; Shiraiwa, T. The high yield of irrigated rice in Yunnan, China—‘A cross-location
analysis’. Field Crops Res. 2008, 107, 1–11. [CrossRef]

35. Cen, H.; Wan, L.; Zhu, J.; Li, Y.; Li, X.; Zhu, Y.; Weng, H.; Wu, W.; Yin, W.; Xu, C.; et al. Dynamic monitoring of biomass of rice
under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras. Plant Methods 2019,
15, 32. [CrossRef]

36. Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y.; et al. Grain yield prediction of rice using
multi-temporal UAV-based RGB and multispectral images and model transfer—A case study of small farmlands in the South of
China. Agric. For. Meteorol. 2020, 291, 108096. [CrossRef]

37. Sun, J.; Yang, J.; Shi, S.; Chen, B.; Du, L.; Gong, W.; Song, S. Estimating Rice Leaf Nitrogen Concentration: Influence of Regression
Algorithms Based on Passive and Active Leaf Reflectance. Remote Sens. 2017, 9, 951. [CrossRef]

38. Fageria, N.K. Yield physiology of rice. J. Plant Nutr. 2007, 30, 843–879. [CrossRef]
39. Su, L.; Liu, Y.; Wang, Q. Rice growth model in China based on growing degree days. Trans. Chin. Soc. Agric. Eng. 2020, 36,

162–174.
40. Natarajan, S.; Basnayake, J.; Wei, X.; Lakshmanan, P. High-Throughput Phenotyping of Indirect Traits for Early-Stage Selection in

Sugarcane Breeding. Remote Sens. 2019, 11, 2952. [CrossRef]
41. Liu, K.; Li, Y.; Han, T.; Yu, X.; Ye, H.; Hu, H.; Hu, Z. Evaluation of grain yield based on digital images of rice canopy. Plant Methods

2019, 15, 28. [CrossRef] [PubMed]
42. Woebbecke, D.M.; Meyer, G.E.; Vonbargen, K.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue,

and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [CrossRef]
43. Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric.

2008, 63, 282–293. [CrossRef]
44. Maimaitijiang, M.; Sagan, V.; Sidike, P.; Maimaitiyiming, M.; Hartling, S.; Peterson, K.T.; Maw, M.J.W.; Shakoor, N.; Mockler,

T.; Fritschi, F.B. Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from Unmanned
Aerial System-based RGB imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 27–41. [CrossRef]

45. Wang, Y.; Wang, D.; Zhang, G.; Wang, J. Estimating nitrogen status of rice using the image segmentation of G-R thresholding
method. Field Crops Res. 2013, 149, 33–39. [CrossRef]

46. Ahmad, I.S.; Reid, J.F. Evaluation of colour representations for maize images. J. Agric. Eng. Res. 1996, 63, 185–195. [CrossRef]
47. Li, Y.; Chen, D.; Walker, C.N.; Angus, J.F. Estimating the nitrogen status of crops using a digital camera. Field Crops Res. 2010,

118, 221–227. [CrossRef]
48. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
49. Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens.

Environ. 2016, 178, 127–141. [CrossRef]
50. Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models

(CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [CrossRef]
51. Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-

ground-resolution image textures and vegetation indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [CrossRef]
52. Jay, S.; Maupas, F.; Bendoula, R.; Gorretta, N. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from

multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field
Crops Res. 2017, 210, 33–46. [CrossRef]

http://doi.org/10.1016/j.biosystemseng.2019.11.001
http://doi.org/10.1016/j.biosystemseng.2020.02.014
http://doi.org/10.1016/j.fcr.2019.02.022
http://doi.org/10.3390/rs61110335
http://doi.org/10.1016/j.biosystemseng.2015.01.008
http://doi.org/10.1080/01431161.2018.1448484
http://doi.org/10.1097/00010694-198805000-00012
http://doi.org/10.1016/j.biosystemseng.2021.01.017
http://doi.org/10.1016/j.fcr.2007.12.007
http://doi.org/10.1186/s13007-019-0418-8
http://doi.org/10.1016/j.agrformet.2020.108096
http://doi.org/10.3390/rs9090951
http://doi.org/10.1080/15226510701374831
http://doi.org/10.3390/rs11242952
http://doi.org/10.1186/s13007-019-0416-x
http://www.ncbi.nlm.nih.gov/pubmed/30949229
http://doi.org/10.13031/2013.27838
http://doi.org/10.1016/j.compag.2008.03.009
http://doi.org/10.1016/j.isprsjprs.2019.03.003
http://doi.org/10.1016/j.fcr.2013.04.007
http://doi.org/10.1006/jaer.1996.0020
http://doi.org/10.1016/j.fcr.2010.05.011
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.rse.2016.03.006
http://doi.org/10.3390/rs61110395
http://doi.org/10.1016/j.isprsjprs.2019.02.022
http://doi.org/10.1016/j.fcr.2017.05.005


Agronomy 2021, 11, 2439 20 of 20

53. Reitemeier, R.F. Methods of analysis for soils, plants, and waters. Soil Sci. 1961, 93, 68. [CrossRef]
54. Mongiano, G.; Titone, P.; Pagnoncelli, S.; Sacco, D.; Tamborini, L.; Pilu, R.; Bregaglio, S. Phenotypic variability in Italian rice

germplasm. Eur. J. Agron. 2020, 120, 126131. [CrossRef]
55. Zhang, S.; Tao, F.; Zhang, Z. Changes in extreme temperatures and their impacts on rice yields in southern China from 1981 to

2009. Field Crops Res. 2016, 189, 43–50. [CrossRef]
56. Tao, F.; Zhang, S.; Zhang, Z. Changes in rice disasters across China in recent decades and the meteorological and agronomic

causes. Reg. Environ. Change 2013, 13, 743–759. [CrossRef]
57. Xu, L.; Zhan, X.; Yu, T.; Nie, L.; Huang, J.; Cui, K.; Wang, F.; Li, Y.; Peng, S. Yield performance of direct-seeded, double-season rice

using varieties with short growth durations in central China. Field Crops Res. 2018, 227, 49–55. [CrossRef]
58. Chen, J.; Zhang, R.; Cao, F.; Yin, X.; Zou, Y.; Huang, M.; Abou-Elwafa, S.F. Evaluation of Late-Season Short- and Long-Duration

Rice Cultivars for Potential Yield under Mechanical Transplanting Conditions. Agronomy 2020, 10, 1307. [CrossRef]
59. Zhang, T.; Huang, Y.; Yang, X. Climate warming over the past three decades has shortened rice growth duration in China and

cultivar shifts have further accelerated the process for late rice. Glob. Change Biol. 2013, 19, 563–570. [CrossRef] [PubMed]
60. Siebert, S.; Ewert, F. Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length.

Agric. For. Meteorol. 2012, 152, 44–57. [CrossRef]
61. Nagarajan, S.; Jagadish, S.V.K.; Prasad, A.S.H.; Thomar, A.K.; Anand, A.; Pal, M.; Agarwal, P.K. Local climate affects growth, yield

and grain quality of aromatic and non-aromatic rice in northwestern India. Agric. Ecosyst. Environ. 2010, 138, 274–281. [CrossRef]
62. Jagadish, S.V.K.; Septiningsih, E.M.; Kohli, A.; Thomson, M.J.; Ye, C.; Redona, E.; Kumar, A.; Gregorio, G.B.; Wassmann, R.; Ismail,

A.M.; et al. Genetic Advances in Adapting Rice to a Rapidly Changing Climate. J. Agron. Crop Sci. 2012, 198, 360–373. [CrossRef]
63. Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice

using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens.
2017, 130, 246–255. [CrossRef]

64. Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens.
Environ. 2002, 80, 76–87. [CrossRef]

65. Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric.
For. Meteorol. 2013, 173, 74–84. [CrossRef]

66. Chen, J.; Jonsson, P.; Tamura, M.; Gu, Z.H.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI
time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [CrossRef]

67. Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote
Sens. 2002, 40, 1824–1832. [CrossRef]

68. Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series,
multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [CrossRef]

http://doi.org/10.2136/sssaj1963.03615995002700010004x
http://doi.org/10.1016/j.eja.2020.126131
http://doi.org/10.1016/j.fcr.2016.02.008
http://doi.org/10.1007/s10113-012-0357-7
http://doi.org/10.1016/j.fcr.2018.08.002
http://doi.org/10.3390/agronomy10091307
http://doi.org/10.1111/gcb.12057
http://www.ncbi.nlm.nih.gov/pubmed/23504793
http://doi.org/10.1016/j.agrformet.2011.08.007
http://doi.org/10.1016/j.agee.2010.05.012
http://doi.org/10.1111/j.1439-037X.2012.00525.x
http://doi.org/10.1016/j.isprsjprs.2017.05.003
http://doi.org/10.1016/S0034-4257(01)00289-9
http://doi.org/10.1016/j.agrformet.2013.01.007
http://doi.org/10.1016/j.rse.2004.03.014
http://doi.org/10.1109/TGRS.2002.802519
http://doi.org/10.1016/j.rse.2019.111511

	Introduction 
	Materials and Methods 
	Field Trial Design 
	Field Data Collection 
	UAV Data Acquisition and Image Processing 
	RF Model 
	CERES-Rice Model 
	Input Data 
	Cultivar Parameter Estimations 

	Statistical Methods 

	Results 
	Statistical Analysis of Measured Yield 
	Analysis of VIs and Phenological Data 
	RF Method for Yield Estimation 
	CERES-Rice Model for Yield Estimation 
	Performance Comparison between CERES-Rice Model and the Optimal RF Model 

	Discussion 
	Response of Phenology to Yield 
	Importance of Phenology to RF Model Formulation 
	Comparison between RF and CERES-Rice Models 

	Conclusions 
	
	References

