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Abstract: Basal stem rot (BSR) disease occurs due to the most aggressive and threatening fungal
attack of the oil palm plant known as Ganoderma boninense (G. boninense). BSR is a disease that has
a significant impact on oil palm crops in Malaysia and Indonesia. Currently, the only sustainable
strategy available is to extend the life of oil palm trees, as there is no effective treatment for BSR
disease. This study used thermal imagery to identify the thermal features to classify non-infected
and BSR-infected trees. The aims of this study were to (1) identify the potential temperature features
and (2) examine the performance of machine learning (ML) classifiers (naïve Bayes (NB), multilayer
perceptron (MLP), and random forest (RF) to classify oil palm trees that are non-infected and BSR-
infected. The sample size consisted of 55 uninfected trees and 37 infected trees. We used the
imbalance data approaches such as random undersampling (RUS), random oversampling (ROS) and
synthetic minority oversampling (SMOTE) in these classifications due to the different sample sizes.
The study found that the Tmax feature is the most beneficial temperature characteristic for classifying
non-infected or infected BSR trees. Meanwhile, the ROS approach improves the curve region (AUC)
and PRC results compared to a single approach. The result showed that the temperature feature Tmax

and combination feature Tmax Tmin had a higher correct classification for the G. boninense non-infected
and infected oil palm trees for the ROS-RF and had a robust success rate, classifying correctly 87.10%
for non-infected and 100% for infected by G. boninense. In terms of model performance using the
most significant variables, Tmax, the ROS-RF model had an excellent receiver operating characteristics
(ROC) curve region (AUC) of 0.921, and the precision–recall curve (PRC) region gave a value of 0.902.
Therefore, it can be concluded that the ROS-RF, using the Tmax, can be used to predict BSR disease
with relatively high accuracy.

Keywords: Ganoderma boninense; basal stem rot (BSR); temperature; machine learning; classifier;
imbalance approach; SMOTE; classification

1. Introduction

Palm oil, as vegetable oil, is highly adaptable, being utilized in a wide variety of
applications ranging from biofuels to soaps to snack foods. In Asia, palm oil is regarded for
its health and food preservation properties. Meanwhile, it is a frequently utilized biofuel
in Europe due to its relatively high energy content and ability to combine well with other
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oils. It also appeals to both regions because of its inexpensive cost when compared to other
oils. As a result, since the 1990s, global palm oil production has quadrupled. Malaysia
was predicted to generate over 30% of the world’s total palm oil by 2020 [1]. Malaysia’s
economy benefits considerably from the solid financial returns associated with palm oil
sales. In 2020, palm oil would account for roughly 38% of Malaysia’s agricultural output
and contribute 3% to the country’s gross domestic product [2]. Improved mature oil palm
acreage and higher oil palm productivity through increased fresh fruit bunch (FFB) yield
and higher oil extraction rates are predicted to help Malaysia’s palm oil production reach
22 million metric tonnes (mt) by 2025 and up to 25 million mt by 2030 [3]. Meanwhile,
palm-oil plantations cover approximately 18% of the country’s territory, directly employ
441,000 people (more than half of whom are small landholders), and indirectly use a large
number in a country with a population of 32 million [1].

Even though the palm oil industry in Malaysia is more than a century old and is the
country’s most important commodity, it continues to face numerous significant issues. As
a result, integrated disease and pest management for oil palm farms has been embarked
upon. This is critical to avoid substantial crop destruction, mainly due to major diseases
such as basal stem rot (BSR). Numerous control strategies or methods have been employed
or developed to mitigate the economic impact brought about by the disease, such as
destroying or eliminating the infected palms, treating the infected palms, or providing
protection to the young or healthy palms that are not infected yet [4]. At present, BSR
disease has no effective cure [5]. Most control techniques can only extend the productive
lives of infected palms without completely curing the disease.

BSR disease begins with pathogenic fungi colonizing the oil palm root, followed by
the destruction of basal stem tissue [6]. The disease eventually kills the internal tissue
and palm xylem, disrupting water and nutrient flow from the root to the plant’s upper
half [7]. Infected trees will show signs of wilting, dry fronds, and unopened spears. Later,
basidiocarps or fruiting bodies in the shape of a conch will emerge on the palm trunk. At
this point, the fungal infections have spread widely throughout the palm and typically
result in plant death [8]. The fruiting body might then release spores, which can spread
to the soil or to neighboring palms. As a result, Ganoderma reduces the productive life of
oil palm trees, resulting in considerable output losses for the oil palm business [9]. With
an average mortality rate of 3.7 percent, the anticipated yield loss owing to this disease in
Malaysia might exceed USD 500 million [10]. To regulate the spread of BSR disease in oil
palm estates, the health status of oil palm must crucially be monitored through plantation
management. Disease monitoring can be implemented, and oil palm life can be extended
to increase productivity [11]. The need for an automated non-destructive approach has led
to the creation of a rapid specific method suitable for the early detection of diseases, and
remote sensing techniques can be used to monitor plant diseases and stress [12].

Recently, numerous researchers have employed remote detection approaches for the
early detection and mapping of BSR disease in oil palm plants based on the symptoms of G.
boninense infection [13]. Non-invasive remote sensing techniques, including ground-based,
airborne, and space-borne remote sensing, have also been investigated to identify and map
BSR-infected trees. Recent studies have demonstrated that hyperspectral and multispectral
remote sensing methods can distinguish healthy and BSR-infected trees [14–20]. Terrestrial
laser scanning (TLS) [21–23], synthetic aperture radar (SAR) data [24,25], intelligent elec-
tronic nose (E-Nose) systems [26,27], tomographic sensors [28,29], and microfocus X-ray
fluorescence [30] also showed positive results in detecting BSR-infected trees. These reports
showed that the approaches employed can detect BSR early and distinguish healthy from
BSR-infected trees. However, several of the techniques were limited in their ability to
further characterize the degree of BSR infection [13].

Biological activity produces metabolic heat, which causes the temperature of the
products to rise [31]. A temperature differential will form at the surface due to the loss
of water through transpiration. Varied features of plant leaves will result in different
temperature distributions on the surface due to transpiration, which is dependent on the
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plant’s growth stage [32]. Using a sensitive camera and the appropriate image analysis
software, the method allows the surface temperature of plant leaves to be displayed
visually and quantified with high resolution. Thermal imaging is a technique for measuring
temperature distributions from a distance. Therefore, thermal imaging has the potential to
determine plant properties in a non-contact and non-destructive manner.

Numerous studies demonstrate thermal imaging’s capacity to detect plant diseases
in either a controlled environment such as a plant growth chamber or a greenhouse or in
an uncontrolled environment such as a field site. The authors of [33] used infrared (IR)
thermography to characterize the temperature range of affected leaves while monitoring
scab disease on apple leaves in a greenhouse. The maximum temperature difference (MTD)
was shown to increase in direct proportion to scab formation and to be highly correlated
with the extent of infection regions. Due to the leaf withering, the MTD was reduced in later
phases. However, the leaf area with enhanced perspiration was more significant than the
leaf area with scab lesions, and the percentage decreased from more than 70% in the early
stage to 20% in mature lesions. The study in [34] examined the ability of thermal imaging
to identify the early indicators of fungal diseases on rose plants (Rosa hybrida L.). Two tests
were conducted in a plant growth chamber to determine the impact of powdery mildew and
gray mold infections. A feature selection was carried out, with the best retrieved thermal
properties with the highest linguistic hedge values being chosen. The findings of this
study demonstrated that pre-symptomatic detection of powdery mildew and gray mold
infections is possible. The best prediction rates were 69% and 80% (on the second day after
inoculation) for identifying mildew and gray matter in their pre-symptomatic stages. Image
spectroscopy and thermal photography were employed in this work [35] to identify peanut
leaf spots in peanut fields. Two thermal assessments were conducted: one spanning the
entire canopy and the other focusing on a single plant. Thermal infrared tests in the diseased
zone revealed a greater radiance than in the healthy region in the first set. The decreased
root absorption efficiency seen in infected plants, which was more pronounced during
the hottest hours of the day when the plant’s water requirement was more significant,
may contribute to this thermal behavior. The second set of assessments was conducted on
single plants that were observed for thermal activity and accurate IR responses throughout
the day. The diseased plants’ temperature was found to be 2.2 ◦C greater than that of
the healthy plants. The temperature difference enabled identification of infected and
healthy leaves prior to apparent necrosis on the leaves. Subsequently, ref. [36] used thermal
images of canopy regions of oil palm trees from non-infected and infected BSR trees. The
images were processed to derive intensity values that correspond to the plants’ thermal
characteristics. These values were analyzed statistically. Selected principal component
scores were employed in multivariate classification algorithms such as k-nearest neighbor
(kNN) and support vector machine (SVM). The findings indicated that when the average
intensity value of trees was employed, the SVM-based model achieved the maximum
overall classification accuracy of 89.2% for the training set and 84.4% for the test set. A
recent study [37] utilized thermal imagery to detect BSR in oil palm during the seedling
stage. The extracted values of thermal characteristics were obtained by processing thermal
images of oil palm seedlings for each infected and healthy seedling. Statistical analysis was
performed to find any significant differences that indicate healthy and diseased seedlings.
To minimize the input’s dimensionality, principal component analysis (PCA) was employed.
The SVM (fine Gaussian) classification model using principal component 1 and principal
component 3 input parameters produced the best results, with an accuracy of 80%.

Although there have been studies to detect trees infected by BSR [36,37], these studies
differ in terms of image acquisition and image processing. In terms of image acquisi-
tion, this study is innovative because it balances the effects of several different radiation
sources, such as emissivity, reflection temperature, and other environmental parameters
(atmospheric temperature, ecological humidity, and camera distance), in contrast to pre-
vious studies in which the parameters of the thermal camera were set to a fixed value.
The parameters involved were emissivity (0.98), reflected apparent temperature (RAT)



Agronomy 2021, 11, 2373 4 of 23

(20 ◦C), atmospheric temperature (20 ◦C), and relative humidity (50%). The emissivity
was kept constant (0.98) in this investigation, but the RAT value was varied according to
the value reflected by the reflector. The reflector is positioned within the field of vision of
the infrared camera, and its temperature is measured using the reflector’s emissivity of
one. The reflection temperature is the outcome of the reflector temperature. Meanwhile,
atmospheric temperature and relative humidity values were set every half hour and ranged
from 24–30 ◦C and 67–92%, respectively. Meanwhile, prior research standardized the image
temperature scale from 24–34 ◦C to ensure that pixel intensity corresponds to the exact
temperature representation, in contrast to this study, which assessed each thermal image
by focusing on features of temperature variance. In this regard, we strive to improve
existing methodologies and to develop novel approaches for detecting BSR illness in oil
palm plantations.

A machine learning (ML) algorithm is one probable method that can be used to classify
oil palm trees that are non-infected and BSR-infected. ML algorithms use a computation
method to find out information directly from the data without depending on the equations
that have been designated as a model [38]. In the last decade, ML algorithms have been
used in various applications, such as agricultural monitoring [39–41], land cover map-
ping [42–44], and forest monitoring [45–47]. ML approaches have also been applied to
precision farming, which is now known as digital farming [41]. One of the most significant
concerns of digital agriculture is pest and disease control. Recently, ML algorithms have
also been used to classify remote sensing data and crop disease detection [48].

Numerous researchers have researched BSR disease detection using ML. Researchers [49]
used electrical properties to detect BSR disease in oil palm trees at an early stage. Only
56 mature tree samples were chosen, with 14 trees representing each of the four infec-
tion levels. Quadratic Discriminant Analysis (QDA) achieved the maximum accuracy,
while impedance performed the best, with an overall accuracy of 82–100%. Multispectral
Quickbird satellite images were employed by [50] for BSR disease classification. The plot
contained 144 oil palm trees ranging in age from 10 to 21 years old. In comparison to SVM
and regression tree (CART) models, the RF classifier performed the best, with the highest
accuracy in the producer (91%), user (83%), and overall (91%) categories. In a recent study,
ref. [22] used TLS to classify the healthiness levels of BSR disease. The results indicated
that the kernel naïve Bayes (KNB) model created utilizing principal component 1 and 2 as
input parameters performed the best among 90 other models.

Nevertheless, the data’s class imbalance presents a challenge for machine learning
classifiers, as the class imbalance frequently favors a majority class [51]. To address issues
of class imbalance, data-level techniques are frequently used. Random oversampling (ROS),
random undersampling (RUS), and synthetic minority oversampling (SMOTE) are the
most often utilized data-level techniques for resolving the imbalance problem in a variety
of agricultural applications [52,53].

Thus, this research aims to use a thermal imaging dataset to distinguish non-infected
and infected oil palm trees utilizing an imbalance data technique and a machine learning
algorithm. The two objectives of this research are to: (1) identify potential temperature
features and (2) assess the performance of machine learning (ML) classifiers (naïve Bayes
(NB), multilayer perceptron (MLP), and random forest (RF)) to distinguish non-infected
and BSR-infected oil palm trees.

2. Materials and Methods
2.1. Data Collections

The study site is located within the Felcra Seberang Perak 10, Phase 1, Parcel 3 oil
palm farms. It is located approximately at latitude 4◦06′01”–4◦06′44” N and longitude
100◦53′07”–100◦53′42” E in Mukim Pasir Salak, Perak Tengah district, Perak. Parcel 3
covers an area of 26 hectares and contains a total of 3660 trees. Oil palm trees for Phase 1,
Parcel 3 were planted in 2005 as second-generation plants. The oil palm trees in this study
were 13 years old, and 2009 was the first year of fruit production for the plantation. The
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oil palm planting was maintained similarly to commercial palm oil plantations, including
fertilization, fruit harvesting, trimming, and weed control. Pruning mature palms properly
was necessary to remove dead or senescing leaves and to provide access to the FFBs in the
appropriate harvesting period. The plot was planted at a density of 142 palms per hectare,
and the palms were spaced 9 × 9 × 9 m apart in an equilateral triangular design.

The data for the classification model were collected between 20 and 22 March 2017.
A total of 92 samples of oil palm trees used in this study were selected randomly. The
samples were categorized as non-infected (healthy tree) and BSR-infected. The number of
oil palm trees for non-infected was 55, and that for BSR-infected was 37. The health status
of trees infected with BSR was determined by an expert based on visual signs provided by
the Malaysian Oil Palm Board (MPOB).

The FLIR T620 IR infrared thermal imaging camera (FLIR Systems, Inc., Wilsonville,
OR, USA) was used for data acquisition. The trunk images of each tree section were
randomly captured at three different angles. The age of the tree was 13 years old, having
a height of more than 4 m. The thermal camera position was 1 m above the ground and
1m away from the tree. The image acquisition was carried out for trunk sections in two
different sessions: morning and afternoon. For the morning session, the images were
captured from 7.30 a.m. to 10 a.m. Meanwhile, the images in the afternoon session were
captured from 4.30 p.m. to 7 p.m. This selection session was based on the sun’s heat
energy gradually absorbed by crop plants during daylight hours. Moreover, as the ambient
temperature rises throughout the day, these objects become less distinct from other warm
objects that the camera’s sensor detects and highlights. An illustration diagram for the
experimental setup of the trunk is shown in Figure 1.
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To measure temperature accurately, the effects of several different radiation sources
must therefore be offset, such as emissivity, reflected temperature, and other environmental
parameters (atmospheric temperature, ecological humidity, and camera distance). The
temperature of the object (Tobj) can be calculated from Equation (1). Different camera
manufacturers use similar equations to perform temperature measurements [54]. In order
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to solve Equation (1), numerous parameter inputs are required by the camera, or software,
to precisely estimate the temperature of the object.

Tobj =
4

√√√√√Wtot −
(

1− εobj

)
· τatm · σ ·

(
Tre f

)4
− (1− τatm) · σ · (Tatm)

4

εobj · τatm · σ
(1)

where εobj refers to the object’s emissivity, Tref refers to the reflected temperature, τatm refers
to the transmittance of the atmosphere, and Tatm refers to the atmosphere’s temperature.
Generally, the transmittance of the atmosphere is determined by the distance between
the object and the camera and the relative humidity. This value is typically close to one.
However, because the atmosphere’s emittance is close to zero (1 − τatm), this characteristic
has a negligible effect on temperature measurements. On the other hand, the emissivity
of the object and the reflected temperature have a significant impact on the temperature
measurement and must be determined precisely.

2.1.1. Emissivity Measurement

Emissivity is the efficiency of an object to radiate heat. Provided that both the object
and an ideal blackbody are at the same temperature, emissivity can be defined as the ratio
of infrared energy emitted by the object, as compared to that emitted by an ideal blackbody
and represented as a percent or a decimal. In this experimental study, the emissivity of
the oil palm tree’s surface was estimated using an emissivity coating method [55]. If a
part of the surface under study can be coated with a black paint with a known emissivity,
the emissivity of the surface can be obtained by changing the emissivity value set on the
device until the surface temperatures measured on the coated and uncoated surfaces are
the same [56]. Several authors utilized a similar approach, except instead of black paint,
black electrical tape was employed [57–60]. The configuration of the emissivity is then
changed until the actual temperature is measured. The final configured emissivity is the
emissivity of the object. As a result, at emissivity of 0.98, the oil palm tree’s temperature
and the tape’s temperature recorded by the thermal camera were the same.

2.1.2. Reflected Apparent Temperature (RAT)

The reflected apparent temperature must be calibrated for accurate measurement. The
object’s perceived temperature compensates for the radiation reflected from its surround-
ings into the camera. When the emissivity is low and the object temperature is significantly
different from the reflected apparent temperature, it is even more crucial to set the reflected
apparent temperature accurately. A crumpled and re-flattened sheet of aluminum foil is
a frequently used substitute [55]. The reflector is positioned within the infrared camera’s
field of view, and the reflector’s temperature is determined using an emissivity of one
and a distance of zero. Finally, the test is repeated with the reflector’s temperature as the
reflected temperature. The final reflected temperature is the resultant temperature value.

2.1.3. Atmospheric Temperature and Humidity

Additionally, the camera may take into account the effect of atmospheric temperature.
The nature of the camera demonstrates that transmittance is dependent on the relative
humidity present in the atmosphere. The temperature and humidity of the atmosphere
were recorded every half hour using a TFA Dostmann Digital Thermo-Hygrometer (30.5002)
(TFA-Dostmann.de., Wertheim-Reicholzheim, Germany).

2.1.4. The Distance between the Object and the Camera

Distance is a parameter that indicates the distance between an object and the front
lens of the camera. In this research, the distance was fixed at 1 m. The camera was focused
on the trunk of the oil palm tree at a height of 1 m above the ground, where the G. boninense
fruiting bodies appear on the basal stem.
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2.2. Data Pre-Processing

The temperature variation for each of the thermal images was analyzed using the cam-
era manufacturer’s software, FLIR ResearchIR Max (FLIR Systems, Inc., Wilsonville, OR,
USA). The two primary image processing steps involved in this study and the processing
workflow are depicted in Figure 2.
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2.2.1. Image Enhancement

Image enhancement seeks to improve the perceived utility of images for human
viewers or help in processing other image-based techniques by computer. Two inputs for
changing the image’s contrast are used in image enhancement, such as setting the limits
for different scales and using automatic gain control (AGC) algorithms (these algorithms
can improve image detail and contrast). This study used scale limits from image and
plateau equalization (PE). Scale limits from image’s function is to look at the entire image
to determine the min and max values for the scale; meanwhile, PE allows for excellent
contrast in almost all scenes. Users can control the algorithm’s aggressiveness and choose
how intense they want the image enhancements to be using a PE slider. In short, the
outcome of image enhancement improves the image’s quality and can lead to better views
of an image. Image differences before and after the image enhancement process can be
seen in Figure 2.

2.2.2. Identifying the Region of Interest (ROI)

The first thing to consider is that the oil palm trunk area needs to be separated from
its background. The process starts with recognizing different regions in the image that
are likely to contain foreground objects. Defining the region of interest (ROI) is the first
and primary step in thermography processing analysis. Current software uses various
shapes, including a box, ellipse, line, bendable line, polygon, freehand, spot cursor, and
measurement cursor for defining these regions. The ROI was represented in this study by a
polygon. Polygons were selected due to the irregular trunk features of the oil palm tree. As
a result, the ROI temperature was considered, as shown in Figure 2.
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2.3. Feature Extraction—Thermal Image

Feature extraction is a technique for reducing the dimension of an image by efficiently
representing remarkable regions as a compact feature vector. This method was carried
out on the thermal images that had been processed. FLIR Tools in the FLIR ResearcherIR
Max software environment was used to extract features from each thermal image. The
following features were retrieved from the ROI of the thermal images that represent the oil
palm trees denoted by A = {ai}N

i=1 and are defined as below:

• Maximum temperature of oil palm trunk, (Tmax) = max (A)
• Minimum temperature of oil palm trunk, (Tmin) = min (A)
• Center temperature of oil palm trunk, (Tcenter) = center (A)

• Mean temperature of oil palm trunk, (Tmean) = ∑N
i=1 ai
N

• Standard deviation temperature of oil palm trunk, (Tsd) =
√

1
N ∑N

i=1 (ai − Tmean)
2

where N is total number of pixels and ai is pixel value at i.
Every feature was extracted from the three images taken at different angles and the

values averaged. These averaged features were then used to analyze the characteristics of
non-infected and infected trees using a statistical analysis of variance (ANOVA) using JMP
Pro 16 (SAS Institute Inc., Cary, NC, USA).

2.4. Statistical Analysis

Since a series of comparisons were carried out in the present study, the variances were
analyzed (through an ANOVA test) to see whether the means of dependent variables are
different in the involved groups or not. In this study, an ANOVA test was conducted in the
following order:

• to assess the temperature characteristic of the non-infected and infected trees during
morning and evening sessions to see if there was a significant effect between non-
infected and infected trees during morning and evening sessions;

• to evaluate the relationship between non-infected and infected trees and the feature
temperature captured by the thermal camera.

2.5. Machine Learning Approach

Additionally, the machine learning approach can be utilized to categorize both large
numbers of samples and small numbers of samples [22,61]. Classification is performed
using the features retrieved from the thermal images as input. The extracted features act
as the predictor while the oil palm status serves as a response. To differentiate between
non-infected and BSR-infected trees, the classification was performed using the Waikato
Environment for Knowledge Analysis (WEKA) version 3.8.5. We used cross-validation
to evaluate the model’s performance due to the small sample size. WEKA’s K-fold cross-
validation function divided the data into training and testing sets and carried out an
independent assessment of the model’s accuracy. As a result, the model generated was
acceptable and not restricted to a single collection of data. We performed ten iterations of
cross-validation, randomly partitioning the original data into ten subsamples. Three ML
techniques were employed, as follows:

(i) Naïve Bayes (NB). The NB algorithm is a probabilistic generative model based
on the concept of conditional independence of predictor features, which means that the
presence of one feature in a class is unrelated to any other feature [62]. NB’s conditional
independence assumption enables the computation of the sample data’s class-conditional
probabilities, which can be calculated directly from the training data rather than by assess-
ing all feature possibilities [63].

(ii) Multilayer perceptron (MLP). MLP is an artificial neural network feed-forward
model that charts input datasets to a set of appropriate outputs. An MLP is the result of
multiple layers of nodes being connected [64]. Except for the input nodes, every node
is a neuron (or processing element) with a nonlinear activation function. For training
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the network, MLP utilizes a supervised learning technique called backpropagation [65].
MLP is a modification of the standard linear perception and can distinguish non-linearly
separable data.

(iii) Random forest (RF). RF is a classification algorithm that consists of a collection
of stochastic decision trees. In RF, each tree is trained using a separate bootstrap sample
from the original datasets, and each node contains a random feature from the original
dataset [66]. The dataset is assigned using a majority vote obtained from an ensemble of
trees constructed using the RF technique [67]. Additionally, it has high predictive accuracy,
is resilient to noise, and is effective with an imbalanced dataset [68,69].

2.6. Imbalance Data Approach

Using ML, classifiers are developed with the goal of minimizing classification errors
and increasing predicting accuracy. These classification methods make the basic assump-
tion that the dataset under research comprises a well-balanced number of examples for
each specific class of classifications. Therefore, the target classes’ prior probabilities are
considered identical [70]. Classification algorithms have traditionally been motivated by
improving the predicted accuracy of the generated classifiers.

Nonetheless, maximizing overall accuracy may not be the optimal strategy in the
event of an unbalanced dataset. To maximize overall accuracy, a classifier concentrates on
the majority class, which carries the maximum weight in the data. As a result, the classifier
can achieve high accuracy on the majority class while doing poorly on the minority group
due to the overall dataset extension. Our concern is with the minority class. Due to the
small number of BSR-infected samples relative to non-infected samples, data imbalance
was a challenge in this study. In machine learning, class imbalance can be addressed by
either altering the underlying algorithm’s learning processes or modifying the dataset
itself. The approach to solving this problem is a data-level approach. To increase the
imbalance ratio, concerning data-level imbalance handling, the incidence of the two classes
is algorithmically equated.

Data Sampling

The data-level approach is often referred to as the data sampling technique. It ac-
complishes this by artificially balancing the class instances in the dataset. Resampling
corrects for imbalances by altering each class type instance, which frequently employs
sampling techniques such as undersampling or oversampling, or a combination of the
two [71]. Resampling techniques are more adaptable because they are not dependent on
the classifier chosen [72].

(i) Undersampling is one of the simplest strategies to handle imbalanced data. The
primary undersampling method arbitrarily eliminates majority class examples in order
to balance the dataset [73]. The simplest yet most effective method is undersampling the
majority class, most commonly implemented as random undersampling (RUS). In RUS, the
majority of class instances are discarded at random until a more balanced distribution is
attained [74]. Consider, for example, a dataset consisting of 100 majority class instances and
10 minority class instances. In RUS, by selecting 90 majority class instances at random to be
removed, one might attempt to create a balanced class distribution. The resulting dataset
will then have 20 instances: 10 (the original) minority class instances and 10 (randomly
remaining) majority class instances.

(ii) Oversampling is another common sampling method employed in dealing with
an imbalanced class problem. Numerous oversampling methods are available including
random oversampling (ROS), focused oversampling, and synthetic sampling [75,76]. In
ROS, minority class instances are copied and also repeated in the dataset until a more
balanced distribution is attained. Therefore, if there are 100 majority class instances and
two minority class instances, traditional oversampling would copy the two minority
class instances 49 times. The resulting dataset will have 200 instances: the 100 majority
class instances and 100 minority class instances (i.e., 50 of each of the two minority class
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instances). In focused oversampling, only those minority class values having samples that
occur on the boundary between the majority and minority class values are resampled.

(iii) SMOTE is a method that generates synthetic samples to oversample the minority
class [75]. SMOTE selects a representative of a minority class at random and then locates
the nearest minority class neighbor. The synthetic instance is then constructed by randomly
selecting one of the k-nearest neighbors, B, and linking A and B in space attributes to form
a line segment. The synthetic samples are created by combining two selected samples, A
and B, convexly [77]. Finally, new minority class instances are synthesized.

This study used resampling approaches such as RUS, ROS, and SMOTE. Resampling
was performed using an open-source ML program, WEKA. Prior to classification, the
resampling parameters were determined and are summarized in Table 1.

Table 1. Summary of the parameters used for the imbalanced approach.

Technique Parameter

RUS distributionSpread = 1
ROS biasToUniformClass = 1

noReplacement = false
SMOTE classValue = 0

nearestNeighbors = 5
percentage = 50

Random Undersampling (RUS), Random Oversampling (ROS), Synthetic Minority Oversampling (SMOTE).

We divided the dataset into 70% training and 30% test for testing purposes. Table 2
illustrates the imbalanced technique used to pre-process the dataset for non-infected and
BSR-infected trees.

Table 2. A pre-processed dataset applying an imbalanced approach for non-infected and Basal Stem Rot (BSR)-infected trees.

Training Testing

Non-Infected
(Majority)

BSR-Infected
(Minority)

Non-Infected
(Majority)

BSR-Infected
(Minority)

Single (without class imbalance approach) 38 25 17 12
RUS 25 25 12 12
ROS 31 31 14 14

SMOTE 38 38 17 17

2.7. Accuracy Assessment

Overall accuracy as an assessment metric will be biased because of the data imbalance
problem since it mainly represents the majority class’s accuracy [54]. This analysis, there-
fore, presented the description of the confusion matrix as an alternative in terms of the
success rate of the non-infected and BSR-infected trees, along with the receiver operating
characteristic (ROC) curve region (AUC) and precision–recall curve (PRC). These metrics
were used to evaluate different classifier and imbalanced approaches and measure their
performance. The receiver operating characteristic (ROC) curve represents the degree or
measure of separability, whereas the area under the curve (AUC) represents the degree
or measure of separability. In AUC, the true positive rate (TPR), on the y-axis, is plotted
against the false positive rate (FPR), on the x-axis [78]. The AUC is a good metric for
classifier performance because it is decision-dependent, and the score is always confined
between 0 and 1 [79]. No viable classifier has an AUC value less than 0.5 [80]. The higher
the AUC value, the more capable the model is at discriminating between positive and neg-
ative classifications. The PRC is an alternative to the AUC. PRC is calculated and plotted as
the precision (y-axis) versus recall (x-axis) for a single classifier at various thresholds [78].
In general, the greater the area under the PRC score, the better a classifier performs. In
contrast to AUC, PRC does not take into account the number of true negative outcomes [81].
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This study considered the AUC and PRC value of 0.50 as fail, 0.51–0.69 as poor,
0.70–0.79 as acceptable, 0.80–0.89 as excellent, and 0.90–1.00 as outstanding [82]. Mean-
while, this study classified the success rate of classifying the non-infected and BSR-infected
trees as poor if it was less than 40.00 percent, moderate if it was 40.00–80.00 percent, and
robust if it was more significant than 80.00 percent [83].

3. Results
3.1. Selection of the Time Session

In this study, the temperature characteristic of the non-infected and infected trees
during morning and evening sessions was found. Figure 3 shows an example of the
processed thermal image during the morning and evening session of a trunk section. The
feature of the mean temperature was extracted from the thermal images. The results were
compared to see if there was a significant effect between non-infected and infected trees
during morning and evening sessions.
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The two-way ANOVA was conducted to compare the main effects of status (non-
infected and infected with BSR) and session (morning and evening) and their interaction
effects on the mean temperature of the oil palm trees. Table 3 shows the descriptive statistics
for mean temperature extracted from the thermal images.
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Table 3. Descriptive statistics for mean temperature extracted from the thermal images.

Status Time Mean Std. Deviation n

Non-infected
Morning 25.57 0.90 55
Evening 30.18 1.44 55

Infected
Morning 27.18 1.91 37
Evening 29.92 1.59 37

Table 4 shows that the status and session effects were statistically significant at
p < 0.005. The main effect for the status yielded an F ratio of F (1,180) = 9.70, p < 0.002,
indicating a significant difference between non-infected oil palm trees and those infected
with BSR. The main effect for the session yielded an F ratio of F (1,180) = 284.851, p < 0.001,
indicating a significant difference between morning and evening sessions. The interaction
effect was significant, F (1,180) = 18.596, p < 0.001. Therefore, this result shows that the data
collection for the thermal image acquisition process can be carried out during morning
and evening sessions for a trunk section. The relationship between feature temperature
(Tmean) and the status of the oil palm trees is shown in Figure 4a; the relationship between
feature temperature (Tmean) and the session captured in a thermal image in Figure 4b; and
the interaction effect of feature temperature (Tmean) with the healthiness of oil palm and
session in Figure 4c.

Table 4. ANOVA summary table for mean temperature extracted from the thermal images.

Source df Mean Square F Sig. Partial Eta Squared

Status 1 20.382 9.700 0.002 0.051
Session 1 598.529 284.851 0.000 0.613

Status * Time 1 39.073 18.596 0.000 0.094
Error 180 2.101
Total 183

*-Factor interactions, df-Degrees of Freedom, F-Variance Ratio, Sig.-Significant.
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Figure 4a illustrates that the Tmean for BSR-infected trees is higher than for non-infected
trees. Meanwhile, Figure 4b shows that the Tmean in the evening session is higher compared
to the morning session. Furthermore, Figure 4c reveals that the Tmean for BSR-infected trees
is higher than the non-infected trees in the morning session and contradicts the evening
session result.

3.2. Feature Temperature Selection

The one-way analysis of variance (ANOVA) test evaluated the relations among non-
infected and infected trees and the thermal camera’s feature temperature. The independent
variables in the present study were non-infected and BSR-infected oil palm trees. On
the other hand, the dependent variable consisted of Tmean, Tsd, Tcenter, Tmax, and Tmin
extracted from the thermal image. These analyses helped determine whether the data on
the healthiness oil palm trees differed significantly or not. Table 5 shows the descriptive
statistics for features extracted from the thermal images.

Table 5. The descriptive statistics for features extracted from the thermal images.

Feature Status Number of
Samples(n) Mean Std. Deviation Std. Error

95% Confidence Interval for Mean

Lower Bound Upper Bound

Tmean
Non-infected 55 25.566 0.902 0.122 25.322 25.810

Infected 37 27.184 1.912 0.314 26.547 27.822
Tsd

Non-infected 55 0.422 0.121 0.016 0.389 0.455
Infected 37 0.742 0.678 0.111 0.516 0.968

Tcenter
Non-infected 55 25.559 0.941 0.127 25.305 25.814

Infected 37 27.208 2.131 0.350 26.498 27.918

Tmax
Non-infected 55 27.333 1.408 0.190 26.952 27.713

Infected 37 30.842 4.976 0.818 29.183 32.501
Tmin

Non-infected 55 24.447 0.829 0.112 24.222 24.671
Infected 37 25.567 0.993 0.163 25.235 25.898

A summary of the results of the ANOVA test is presented in Table 6. The ANOVA
result’s significance can be seen from all the feature temperatures, Tmean, Tsd, Tcenter, Tmax,
and Tmin. It is then assumed that all the feature temperatures are suitable for further
classification of the oil palm trees.

Table 6. ANOVA results comparing the mean of Tmean, Tsd, Tcenter, Tmax, and Tmin between non-
infected and BSR-infected oil palm trees.

Feature p Value Significance

Tmean <0.0001 Yes
Tsd <0.0001 Yes

Tcenter <0.0001 Yes
Tmax <0.0001 Yes
Tmin 0.0392 Yes

3.3. Classification Analysis of Feature Temperature

The features obtained from the thermal images were classified into non-infected and
BSR-infected trees based on the imbalanced data approaches RUS, ROS, and SMOTE, and
without an imbalanced data approach using several classification methods, namely, NB,
MLP, and RF. The AUC, PRC, and success rate (%) of the non-infected trees and trees
infected by G. boninense are shown in Tables 7–9, respectively.
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Table 7. The area under the curve (AUC) of the NB, MLP, and RF classifiers according to temperature feature.

Feature NB MLP RF
Single RUS ROS SMOTE Single RUS ROS SMOTE Single RUS ROS SMOTE

Tmean 0.787 c 0.722 c 0.797 c 0.801 d 0.806 d 0.766 c 0.785 c 0.823 d 0.665 b 0.710 c 0.800 d 0.734 c

Tsd 0.588 b 0.555 b 0.649 b 0.573 b 0.629 b 0.522 b 0.628 b 0.627 b 0.529 b 0.435 a 0.754 c 0.512 b

Tcenter 0.754 c 0.692 b 0.758 c 0.793 c 0.791 c 0.718 c 0.745 c 0.801 d 0.682 b 0.658 b 0.838 d 0.760
Tmax 0.765 c 0.638 b 0.762 c 0.796 c 0.833 d 0.752 c 0.797 c 0.846 d 0.881 d 0.798 c 0.921 e 0.899 d

Tmin 0.811 b 0.780 c 0.808 d 0.835 d 0.799 c 0.762 c 0.780 c 0.815 d 0.696 b 0.680 b 0.838 d 0.744 c

Tmean, Tsd 0.738 c 0.721 c 0.802 d 0.767 c 0.811 d 0.755 c 0.759 c 0.815 d 0.677 b 0.674 b 0.855 d 0.748 c

Tmax, Tmin 0.823 b 0.774 c 0.827 d 0.846 d 0.806 d 0.718 c 0.810 d 0.816 d 0.801 d 0.750 c 0.907 e 0.844 d

Tmean, Tsd,
Tcenter, Tmax,

Tmin

0.796 c 0.736 c 0.826 d 0.807 d 0.789 c 0.739 c 0.801 d 0.811 d 0.766 d 0.706 c 0.920 e 0.845 d

a as fail, b as poor, c as acceptable, d as excellent, e as outstanding.

Table 8. The area precision–recall curve (PRC) of the NB, MLP, and RF classifiers according to temperature feature.

Feature NB MLP RF
Single RUS ROS SMOTE Single RUS ROS SMOTE Single RUS ROS SMOTE

Tmean 0.784 c 0.697 b 0.760 c 0.771 0.777 0.721 0.737 0.791 0.648 b 0.659 b 0.780 c 0.728
Tsd 0.632 b 0.596 b 0.657 b 0.600 b 0.685 b 0.557 b 0.623 b 0.637 b 0.556 b 0.489 a 0.739 c 0.558 b

Tcenter 0.749 c 0.692 b 0.769 c 0.776 c 0.758 c 0.667 b 0.718 c 0.767 c 0.673 b 0.634 b 0.811 d 0.711 c

Tmax 0.782 c 0.634 b 0.736 c 0.783 c 0.814 d 0.724 c 0.764 c 0.827 d 0.864 d 0.758 c 0.902 e 0.877 d

Tmin 0.798 c 0.750 c 0.776 c 0.822 d 0.765 c 0.709 c 0.726 c 0.775 c 0.680 b 0.646 b 0.816 d 0.729 c

Tmean, Tsd 0.748 c 0.704 c 0.782 c 0.748 c 0.806 d 0.712 c 0.716 c 0.776 c 0.671 b 0.638 b 0.828 d 0.727 c

Tmax, Tmin 0.802 d 0.751 c 0.782 c 0.831 d 0.766 c 0.679 b 0.772 c 0.791 c 0.765 c 0.705 c 0.885 d 0.811 d

Tmean, Tsd,
Tcenter, Tmax,

Tmin

0.770 c 0.710 c 0.772 c 0.785 c 0.764 c 0.702 c 0.771 c 0.784 c 0.724 c 0.652 b 0.902 e 0.806 d

a as fail, b as poor, c as acceptable, d as excellent, e as outstanding.

Table 9. The success rate (%) for non-infected (N) and BSR-infected (I) trees for feature temper-atures used.

Feature IA
Classification Model

NB MLP RF
N I N I N I

Tmean

Single 92.11c 44.00 b 84.21 c 72.00 b 73.68 b 36.00 a

RUS 88.00 c 44.00 b 84.00 c 72.00 b 72.00 b 52.00 b

ROS 90.32 c 48.39 b 77.42 b 74.19 b 70.97 b 90.32 c

SMOTE 92.11 c 55.26 b 84.21 c 71.05 b 65.79 b 52.63 b

Tsd

Single 94.74 c 32.00 a 94.74 c 24.00 a 60.53 b 52.00 b

RUS 92.00 c 24.00 a 88.00 c 24.00 a 44.00 b 48.00 b

ROS 93.55 c 29.03 a 90.32c 35.48 a 70.97 b 80.65 c

SMOTE 94.74 c 23.68 a 86.84 c 39.47 a 57.89 b 50.00 b

Tcenter

Single 92.11 c 48.00 b 89.47 c 56.00 b 73.68b 52.00 b

RUS 92.00 c 48.00 b 80.00 c 56.00 b 72.00 b 52.00 b

ROS 90.32 c 48.39 b 77.42 b 67.74 b 83.87 c 90.32 c

SMOTE 92.11 c 55.26 b 86.84 c 65.79 b 76.32b 71.05 b

Tmax

Single 92.11 c 36.00 a 84.21 c 72.00 b 86.84 c 80.00 c

RUS 92.00 c 36.00 a 84.00 c 60.00 b 80.00 c 72.00 c

ROS 93.55 c 48.39 b 90.32c 74.19 b 87.10 c 100.00 c

SMOTE 94.74 c 42.11b 81.58 c 76.32 b 84.21 c 81.58 c

Tmin

Single 94.74 c 63.63b 86.84 c 64.00 b 73.68 b 56.00 b

RUS 84.00 c 64.00 b 76.00 b 64.00 b 64.00 b 60.00 b

ROS 87.10 c 67.74 b 80.65 c 70.97 b 74.19 b 90.32 c

SMOTE 89.47 c 65.79 b 84.21 c 65.79 b 71.05 b 65.79 b

Tmean, Tsd

Single 94.74 c 44.00 b 81.58 c 64.00 b 73.68 b 56.00 b

RUS 92.00 c 36.00 a 84.00 c 68.00 b 72.00 b 72.00 b

ROS 93.55 c 41.94 b 74.19 b 77.42 b 77.42 b 93.55 c

SMOTE 94.74 c 42.11 b 84.21 c 71.05 b 76.32 b 68.42 b
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Table 9. Cont.

Feature IA
Classification Model

NB MLP RF
N I N I N I

Tmax, Tmin

Single 89.47 c 44.00 b 86.84 c 60.00 b 84.21 c 76.00 b

RUS 88.00 a 44.00 b 76.00 b 64.00 b 76.00 b 80.00 c

ROS 90.32 a 61.29 b 83.87 c 74.19 b 87.10 c 100.00 c

SMOTE 89.47 a 57.89 b 84.21 c 63.16 b 84.21 c 81.58 c

Tmean, Tsd,
Tcenter, Tmax,

Tmin

Single 92.11 a 44.00 b 84.21 c 60.00 b 84.21 c 68.00 b

RUS 88.00 a 40.00 a 80.00 c 64.00 b 76.00 b 68.00 b

ROS 90.32 a 48.39 b 83.87 c 74.19 b 83.87 c 96.77 c

SMOTE 92.11 a 52.63 b 84.21 c 65.79 b 84.21 c 81.58 c

a as poor, b as moderate, c as robust.

The AUC and PRC results are relatively similar (Tables 7 and 8). The best AUC and
PRC (outstanding) results obtained from the Tmax feature and the RF classifier and ROS
approach were 0.921 and 0.902, respectively. Using the RF classifier and ROS approach,
the Tmax features improve AUC and PRC results compared to a single approach. The RUS
approach yields the lowest AUC and PRC results on all features and classifiers.

Table 9 shows all feature success rates of three classifiers NB, MLP, and RF. NB delivers
strong results when classifying non-infected trees, but its ability to classify BSR-infected
trees is reduced compared to the other two classifiers. The Tmax feature provides the
best overall success rate for all three classifiers, while the RF classifier has the highest
success rate for classifying non-infected and BSR-infected trees. Meanwhile, in terms of the
imbalanced approach, using the RF classifier, the ROS approach has the highest success
rate of 87.10% for non-infected trees and 100% for BSR-infected trees.

Table 10 shows the ANOVA model results for the effect of features, imbalanced ap-
proaches, classifiers, and two-way interaction (Feature*Imbalance Approach, Feature*Classifier,
and Imbalance Approach*Classifier) on AUC and PRC across non-infected and BSR-
infected trees. For the AUC and PRC response variable, two main factors (Feature and
Imbalance Approach) and their two-way interaction are all statistically significant at the
α = 0.05 level. One main factor, “Classifier”, was found to be not significant at this signifi-
cance level for PRC.

Table 10. ANOVA for the effect of features, imbalanced approaches, and classifiers on AUC and PRC across non-infected
and BSR-infected trees.

Source
AUC PRC

DF Sum of
Squares F Ratio Prob > F DF Sum of

Squares F Ratio Prob > F

Feature 7 0.451 139.611 <0.0001 * 7 0.254 95.663 <0.0001 *
Imbalance Approach 3 0.135 97.435 <0.0001 * 3 0.135 118.367 <0.0001 *

Classifier 2 0.003 3.394 0.0430 * 2 0.002 2.935 0.0641
Feature*Imbalance Approach 21 0.026 2.691 0.0031 * 21 0.018 2.279 0.0114 *

Feature*Classifier 14 0.068 10.496 <0.0001 * 14 0.056 10.610 <0.0001 *
Imbalance Approach*Classifier 6 0.067 24.031 <0.0001 * 6 0.080 34.975 <0.0001 *

Error 42 0.019 42 0.016
C. Total 95 0.769 <0.0001 95 0.561 <0.0001

*-The mean difference is significant at the 0.05 level.

The Tukey’s HSD test was performed since each of the main factors is statistically
significant, indicating which levels of these factors result in significantly different perfor-
mances than the other levels of that factor. The first part of Table 11 provides HSD test
results for the main factor feature. This factor has eight levels (the eight different features
of temperature used for classification), each of which is assigned to a group (indicated by
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a letter) based on its average performance (across all the other factors). All the response
variables’ results show a relatively consistent result for AUC and PRC. The combination
feature Tmax, Tmin outperforms all other features in the AUC, and Tmax outperforms all
other features in the PRC. The Tukey’s HSD test demonstrated the combination of feature
Tmax, Tmin was not statistically different from the Tmax feature and combination Tmean, Tsd,
Tcenter, Tmax, Tmin, but it significantly differed from the other temperature feature in AUC.
Meanwhile, in PRC, the Tmax feature was not statistically different from the combination
feature Tmax, Tmin, but it significantly differed from the other temperature features. How-
ever, the Tsd feature is demonstrated to be lower than the statistically significant margin of
all other temperature features.

Table 11. Mean comparison of AUC and PRC obtained from Tukey’s HSD test according to features,
imbalanced approaches, classifiers, and classifier and imbalance approach interaction.

Feature
AUC Mean PRC Mean

Tmax, Tmin 0.810 a Tmax 0.789 a

Tmax 0.807 a Tmax, Tmin 0.778 ab

Tmean, Tsd, Tcenter, Tmax, Tmin 0.795 ab Tmean, Tsd, Tcenter, Tmax, Tmin 0.762 bc

Tmin 0.779 bc Tmin 0.749 cd

Tmean 0.766 cd Tmean, Tsd 0.738 cd

Tmean, Tsd 0.760 cd Tmean 0.737 cd

Tcenter 0.749 d Tcenter 0.727 d

Tsd 0.583 e Tsd 0.611 e

Imbalance Approach
AUC Mean PRC Mean

ROS 0.799 a ROS 0.772 a

SMOTE 0.777 b SMOTE 0.759 a

Single 0.751 c Single 0.741 b

RUS 0.698 d RUS 0.674 c

Classifier
AUC Mean PRC Mean

MLP 0.764 a NB 0.742 a

NB 0.754 ab MLP 0.737 a

RF 0.751 b RF 0.730 a

Imbalance Approach*Classifier
AUC Mean PRC Mean

ROS-RF 0.854 a ROS-RF 0.833 a

SMOTE-MLP 0.794 b SMOTE-MLP 0.769 b

Single-MLP 0.783 b Single-MLP 0.767 b

ROS-NB 0.779 b SMOTE-NB 0.765 b

SMOTE-NB 0.777 b Single-NB 0.758 bc

ROS-MLP 0.763 b ROS-NB 0.754 bc

SMOTE-RF 0.761 b SMOTE-RF 0.743 bc

Single-NB 0.758 b ROS-MLP 0.728 cd

RUS-MLP 0.717 c Single-RF 0.698 de

Single-RF 0.712 cd RUS-NB 0.692 e

* Means with different letters in the same column according to group types are significantly different at p < 0.05.

The four imbalance approaches’ main factor levels perform significantly differently,
with the ROS approach outperforming all three other approaches in AUC and PRC. Mean-
while, the RUS approach is lower than the statistically significant margin of all other
imbalance approaches.

In AUC, MLP was not statistically different from NB, but it significantly differed from
the RF. There is no statistical difference for the main factor of the three classifiers present
in PRC.
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Table 11 also shows the mean AUC and PRC values for the imbalance approach and
classifier interaction. ROS-RF had a higher mean value and significantly differed from
other interactions for the imbalance approach and classifier. The bottom performer was
RUS-RF for AUC and PRC results.

4. Discussion
4.1. Selection of the Time Session

A tree trunk’s temperature influences a tree’s physiological processes and the micro-
climate for insects, parasites, fungi, and other organisms. Trunk temperatures may be
significant in the translocation of water and photosynthates. The thermal properties of
a tree (absorptivity, specific heat, and conductivity) combined with geometrical factors
govern heat energy distribution [84].

In plants, water is absorbed from the soil into the plant’s roots, then up through the
xylem into the leaves to be used differently for the plant’s continuance and help the plant
maintain its temperature. Transpiration has two important functions: cooling and maintain-
ing the plant temperature and transporting nutrients to the leaves for photosynthesis [85].
Transpiration is an evaporative cooling system that brings down plants’ temperature, but it
must be accurately regulated since it leads to water loss. Most of the water in plants is lost
through transpiration when the water is warmed by the sun and evaporated into vapor
through thousands of stomata, mostly on the leaf surface’s underside.

The surface temperature of the trunk will respond to environmental factors almost
instantaneously. In comparison, at a significant depth in the trunk, the temperature may
take time to follow the surface. In a BSR-infected oil palm tree, restricted water uptake
due to the damaged basal tissue causes the transpiration rate to become low. As the plant
cannot cool down its temperature, it causes the infected tree’s temperature to be higher
than a non-infected tree [86].

Due to the contradictory finding that the temperature of BSR-infected trees is lower
in the evening than that of non-infected trees, this phenomenon can be expanded by
referring to [35] who observed peanut leaf spots. As dead or severely damaged leaf
tissue has a lower thermal capacity than normal tissue, it can be heated more easily and
exhibits a greater radiance. Dead leaf tissue, on the other hand, can be cooled more
quickly than healthy tissue. This fact explains the diseased plant’s increased radiance in
the afternoon, corresponding to the decrease in air temperature. Two damaged trees of
similar species, even when they have the same pathology, can generate different thermal
patterns because the availability of water to which the tree is subject to differs and varies
with the temperature gradient along the trunk/tree [87]. The temperature pattern, which
allows identifying functional or dysfunctional tissues, is unique for each tree.

As mentioned above, the non-infected tree and infected tree characteristics have
significant differences in the morning and evening. It is shown that oil palms’ health status
can be determined when thermal images are taken in the morning (7.30 a.m. to 10 a.m.)
and in the evening (4.30 p.m. to 7 p.m.). However, we used only morning session data in
this study because thermal cameras are typically more effective in the early morning than
in the afternoon [88,89].

4.2. Effect of Temperature Feature

One of the objectives of this study was to determine the potential of the temperature
feature for classifying BSR disease in oil palm plants. Numerous studies have demonstrated
the efficacy of thermal imaging in detecting temperature variations caused by water stress in
plants. When transpiration happens and water is drained from the plants, the temperature
of the plants decreases. Transpiration is a thermodynamic process that is endo-energetic.
When plants are water-stressed in the soil, they frequently respond by decreasing their
stomata conductance, decreasing transpiration. In an oil palm tree infected with BSR, the
reduced water intake caused by the damaged basal tissue results in a poor transpiration
rate. The disruption of water and nutrient transport caused by trunk damage has a
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detrimental effect on numerous elements of plant physiology, most notably photosynthetic
potential [90]. The initial symptoms of BSR in oil palm are visible in the leaves, and this
occurs after at least 50% of the cross-sectional area of the stem base has been injured. The
rot impedes nutrient and water availability to the aerial regions, resulting in symptoms
similar to nutritional imbalance and water stress [91].

Ref. [92] conducted a study of the existing literature on the application of infrared
thermography to tree health assessment. While the majority of studies focused on pest
detection and water stress detection, a small number of them examined wood degradation
and cavity formation. Ref. [93] proposed detecting structural tree defects by analyzing
the surface temperature of the tree trunk and discovered that the temperature of the tree
bark surface varied significantly from the temperature of decayed wood areas. Due to the
difference in moisture content between tree trunks with and without cavities, the emissivity
varies, resulting in a difference in temperature observed by a thermal camera even though
the temperature is the same [87]. The change in temperature patterns is an indication
of an unhealthy state and enables scientific detection of tree cavities early. Trees have
varying cooling impacts on the surface temperature depending on their kind and degree of
decay. As a result, thermal imaging of the trunk temperature can assist in determining the
temperature difference between healthy and unhealthy trees.

Our study discovered an outstanding outcome: classification of oil palm trees that
are non-infected and BSR-infected can be successfully carried out using temperature
parameters retrieved from thermal data. For all three classifiers, the Tmax feature followed
by the combination of Tmax and Tmin is more successful at accurately classifying non-
infected and G. boninense-infected oil palm plants.

4.3. Effects of Data Imbalance on Classification

Classification, being a supervised learning process, depends mainly on the training
data. The level of training plays a major role in the resultant accuracy of the classifier. The
imbalanced nature of the datasets is a huge downside in this scenario. Due to the minimal
occurrence of the minor classes, the classifier is insufficiently trained and hence provides
inaccurate predictions. In the case of multiclass classifiers, such imbalance results in low
representation of entries and, eventually, these entries tend to be totally ignored [94]. Most
classifiers tend to implicitly consider their data as balanced; hence, standard classifiers are
biased towards the majority.

Countering imbalance in data tends to be one of the major areas of research where
real-time classification is concerned. Classifiers operating on data have a basic assumption
that the data are balanced. Hence, the weight provided to each of the samples is equal [95].
However, in imbalanced data, this mode of operation makes the classifier biased towards
the majority classes. Provided with a sufficiently high level of imbalance, the minority
classes can even be ignored during the rule-building process. Data balancing techniques
have been proposed to handle this scenario [96,97]. Data handling can be carried out
by modifying the existing algorithms to increase weightage of the minority classes [78],
increasing their contribution levels or sampling [98–100].

This study deals with the RUS, ROS, and SMOTE imbalanced approaches to counter
the imbalance problem. This is not an exhaustive list of techniques but rather a starting
point to handle imbalanced data. It was observed from this study that the ROS approach
performs better compared to the single (without class imbalance) approach. It has better
success classifying non-infected and BSR-infected oil palm trees. However, there is no best
approach or model suited for all problems, and it is strongly recommended to try different
techniques and models to evaluate what works best.

4.4. Effects of Classifiers on the Model Performance

All three ML models used in this study have nearly similar performance in classifying
the oil palm trees based on the AUC, PRC, and success rate of non-infected trees and trees
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infected by G. boninense. We need a thorough understanding of these methods’ output to
make maximum use of each classification system.

When adopting an algorithm, there are two factors to consider: (1) performance:
when selecting a classification or regression algorithm, the total output of the algorithm
is a significant determinant. (2) Robustness: when evaluating performance, it is crucial
to consider the application’s robustness rather than the fitting’s consistency [101]. We
eliminate the possibility of excessive generalization in this circumstance. This can be
mitigated by limiting the number of models that an algorithm can recommend. Both MLP
and RF can be utilized in this manner, each with its own set of advantages and limitations.
The number of hidden neurons and layers in an MLP model has a significant impact on
the model’s complexity and the amount of regularization employed while optimizing the
weights. We can adjust the size and number of trees and the size and depth of individual
trees to address the issue. Additionally, each of these techniques is capable of coping with
ambiguity and overfitting. In contrast to NB, when classifying a new instance, the algorithm
calculates the conditional probability of each class value. It selects the class with the highest
probability as the anticipated class [102]. The method estimates all required probability
values using the training data. To maintain tractability during computation, the approach
makes the naïve assumption that all attribute values are conditionally independent of the
class value.

In reality, all these three methods help with various characteristics of applications. No
single algorithm can be beneficial in every case, according to ML. As a result, no single
approach consistently outperforms others, and the outcomes of an algorithm will vary
significantly depending on the application and dataset size. Thus, one can compare the
outputs of multiple learning algorithms for a given task to determine the optimal algorithm.
It is also good to put together ensembles of many models created using different methods
to combine their strengths and minimize their flaws.

5. Conclusions

In this study, the feature properties of oil palm trees were extracted from thermal data
and divided into two status levels: non-infected and infected by G. boninense. Eight (8)
temperature features were used, namely, Tmean, Tsd, Tcenter, Tmax, Tmin, a combination of
Tmean, Tsd, Tmax, Tmin, and Tmean, Tsd, Tcenter, Tmax, Tmin. Single, RUS, ROS, and SMOTE
approaches were used with three classifier models NB, MLP, and RF.

In a comparison of performance, the AUC and PRC results for all feature temperatures
(except Tsd) increased when using all three classifiers with the ROS approach instead of
the single approach. In terms of model performance in the ROS approach, given any
temperature features, the RF model had an AUC ranging from 0.754 to 0.921 compared
to 0.649 to 0.827 for the NB model and 0.628 to 0.810 for the MLP model. Comparison
between the RF, NB, and MLP models for the PRC gave a range of 0.739–0.902, 0.657–0.782,
and 0.623–0.772, respectively.

Regarding the temperature features, specific features such as Tmax stand out more
than others. Using the most significant variable, Tmax, the RF model had an AUC of
0.921 compared to 0.797 for the MLP model and 0.762 for the NB model. For PRC, a
comparison of the RF model, the MLP model, and the NB model yielded values of 0.902,
0.764, and 0.736.

In conclusion, by using only the Tmax feature, RF can predict BSR disease with a
relatively outstanding accuracy compared to the MLP and NB which had an acceptable
accuracy. The significant benefit derived from this study is the potential of using thermal
data and the imbalanced data approach to classify oil palm trees infected by G. boninense
using ML techniques. In the future, studies with samples of different severity levels will be
used to analyze temperature features and identify oil palm trees that have been infected
with BSR disease.
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